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Abstract

The security of smart grid systems is under threat as a consequence of sophisticated intrusion and imperceptible 
faults. To make the smart grid systems more secure, the development of an efficient fault detection approach is 
significantly important. Considering that the time evolution of a smart grid system can be modeled by a discrete-time 
linear state space model, we focus on faults that can be described by changes in system matrices of the state space 
model. Hypothesis testing-based approaches are employed to detect the faults and a few new locally optimum testing 
procedures are introduced. We present numerical results that verify the superiority of the new approaches in detecting 
the change of the system and show that this advantage is particularly obvious when the change is small.
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1. Introduction

A subtle fault at a node of a smart grid system, caused by intrusion or malicious attack or some other 
reasons, may result in widespread distress to the whole grid. To demonstrate this concern, we tested the 
IEEE 9-bus power system in Fig. 1 using the MATPOWER simulation package under the default settings 
specified by the IEEE document, and we obtain a set of solutions which include the amount of power
flow at each branch. Suppose the message sent from bus No. 9 to the control center (i.e., SCADA) 
containing the load information is intercepted and tampered with by a malicious attacker, who induces a
false change in the demanded power at bus No. 9 from the original 125 MW to 560 MW while the overall 
power demand of this system remains under its maximum generation capacity. We again simulate this 
new 9-bus system and we find that as a result (see Fig. 2), significant power overflows will occur at
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branches a, b, and i.  These overflows would likely burn out lines and damage equipment.  Thus the 
health of this power system is in great jeopardy due to this malicious data attack. Based on this example, 
it is clear that the ability to recognize even a single intrusion is very desirable.

      

Fig. 1.  IEEE 9-bus system with data attack on bus No. 9.        Fig. 2. Power flow at each branch before and after attack.

The use of a state space model to describe the dynamics of a power system has been justified in the 
past [1], [2]. Here we propose to recognize changes in a power system by employing hypothesis testing to 
detect changes in the state space model for the system, a topic which has received little study to date in 
the power systems community.   The time for such studies appears right since phasor measurement 
devices [3], which allow simultaneous measurement of both phase and magnitude of any voltage or 
current, are now available to provide significant gains in monitoring capability. It is worth noting that the 
theory discussed in this paper is directly applicable to detecting changes in systems for other applications 
beyond power systems and these ideas fall in the general rapidly developing area called cyber systems.

In the course of our study of employing hypothesis testing to detect changes in power systems, as our 
results will indicate, we found that if the change in the matrices describing the power system is very large, 
then estimating the change and employing the estimate in the resulting hypothesis test tends to work well.  
This is the so-called generalized likelihood ratio (GLR) test.  On the other hand this approach may not 
work well when the changes are small. Here we developed some new locally optimum (LO) tests which 
tend to outperform the GLR test for cases with small changes.  Previous study of LO tests were limited to 
cases where only a scalar parameter is different under the different hypotheses.   In fact, the general 
results apply only for positive scalar parameters or for other very constrained cases.  Here we develop 
new LO tests for cases with non-scalar parameters which need not be positive.

2. Discrete-Time Linear State Space Model

A smart grid system can be modeled using a linear state space model using approximations frequently 
made in the power system literature [1], [2]. Let xk be an N dimensional vector which denotes the state of 
the system at time k [1], [2]. Denote the available measurements by the output vector zk. The state and 
output time evolutions are

1 ( 1)k k k k
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= + +
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where uk denotes the Gaussian or deterministic input to the system, wk the zero mean Gaussian state 
disturbance, and ek the zero mean Gaussian observation noise, which we assume are each independent 
and identically distributed (iid) sequences mutually independent of each other. We further assume the
initial state x0 is deterministic or Gaussian, so xk and zk are Gaussian sequences. Let Σu, Σw and Σe denote 
the covariance matrices of uk, wk and ek, respectively. Methods for finding the parameters of such models 
(F(k+1), G, ...) have been extensively studied, see for example [4].

Here we propose to recognize a failure or intrusion by recognizing a change in the system. If we want 
to detect a change in the internals of the system, not the input, then a focus on a change in F(k+1) appears 
very relevant. Since it may be impossible to detect the difference between a change in G and a change in 
the input, we do not focus on changes in G. A change in H implies some change in the part of the system
that couples the state to the output. This is interesting and could be handled in a similar way. Here we 
focus on changes in F(k+1) for simplicity. Note that in (1) we use the notation F(k+1) to remind the 
reader that F(k+1) in (1) will impact the state and output at the next time k+1. In normal operation the 
matrix F(k+1) will be constant, but if a failure or intrusion occurs it can change at a given time, say k+1=n. 
We want to recognize this change.

3. Hypothesis Testing

One way to detect changes in such a system is to continuously estimate the parameters (F(k+1), G, ...) 
or some related quantities (for example spectral characteristic, [5]). One can also attack the problem more
directly by employing hypothesis testing. For example, if we believe the system is operating for a long 
time with F(k+1) = Fo and desire to judge if a change occurred at time k+1 = n we can formulate the 
hypothesis testing problem as
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More general problems where the change might occur over a window of possible times will be 
discussed in future work.

We only consider Fo, Fc that are full rank (invertible) so that we will not have a singular detection 
problem. Thus Fcxk ≠ Foxk. To avoid similar problems, we also assume H is full rank (invertible). If Fo

and Fc are both known, then the Neyman-Pearson optimum test, maximizing detection probability for 
fixed false alarm probability, compares the likelihood ratio (LR) of the observations z = (z1,..., zn)

T to a
threshold [6] where the LR is
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Here pz(z|H1) denotes the probability density function (pdf) of the observation vector z and
p(zk+1|zk;F(k+1)) denotes the conditional pdf of zk+1 given zk and F(k+1). 



Qian He and Rick S. Blum / Energy Procedia 12 (2011) 170 – 179 1734 Qian He et al. / Energy Procedia 00 (2011) 000–000

Under the assumptions made concerning the model in (1), the conditional pdf of zk+1 given zk becomes

1
1 1 1 1 1
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where

1 1
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The case where Fc is unknown is generally more complicated. One approach is to choose the 
maximum likelihood estimate of Fc, the GLR test [7], which works well if the estimate is very accurate.  
We give some alternative approaches later in his paper where we first develop an LO test for a case with 
an unknown vector parameter.  We have not seen LO tests for this case provided in the literature to date.

4. New Locally Optimum Tests

4.1. LOUD Test and LOED test

Now we develop an LO test for a general detection problem with a deterministic unknown $N$-
dimensional vector parameter [like vec(F(n))], which we call the LO unknown direction (LOUD) test. 
Consider the case where we observe a random vector y whose pdf py(y;θ) is dependent on a deterministic 
parameter θ. Consider a binary hypothesis testing problem where θ takes on values from two disjoint sets
Θo and Θc, which distinguishes the two hypotheses
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We assume Θo ={θo} and Θc includes all θ in a very small ball around θo and we focus on obtaining 
good performance for all such θ on average. By employing the N-dimensional spherical coordinate 
system, we write a length r vector in N-dimensional space as rΩ with
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where ϕi is in [0, π] for i < N - 1 or [0, 2π] for i = N - 1, such that (θo + rΩ) describes the points on the 
surface of an N-sphere centered at θo. This sphere has a radius r and a surface area of D = 2πN/2rN-
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1/Г(N/2). Denote Φ = (ϕ1, ϕ2, ..., ϕN-1)
T and dϕ1dϕ2, ..., dϕN-1 = dΦ. We define the differential surface area 

element as

1 2 3
1 2 2sin ( )sin ( ) sin( )N N N

Nds r dφ φ φ− − −
−= ΦL

Let Pd(δ;θ) denote the detection probability of the test with test function δ when the parameter is θ. We 
define the LOUD test as the test, with test function δ (which describes the conditional probability that we 
decide for H1 conditioned on our observing y), that maximizes
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where m is the lowest order derivative for which (8) is nonzero, and
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is the fractional differential area of a small surface element centered at (θo + rΩ). The integrations span 
over the relevant angles so that (θo + rΩ) ranges over all points in a radius r N-dimensional sphere around
θo. The LOUD test criterion searches for a test that produces the largest average Pd(δ;θ) when we average 
over all possible small changes in the parameter θ. This is a reasonable extension of the LO test which is 
relevant for cases when we have no information concerning the direction of change from θo to θ. If some 
directions are known to be more likely, this is easy to incorporate. Since a LOUD test maximizes the
lowest order term in a Taylor series of the quantity differentiated in (8) then its test function δ will ensure

( ; ) ( ) ( ; ) ( )d o d oP r g d P r g dδ δ ′+ ≥ +∫ ∫Φ Φ
Ω Φ Φ Ω Φ Φθ θ                             

Instead of attempting to optimize performance averaged over all the possible directions, an alternative 
approach is to estimate the change direction from the observations and to use this estimate in the LO test. 
With this idea, we define the LO estimated direction (LOED) test as the test, with test function δ, that 
maximizes Pd(δ;θc), among all possible tests, for changes θc - θo = r Ω̂ along the estimated direction Ω̂
for 0 < r < rmax and some rmax.

It can be shown that under the assumption that the pdf py(y;θo+rΩ) in (6) satisfies certain regularity
conditions that allow interchanging the order of differentiation and integration operations, for an 
unknown θ, the LOUD test is given by
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and the LOED test is given by
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where the thresholds ηLOUD and ηLOED are set by the required false alarm probabilities.
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4.2. LOUD-GLR test and LOED-GLR test

The LOUD and LOED tests are designed for small changes (θc - θo). On the other hand, if the change 
is sufficiently large such that the unknown parameter can be estimated accurately enough, the 
performance of the GLR test is known to be good. Accordingly, we propose to combine the LOUD (or
LOED) test with the GLR test to obtain a new test called the LOUD-GLR (or LOED-GLR test). The 
combined test employs the LOUD (or LOED) test when the change looks small, and switches to the GLR 
test when the change looks large. An intuitive way to assess the size of the change is to measure the 
distance between the observed y and the mean of the observation under H0 hypothesis, μ0= E {y; θo}. 
Thus, we compute ò= [(y-μ0)

T Σ0
-1(y-μ0)]

1/2, where Σ0= E {(y-μ0) (y-μ0)
T; θo }. If ò is small then this

observation y would occur under H0 with high probability, so we select the LOUD or LOED test.  If ò is
large we select the GLR test.  The switch between these two tests can be done gradually or abruptly.

For simplicity, we present an example for a case where y is a scalar. Let the test statistic of the
combined tests be

LO-GLR LO GLR
ˆ( ) (1 ) ( ) ( )T y T y T yλ λ= − +                                         (12)
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with ( ) 1tν = if 0t ≥ or 0 if 0t < . In (12), τs1 and τs2 are employed to make the test statistic in (12)
continuous in y, and TLO(y) and TGLR(y) denote the test statistics of the LO and the GLR tests, where the 
subscript "LO" represents LOUD or LOED. The factor 0 1λ≤ ≤ will switch gradually between the test 
statistics used in (12). For example, we can choose

( , ( ) ( ) / )sλ ξ ν= − ∆ −∆P ò ò                          

where P (a,b) =∫0b ta-1 e-t dt / (∫0∞ ta-1 e-t dt) denotes the regularized Gamma function, 0ξ > and s > 0 are 
the shape and scale parameters that set the range where we have transition, and the predetermined scalar 
value ∆ indicates a distance between y and μ0 within which the LO test will be used. A more general 
transform (even nonlinear) on TGLR(y) could be employed in non-scalar cases. We now discuss one way to 
choose ∆ . Let yc be the nearest (with respect to μ0) critical point of the LOUD or LOED test statistic 
which satisfies [∂TLO(y)/ ∂y]| y=yc=0 and [∂2TLO(y)/ ∂y2]|y=yc<0. Then ∆ = |yc - μ0|.

4.3. LOUD and LOED tests for smart grid systems

The LOUD detector for the studied smart grid system introduced in Section II can be obtained by 
letting py(y;θo) = p(zn|zn-1;Fo) and applying (3) to (10). If we let
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where µ and Σ are obtained by substituting F(k+1)=F0 in (4) and (5), such that p(zn|zn-1;F0) = vh, then 
the derived LOUD test can be written as

1
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Now we compute the terms in (15). Let
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and δij be an N×N matrix whose elements are all zero except for the ijth one being one. After a tedious 
derivation, we obtain the summands in the first line of (15)
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and
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where we have used the formulas for matrix derivatives in [9].
Similarly, using py(y;θo) = p(zn|zn-1;F0) and plugging (3) into (11) gives the LOED detector for the 

smart grid system under investigation
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where Ω̂ is related to the estimated direction, v and h are defined in (13) and (14). In (19), the ijth 
element of the vector (1/v)(∂v/∂F0) and (1/h)(∂h/∂F0) are respectively
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5. Numerical Results

In this section, we apply the proposed LO tests to a simplified version of the model in (1) and illustrate 
the change detection performance of the new tests and compare them with the conventional approaches 
via numerical investigations. Here, for simplicity, we consider the case where the variables and 
parameters involved are scalars. Assume Σw = 0.001, Σe = 0.005, H = 1 and G = 0 and the hypothesis 
testing problem in (2). In particular, we assume that prior to times k +1 = n we have F(k+1) = 1. However, 
if an abnormal event occurs then F(n) = Fc = Fo + ΔF = 1 + rΩ, where r = | ΔF | and Ω, indicating the 
change direction, is either -1 or 1. Of course if the abnormal event does not occur then F(n) = 1. To 
employ the LO tests we denote θ = vec(F(n)) = F(n) and py(y;θo) = p(zn| zn-1;Fo). The false alarm
probability is fixed at Pf = 10-3. The simulation results are obtained using 5000 Monte Carlo runs. The
LOUD, LOED, mismatched LR, GLR, ideal LR, LOED-GLR, and LOUD-GLR tests are considered,
where the mismatched LR detector assumes F(n) = Fc = 1.5 (ΔF = 0.5) and is always matched to this 
value no matter what the actual change is. Alternatively, the ideal LR detector is perfectly matched to the 
actual Fc (thus the actual ΔF). For the LOUD-GLR or LOED-GLR test, we use the test statistic
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to switch between the two tests abruptly, where TLO(y) and T̂ GLR (y) are defined after (12), Δ=|yc–μ0| and 
yc is the nearest (with respect to μ0) critical point of the LOUD or LOED test.

       

Fig. 3. Pd versus rΩ curves for various tests for Pf=10-3.                 Fig. 4. Pd versus R curves for various tests for Pf=10-3.

In Fig. 3, the detection probability Pd is plotted versus ΔF for various tests, assuming the last
observation zn-1=1. It is observed that when the change is positive, all the curves are almost on top of each 
other, indicating similar performances. When the change becomes negative, these tests exhibit very 
different behaviors.  We see from the curves that the ideal LR test (a genie type approach which perfectly 
sees the unknown change) has the best performance, which provides a benchmark for evaluating different 
tests. The mismatched LR is significantly affected by the change directions when the amplitude of the 
change is small.  The LOUD and LOED tests outperform the GLR test for small changes, as expected, but 
their performance is not acceptable in some regime for negative large changes since they are designed 
only for small changes. The performance of the LOUD-GLR and LOED-GLR tests are close to those of 
the LOUD and LOED tests when the change is small, and are good as well when the change is large due 
to the switching to the GLR test.

In the second example, we look at the case where ΔF is uniformly distributed in [-R, R]. Assume the 
last observation zn-1=2. We plot Pd versus R in Fig. 4 for the tests considered in the previous example. It is 
seen that the LOUD and LOED tests have superior performance compared with the traditional GLR test 
or mismatched LR test for small changes. The performance the LOUD and LOED test degrade when R
becomes large. The LOUD-GLR and LOED-GLR have similar performance as the LOUD and LOED for 
small R, and maintain a good performance for large R. Again, these results illustrate the superiority of the 
proposed LO tests for small changes. They also show that the LOUD-GLR and LOED-GLR tests are 
preferable, since they perform nearly as good as the LOUD and LOED tests when the change is small and 
also have satisfactory performance when the change is large. We studied many other examples and obtain 
a similar conclusion.

6. Conclusion

The vulnerability of smart grid systems was demonstrated which implies the urgent demand of 
improved fault detection methods. We modeled a smart grid system by a linear state space model, and 
hence the faults of the system are reflected by changes in the system matrices of the state space model. 
We utilized hypothesis testing-based methods to solve the change detection problem. We introduced two 
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new locally optimum tests, the LOUD test and the LOED test, and discussed combining the LO tests with 
the GLR test. It was illustrated via numerical examples that the new locally optimum testing based 
methods outperform the traditional methods especially for small changes.
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