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The fibrous shape and biopersistence of multi-walled carbon nanotubes (MWCNT) have raised concern over
their potential toxicity after pulmonary exposure. As in vivo exposure to MWCNT produced a transient
inflammatory and progressive fibrotic response, this study sought to identify significant biological processes
associated with lung inflammation and fibrosis pathology data, based upon whole genome mRNA expression,
bronchoaveolar lavage scores, and morphometric analysis from C57BL/6J mice exposed by pharyngeal aspi-
ration to 0, 10, 20, 40, or 80 μg MWCNT at 1, 7, 28, or 56 days post-exposure. Using a novel computational
model employing non-negative matrix factorization and Monte Carlo Markov Chain simulation, significant
biological processes with expression similar to MWCNT-induced lung inflammation and fibrosis pathology
data in mice were identified. A subset of genes in these processes was determined to be functionally related
to either fibrosis or inflammation by Ingenuity Pathway Analysis and was used to determine potential signif-
icant signaling cascades. Two genes determined to be functionally related to inflammation and fibrosis,
vascular endothelial growth factor A (vegfa) and C-C motif chemokine 2 (ccl2), were confirmed by in vitro
studies of mRNA and protein expression in small airway epithelial cells exposed to MWCNT as concordant
with in vivo expression. This study identified that the novel computational model was sufficient to determine
biological processes strongly associated with the pathology of lung inflammation and fibrosis and could
identify potential toxicity signaling pathways and mechanisms of MWCNT exposure which could be used
for future animal studies to support human risk assessment and intervention efforts.

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-SA license.
Introduction

Nanotechnology is an emerging discipline in both industrial and
medical fields, which necessitates the development of nanotoxicology
to determine the biological effects of occupational and commercial
nanoparticle exposures (Oberdorster et al., 2005). Multi-walled car-
bon nanotubes (MWCNT) are fibrous nanoparticles consisting of
multiple concentric cylindrical carbon tubes that are appealing for
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both industrial and medical purposes due to their efficient electronic
conductivity, great strength, and strong capillary forces, while
maintaining a small size, light weight, high surface area to mass ratio,
and low density (Ajayan, 1999; Castranova, 2011; Iijima, 1991). The
physical attributes of MWCNT, while useful from an engineering stand-
point, make them easily aerosolized and a potential inhalation hazard
during synthesis, product use, and disposal. In vitro studies of MWCNT
exposure determined toxicity to both lung epithelial andmicrovascular
endothelial cells with increases in reactive oxygen species (ROS) pro-
duction, NF-κB signaling, cytokine release, cytoskeletal reorganization,
and endothelial cell permeability (He et al., 2011; Pacurari et al., 2012;
Srivastava et al., 2011; Walker et al., 2009; Ye et al., 2009). Mouse and
rat in vivo studies determined that MWCNT can reach the alveolar re-
gion of the lung after pharyngeal aspiration and inhalation, respectively,
and induce a transient inflammatory reaction followed by a progressive
fibrotic response (Mercer et al., 2010, 2011; Muller et al., 2005).

Although chronic inflammation has been suggested as the under-
lying mechanism governing the progression to fibrosis, this does not
appear to hold true for MWCNT as the initial inflammatory response
cense.
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to MWCNT diminishes before the progressive fibrotic response begins
(Mercer et al., 2010, 2011; Porter et al., 2010). Therefore, it is essential
to uncover the significant biological processes directing MWCNT-
induced inflammation and fibrosis so as to determine potential
outcomes and hallmarks of exposure. We hypothesize that the iden-
tification of transcription-related biological processes and pathways,
which match the patterns of BAL quantification (Porter et al., 2010)
for inflammatory pathology and morphometric scoring of collagen
(Mercer et al., 2011) for fibrosis in MWCNT-treated mice, could
identify critical toxicity pathways and potential mechanisms of
MWCNT-induced lung inflammation and fibrosis for early identifica-
tion and intervention.

Recently, our group conducted an in vivo dose–response time-course
study of MWCNT exposure in C57BL/6J mice to determine the ability of
MWCNT to induce pulmonary inflammation, damage, and fibrosis
(Porter et al., 2010). Mice were exposed to 0, 10, 20, 40, or 80 μg of
MWCNT by pharyngeal aspiration with endpoints monitored at 1, 7,
28, and 56 days post-exposure (Porter et al., 2010). The results indicated
that a transient inflammatory response occurred 1 day post-exposure
with peak activity 7 days post-exposure. A fibrotic response was noted
28 days post-exposure, which progressed through 56 days post-
exposure (Porter et al., 2010). Nevertheless, MWCNT-induced toxicity
pathways andmechanisms underlying these observed in vivo patholog-
ical responses remain unknown.We hypothesize that systematic analy-
ses of gene expression profiles and pathological data could identify
transcription-related biological processes correlated with the observed
pathological patterns of lung inflammation and fibrosis, which could
reveal MWCNT-induced toxicity pathways and pathogenesis. The
current study sought to use a novel computational system to identify
transcription-related biological processes and pathways associated
with these MWCNT-induced pathology responses in a comprehensive
systematic evaluation. A novel computational model, previously
reported by Dymacek and Guo (2011) was applied to genome-wide
mRNA expression profiles and pathological analysis of mouse lungs
taken at these respective time points so as to determine biological pro-
cesses significantly correlated with inflammation (bronchoalveolar la-
vage fluid [BAL] score (Porter et al., 2010)) or fibrosis (morphometric
analysis of alveolar interstitial fibrosis (Mercer et al., 2011)). These
biological processes were then analyzed through Ingenuity Pathway
Analysis (IPA) to determine gene subsets functionally related to inflam-
mation or fibrosis. In vitro gene and protein expression data of two genes
functionally related to inflammation and fibrosis, vascular endothelial
growth factor A (vegfa) andC-Cmotif chemokine 2 (ccl2),were validated
through cell culture studies.

This study determined that a novel computational model was suf-
ficient to identify transcription-related biological processes strongly
associated with lung inflammation BAL scores and fibrosis morpho-
metric analysis. Potential toxicity signaling pathways of MWCNT
exposure were determined and validated in vitro. The use of these
toxicogenomic data and in vivo animal model-based gene expression
profiling integrated with in vitro verification may allow for successful
toxicity profiling of MWCNT as well as the identification of potential
signaling pathways involved in the etiology of MWCNT-induced
injury.

Materials and methods

MWCNT. MWCNT used in both mouse and cell studies were
obtained from Mitsui & Company (MWCNT-7, lot #05072001K28)
and have been previously characterized (Porter et al., 2010). Briefly,
the bulk MWCNT exhibit a distinctive crystalline structure with the
number of walls ranging from 20 to 50 walls. Overall, MWCNT trace
metal contamination was 0.78%, including sodium (0.41%) and iron
(0.32%) with no other tracemetal contamination over 0.02%. Transmis-
sion electron microscopy (TEM) micrographs of MWCNT dispersed in
dispersion medium (DM) demonstrated that DM promotes significant
dispersion of MWCNT. The quantitative analysis of TEM micrographs
revealed that the median length of the MWCNT sample was 3.86 μm
(GSD 1.94) and the count mean width was 49 ± 13.4 (SD) nm. The
zeta potential of theMWCNT in theDMwas determined to be−11 mV.

Animals. Animal studies were performed as previously described
(Porter et al., 2010). Briefly, male C57BL/6J mice (7 weeks old) were
obtained from Jackson Laboratories (Bar Harbor, ME). Individual
mice were housed one per cage in polycarbonate isolator ventilated
cages and provided HEPA-filtered air with fluorescent lighting from
0700 to 1900 h. Autoclaved Alpha-Dri virgin cellulose chips and
hardwood Beta-chips were used as bedding. Mice were monitored
to be free of endogenous viral pathogens, parasites, mycoplasms,
Helicobacter, and CAR Bacillus. Mice were maintained on Harlan
Teklad Rodent Diet 7913 (Indianapolis, IN) and tap water was provided
ad libitum. Animals were allowed to acclimate for at least 5 days before
use. All animals in this study were housed in an AAALAC-accredited,
specific pathogen-free, and environmentally controlled facility. All
animal studies and procedures were approved by the National Institute
for Occupational Safety and Health ACUC.

MWCNT pharyngeal aspiration exposure. Suspensions of MWCNT
were prepared in DM and administered as previously described
(Porter et al., 2008, 2010). In brief, each treatment group consisted of
8 mice, which were anesthetized with isoflurane (Abbott Laboratories,
North Chicago, IL). When fully anesthetized, the mouse was positioned
with its back against a slant board and suspended by the incisor teeth
using a rubber band. The mouth was opened and the tongue gently
pulled aside from the oral cavity. A 50 μl aliquot of samplewas pipetted
at the base of the tongue, and the tongue was restrained until at least 2
deep breaths were completed (but not for longer than 15 s). Following
release of the tongue, the mouse was gently lifted off the board, placed
on its left side, and monitored for recovery from anesthesia. Mice re-
ceived either DM (vehicle control), or 10, 20, 40 or 80 μg MWCNT
suspended in DM (Porter et al., 2010).

Tissue RNA extraction. Total RNA was extracted from frozen mouse
lung tissue samples (−80 °C) in RNAlater using a RNeasy Fibrous
Tissue Mini Kit according to manufacturer's protocol (Qiagen, USA) as
previously described (Pacurari et al., 2011). Total RNA was eluted in
RNase-free water and stored at−80 °C until further analysis. The qual-
ity and concentration of each RNA sample were determined using a
NanoDrop-1000 Spectrophotometer (NanoDrop Tech, Germany).

Microarray expression profiling. Extracted RNA was analyzed for
expression profiling using Agilent Mouse Whole Genome Arrays
(Agilent, Santa Clara, CA). A universal reference design was employed
using Stratagene Universal Mouse Reference RNA — Cat. No. 740100
(Agilent) as the reference RNA. Total RNA quality was determined
on an Agilent 2100 Bioanalyzer with all samples having RNA integrity
numbers (RIN) greater than 8. Total RNA (250 ng) was used for label-
ing, using the QuickAmp labeling kit (Agilent). RNA extracted from
each mouse was labeled with cyanine (Cy)-3-CTP (PerkinElmer,
Waltham, MA) and reference RNA with (Cy)-5-CTP. Following purifi-
cation of labeled cRNAs, 825 ng of Cy3- and Cy5-labeled cRNAs were
combined and hybridized for 17 h at 65 °C in an Agilent hybridization
oven. Microarrays were then washed and scanned, using an Agilent
DNA Microarray Scanner.

Pathological datasets. Inflammatory datasets were obtained by anal-
ysis of BAL fluid taken from MWCNT-exposed mice at 1, 7, 28 and
56 days post-exposure as previously described (Porter et al., 2010).
Mice were euthanized with an i.p. injection of sodium pentobarbital
(N100 mg/kg body weight) followed by exsanguination. A tracheal
cannula was inserted and BAL was performed through the cannula
using ice cold Ca2+ and Mg2+-free phosphate buffered saline, pH 7.4,
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supplemented with 5.5 mM D-glucose (PBS). The first lavage (0.6 ml)
was kept separate from the rest of the lavage fluid. Subsequent lavages,
each with 1 ml of PBS, were performed until a total of 4 ml of lavage
fluid was collected. BAL cells were isolated by centrifugation (650 ×g,
5 min, 4 °C). An aliquot of the acellular supernatant from the first BAL
(BAL fluid) was decanted and transferred to tubes for analysis of lactate
dehydrogenase (LDH) and albumin. The acellular supernatants from the
remaining lavage samples were decanted and discarded. BAL cells iso-
lated from the first and subsequent lavages for the same mouse were
pooled after resuspension in PBS, centrifuged a second time (650 ×g,
5 min, 4 °C), and the supernatant decanted and discarded. The BAL
cell pellet was then resuspended in PBS and placed on ice. Total BAL
cell counts were obtained using a Coulter Multisizer 3 (Coulter Elec-
tronics, Hialeah, FL) and cytospin preparations of the BAL cells were
made using a cytocentrifuge (Shandon Elliot Cytocentrifuge, London).
The cytospin preparations were stained with modified Wright-Giemsa
stain and cell differentials were determined by light microscopy.

Fibrosis datasets were obtained by morphometric analysis of Siri-
us Red staining for connective tissue in MWCNT-exposed mice at 1, 7,
28 and 56 days post-exposure as previously described (Mercer et al.,
2011). Briefly, mice were euthanized by an overdose of pentobarbital
(N100 mg/kg body weight, i.p.) followed by transection of the ab-
dominal aorta to provide exsanguination. To accomplish lung fixation,
the trachea was cannulated and the lungs removed from the chest
cavity. The lungs were then inflated with 1 ml of 10% neutral buffered
formalin over a 1 minute period and the trachea tied off. After 4 to
5 h, the lungs were trimmed and processed overnight in a tissue
processor. For each animal, the left lung lobe was placed in the
embedding carrier with a consistent apex to base orientation and em-
bedded in paraffin. For morphometric studies, paraffin sections of the
left lung (5 μm thick) were cut. A new region of the disposable knife
blade was used to section each block and the water bath was changed
frequently in order to prevent potential cross-contamination that
might result from MWCNT passage on the knife between sections.
The sections were then deparaffinized and rehydrated with a
xylene–alcohol series to distilled water. To enhance the contrast
between tissue and MWCNT, lung sections were stained with Sirius
Red (Junqueira et al., 1979). Sirius Red staining consisted of immer-
sion of the slides in 0.1% Picrosirius solution (100 mg of Sirius Red
F3BA in 100 ml of saturated aqueous picric acid, pH 2) for 1–2 h
followed by washing for 1 min in 0.01 N HCl. Sections were then
briefly counterstained in freshly filtered Mayer's hematoxylin for
2 min, dehydrated, and mounted on a slide with a coverslip. Quanti-
tative morphometric methods were used to measure the average
thickness of Sirius Red positive connective tissue fibers in the alveolar
regions. Volume and surface density were measured using standard
morphometric analyses (Weibel, 1980a,1980b). This consisted of
basic point and intercept counting. Volume density was determined
from counting the number of points over all tissues in the alveolar re-
gions and points over Sirius Red positive connective tissue. Surface
density of the alveolar wall was determined from intercepts between
a line overlay and the alveolar wall. These point and intercept counts
were made using a 121-point/11-line overlay graticule (12.5 mm
square with 100 divisions), at 100× magnification, taken at six loca-
tions equally spaced across each section (one section per animal).
This process was repeated twice for each animal. In order to limit
the measurements to alveolar parenchyma, areas containing airways
or blood vessels greater than 25 mm in diameter were excluded from
the analysis. Average thickness of the Sirius Red positive connective
tissue fibers of the alveolar wall was computed from two times the
ratio of volume density of point to the surface density of the alveolar
wall. The collagen fiber content of granulomatous lesions in the
airspaces was assessed by a separate tabulation of points over Sirius
Red positive connective tissues in granulomas and expressed as a
percentage of total alveolar collagen. Mean linear intercept, a
measure of the average size of the alveolar/alveolar duct airspaces
in the alveolar region, was computed from the ratio of volume density
to surface density (Weibel, 1980a).

Microarray data preprocessing and filtering. Data were exported from
the Agilent DNA Microarray Scanner using Feature Extraction v10 as
tab-delimited text files after background subtraction, log transforma-
tion, and lowess normalization and reported as log or relative expres-
sion of the sample compared to the universal reference. Data were
read from each file into R using a custom script. For each array, values
for control spots, spots which were saturated on either channel, and
spots which were not well above background on at least one channel
were considered unreliable and/or uninformative and were replaced
by “NA”. Values were collated into a single table, and probes for
which fewer than 10 present values were available were removed.
For probes spotted multiple times on the array, values were averaged
across replicate probes. The resulting table is available as a series ma-
trix in the NCBI Gene Expression Omnibus repository with accession
number GSE29042 (Guo et al., 2012). A web-interface (http://www.
mwcnttranscriptome.org) was developed to visualize the expression
pattern of every gene in the whole genome in each MWCNT treatment
condition.

Computational system. The computational system (Fig. 1B) was di-
vided into four main components: a preprocessing component, the
Pattern Finding component, the Coefficient Expander (CE) compo-
nent, and the Functional Process Evaluation (FPE) component. Source
code for the computational system can be found at http://sourceforge.
net/projects/megpath.

First, the preprocessing step was used to identify probes with
significant changes in expression. Missing data were imputed using
the K-means nearest neighbor algorithm as implemented by the
impute.knn function in the impute R package from Bioconductor
(Seattle, WA). Using the Bioconductor package, a set of differentially
expressed genes for each dose and time point was identified by
performing a two-class unpaired Significance Analysis of Microarrays
(SAM) between the treated samples and the dose zero samples from
the corresponding time point. A threshold delta value was chosen to
produce a false discovery rate of 1% using the find Delta function
from the same package. The list of probes called as significant was
subsequently filtered by restricting those probes which were at
least 1.5 fold up- or down-regulated. Fold changes were computed
from the data before imputation of missing values.

Additionally, a linear model was fit to the data, modeling the log
expression of each gene as a function of time, dose, and the interac-
tion of time with dose. The t-statistic associated with the dose and in-
teraction parameters following the SAM algorithm was moderated
and a threshold set to control for a false discovery rate of 0.1%, thus
generating a list of genes whose expression values were significantly
dependent on dose and a list of gene whose expression values were
significantly dependent on dose in a time-dependent fashion. The
combined list of probes was described by Guo et al. (2012) and was
used by the Pattern Finding component in the current study.

Second, the Pattern Finding component was based on a Non-
negative Matrix Factorization algorithm. This algorithm attempted
to find a set of non-orthogonal basis vectors (patterns), which could
be linearly combined to reconstruct the original probe expression
data. In addition to finding the patterns, the algorithm also found
coefficients relating each probe to each pattern. These coefficients
could be used to describe how closely a probe matches a pattern.
Most importantly, the Pattern Finding algorithm allowed for a probe
to be associated with multiple patterns. In this way, patterns could
be thought of as functions, such as fibrosis or inflammation, hence
probes may be involved in multiple functions. The Pattern Finding al-
gorithm worked as a Monte Carlo Markov chain with each location in
the coefficient and pattern matrices having an associated probability

ncbi-geo:GSE29042
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Fig. 1. (A) Schematic overview of MWCNT exposure, lung harvest, gene expression and
histopathological analyses, computational system analysis, IPA analysis, and in vitro
verification. (B) Overview of the four steps in the computational system. Step 1: Pre-
processing to identify significantly changing genes and identify potential interesting
genes. Step 2: Find patterns and coefficients from the interesting genes to reconstruct
the gene expression data. Step 3: Find coefficients for the entire genome. Step 4: Using
the patterns, coefficients, and pathways/functions, identify significant pathways.
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density function. Quantitative histopathology data were used as one
pattern.

The third step was to apply the Coefficient Expander component.
This step attempted, through the use of simulated annealing, to find
optimal coefficients for each probe in the genome-wide microarray
data after preprocessing from the patterns found in the Pattern
Finding step, and, therefore, enabled the probe's expression to be
reconstructed from the patterns with minimal error.

The final step was to calculate the Functional Process Evaluation
(FPE) score for a given pathway of genes. The FPE score was based
on the enrichment score used in Gene Set Enrichment Analysis
(Subramanian et al., 2005). Each gene's coefficients were normalized
to obtain the relative importance of each pattern on the gene. Genes
which were not common to both the biological process and microar-
ray data after preprocessing were ignored and not included in the
computation. Biological processes with fewer than 15 genes were
excluded from further analysis. If a gene had multiple probes, the
probe which could be reconstructed with least error was chosen. A
biological processes' p-value was found by comparing its FPE score
to the score of 1000 randomly generated gene sets with the same
number of genes. After p-values had been calculated for all processes,
they were adjusted for multiple hypotheses testing by using the
Benjamini and Hochberg method. A process with a p-value less than
0.05 was considered significant. The leading set of a process is defined
as the subset of genes, which was used to compute the Pathway Eval-
uation score. Genes are not restricted to being in only one leading set
allowing for genes to be influenced by multiple patterns and used in
multiple functions. The average expression of the genes in the leading
set will strongly resemble the original pattern. However, a gene in the
leading set is not required to look exactly like the pattern letting
allowing for both known biological information and expression
patterns to be incorporated.

Leading setswere found from the gene sets of the C2Canonical Path-
ways and C5 Gene Ontology databases in MSigDB (Subramanian et al.,
2005). The C2 Canonical Pathway database consists of 880 curated
sets of genes corresponding to metabolic and signaling pathways. The
C5 database consists of 1454 gene sets derived from the Gene Ontology
project (http://geneontology.org).

Ingenuity Pathway Analysis. Data were analyzed through the use of In-
genuity Pathway Analysis (IPA) (Ingenuity® Systems, www.ingenuity.
com). A network/My Pathway is a graphical representation of themolec-
ular relationships between molecules. Molecules are represented as
nodes, and the biological relationship between two nodes is represented
as an edge (line). All edges are supported by at least one reference from
the literature, from a textbook, or from canonical information stored in
the Ingenuity Knowledge Base. Human, mouse, and rat orthologs of a
gene are stored as separate objects in the Ingenuity Knowledge Base
but are represented as a single node in the network. Nodes are displayed
using various shapes that represent the functional class of the gene
product.

A total of 773 significant inflammation genes identified in the
computational system were subjected to an Inflammatory Response–
Inflammation overlay to determine which genes in the significant
inflammation leading set were directly involved in inflammation
according to IPA (Table 1). A total of 890 significant fibrosis genes
were subjected to an Organismal Injury and Abnormalities–Fibrosis
overlay to determine which genes in the significant fibrosis leading
set were directly involved in fibrosis according to IPA (Table 2). To
determine the interactions between geneswhich have only been exper-
imentally observed in the lung, the Build-Trim tool of IPA was used.
Direct and indirect interactions were trimmed to a Confidence Level of
Experimentally Observed, and Tissue & Cell Lines included both Organ
Systems of Lung and Lung Cell Lines.

Cell culture. Small airway epithelial cells (SAEC) were cultured in
SABM media (Lonza) supplemented with a SingleQuot Kit (Lonza).
Cells were maintained at 37 °C with 5% CO2.

Enzyme-linked immunosorbent assay (ELISA). SAEC were plated at
60,000 cells per well in a 24-well dish and grown at 37 °C for 48 h.
Cells were serum starved overnight followed by exposure to 1 μg/ml
or 2.5 μg/ml MWCNT for 24 h. Conditioned media were collected
and assayed for vascular endothelial growth factor A (VEGFA) and
C-C motif chemokine 2 (CCL2) protein expression levels using DuoSet
ELISA Development Systems from R&D Systems (Minneapolis, MN)
according to the manufacturer's protocol. Statistical analysis was
done using a two-sample t-test assuming unequal variances.

Cellular RNA isolation. RNAwas isolated from SAEC using RNAprotect
Cell Reagent and an RNeasy Mini Kit from Qiagen according to the
manufacturer's protocol (Qiagen, Valencia, CA). RNA concentrations
were determined using a NanoDrop 1000 Spectrophotometer
(NanoDrop Technologies, Wilmington, DE) and RNA quality was

http://geneontology.org
http://www.ingenuity.com
http://www.ingenuity.com


Table 1
Gene information for 34 inflammation genes significantly altered in MWCNT-treated mouse lungs above 1.5 fold change with an FDR of 1% in SAM analysis and with functional
molecular interactions in inflammation in the lung in IPA analysis. These genes were also strongly correlated with lung BAL scores in MWCNT-treated mice.

Gene symbol gene Name Cellular function IPA biological functions and disease annotations

ADORA2B Adenosine A2b receptor Signal transduction Proliferation of Cells
C3AR1 Complement component 3a receptor 1 Inflammatory response Cell Movement, Proliferation of Cells, Morphology of Cells
CCL2 C-C motif chemokine 2 Immune cell chemoattractant Cell Movement, Proliferation of Cells, Injury of Lung
CCL5 C-C motif chemokine 5 Immune cell chemoattractant Cell Movement, Proliferation of Cells
CD14 Monocyte differentiation antigen CD14 Innate immune response Cell Movement, Proliferation of Cells, Injury of Lung
CD86 T-lymphocyte activation antigen CD86 T-cell activation Cell Movement, Proliferation of Cells,
CD44 CD44 antigen Cellular adhesion, Immune response Cell Movement, Proliferation of Cells, Morphology of Cells
CEBPB CCAAT/enhancer-binding protein beta Transcription Proliferation of Cells, Morphology of Cells
CTSS Cathepsin S Protease Cell Movement, Proliferation of Cells
CYBA Cytochrome b245 light chain Oxidation Proliferation of Cells
EGFR Epidermal growth factor receptor Signal transduction Cell Movement, Proliferation of Cells, Morphology of Cells
FCER1G High affinity immunoglobulin epsilon

receptor subunit gamma
Immune response Cell Movement, Proliferation of Cells, Morphology of Cells

FN1 Fibronectin Cellular adhesion Cell Movement¸Proliferation of Cells, Degradation of Connective Tissue,
Morphology of Cells

IKBKG NF-kappa-B essential modulator Kinase activity Cell Movement, Proliferation of Cells, Morphology of Cells
IL6 Interleukin-6 Immune response Cell Movement, Proliferation of Cells, Injury of Lung, Degradation of

Connective Tissue, Morphology of Cells
IL1B Interleukin-1 beta Immune response Cell Movement, Proliferation of Cells, Degradation of Connective Tissue
IL1R1 Interleukin-1 receptor type 1 Signal transduction Cell Movement, Proliferation of Cells, Injury of Lung
IL1RN Interleukin-1 receptor antagonist protein Interleukin-1 inhibition Cell Movement, Proliferation of Cells, Degradation of Connective Tissue,

Morphology of Cells
IL23A Interleukin-23 subunit alpha Immune response Cell Movement, Proliferation of Cells
JUNB Transcription factor AP-1 Transcription Proliferation of Cells, Morphology of Cells
MMP9 Matrix metalloproteinase-9 Peptidase Cell Movement, Proliferation of Cells, Morphology of Cells
MYD88 Myeloid differentiation primary response

protein MYD88
Cell Movement, Proliferation of Cells, Morphology of Cells

NFKBIA NF-kappa-B inhibitor alpha Transcription Cell Movement, Proliferation of Cells, Morphology of Cells
OLR1 Oxidized low-density lipoprotein receptor 1 Signal transduction Cell Movement, Injury of Lung
PTGS2 Prostoglandin G/H synthase 2 Inflammation Cell Movement, Proliferation of Cells, Injury of Lung, Degradation of

Connective Tissue
SELP P-selectin Immune response Cell Movement, Proliferation of Cells, Injury of Lung, Morphology of Cells
SOCS1 Suppressor of cytokine signaling 1 Signal transduction Cell Movement, Proliferation of Cells
SOD2 Superoxide dismutase (Mn) mitochondrial Free radical scavenging Cell Movement, Proliferation of Cells, Morphology of Cells
SPHK1 Sphingosine kinase 1 Kinase activity Cell Movement, Proliferation of Cells, Injury of Lung
SPP1 Bone sialoprotein 2 Matrix adhesion Cell Movement, Proliferation of Cells, Morphology of Cells
TNF Tumor necrosis factor Immune response Cell Movement, Proliferation of Cells, Injury of Lung, Degradation of

Connective Tissue, Morphology of Cells
TNFAIP3 Tumor necrosis factor alpha-induced

protein 3
Inflammation Cell Movement, Proliferation of Cells

TNFSF10 Tumor necrosis factor ligand superfamily
member 10

Signal transduction Cell Movement, Proliferation of Cells, Morphology of Cells

VCAM1 Vascular cell adhesion molecule 1 Cell–cell adhesion Cell Movement, Proliferation of Cells
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assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA).

Real-time polymerase chain reaction. Total RNA (1 μg) was converted
into complementary DNA (cDNA) using a High Capacity cDNA Reverse
Transcription Kit from Applied Biosystems (Life Technologies, Carlsbad,
CA). All quantitative real-time PCR (qRT-PCR) reactionswere performed
on a 7500 Real-Time PCR system from Applied Biosystems. Each
treatment group consisted of three biological replicates. qRT-PCR
analysis for each biological replicate was performed in triplicate, and
the Ct values obtained were normalized to the 18S housekeeping
gene. Validated gene expression assays from Applied Biosystems were
employed to carry out the mRNA expression profiling. The following
gene expression assays were used: VEGFA (Hs00900055_m1); CCL2
(Hs00234140_m1); and 18S (Hs99999901_s1). Thermal cycling condi-
tions were as follows: 50 °C for 2 min, 95 °C for 10 min, followed by
40 cycles of 95 °C for 15 s and 60 °C for 10 min.

Results

Overview of an in vivo MWCNT exposure study and in vitro validation

A schematic of the overall method of determining and validating
relevant processes related to lung inflammation and the progression
to fibrosis after MWCNT exposure is depicted in Fig. 1A. A total of
480 mice were randomized into three groups 1) gene expression
profiling from snap frozen lung tissues, 2) BAL collection for inflam-
mation assessment, and 3) lung tissue fixation for pathological
analysis of fibrosis as determined by morphometric analysis of Sirius
Red staining of lung tissue for collagen at 1, 7, 28, and 56 days
post-exposure to MWCNT by pharyngeal aspiration (Mercer et al.,
2011; Porter et al., 2010). Each time point consisted of 8 mice exposed
to 0 (dispersion media [DM] control), 10, 20, 40, or 80 μg of MWCNT
dispersed in DM for each animal group (Porter et al., 2008, 2010).
Genome-wide mRNA expression profiles were analyzed by microar-
ray through mRNA samples purified from the collected tissue and
run on an Agilent Mouse Whole Genome Array. BAL was evaluated
for the presence of polymorphonuclear leukocytes to assess inflam-
mation, and morphometric analysis of Sirius Red staining for collagen
in the alveolar walls was used to evaluate fibrosis (Mercer et al., 2011;
Porter et al., 2010). To determine significant transcription-related
biological processes and genes with expression corresponding to
MWCNT-induced lung inflammation or fibrosis patterns, the compu-
tational system (Fig. 1B) evaluated 41,059 probes on the microarray
and established biological processes by incorporating the pathological
data as input patterns in the simulation, as described in the Materials
and methods. For each significant biological process (BH adjusted
p b 0.05), the corresponding leading set consists of the genes from



Table 2
Gene information for 24 fibrosis genes significantly altered in MWCNT-treated mouse lungs above 1.5 fold change with an FDR of 1% in SAM analysis and with functional molecular
interactions in fibrosis in the lung in IPA analysis. These genes were also strongly correlated with morphometric alveolar interstitial fibrosis data in MWCNT-treated mice.

Gene symbol Gene name Cellular function IPA biological functions and disease annotations

ADORA1 Adenosine receptor A1 Signal transduction Cell Movement, Proliferation of Cells
ADORA2B Adenosine A2b receptor Signal transduction Proliferation of Cells
C3 Complement component 3 Complement system Cell Movement, Proliferation of Cells, Injury of Lung, Morphology of Cells
CCL2 C-C motif chemokine 2 Immune cell chemoattractant Cell Movement, Proliferation of Cells, Injury of Lung
CCL17 C-C motif chemokine 17 Immune cell chemoattractant Cell Movement
CEBPB CCAAT/enhancer-binding protein beta Transcription Proliferation of Cells, Morphology of Cells
FAS Tumor necrosis factor ligand superfamily member 6 Signal transduction Cell Movement, Proliferation of Cells, Morphology of Cells
GSK3B Glycogen synthase kinase-3 beta Kinase activity Cell Movement, Proliferation of Cells, Morphology of Cells
IL5 Interleukin-5 Immune response Cell Movement, Proliferation of Cells, Injury of Lung, Morphology of Cells
IL6 Interleukin-6 Immune response Cell Movement, Proliferation of Cells, Injury of Lung, Degradation of

Connective Tissue, Morphology of Cells
IL11 Interleukin-11 Immune response Cell Movement, Proliferation of Cells
IL1B Interleukin-1 beta Immune response Cell Movement, Proliferation of Cells, Degradation of Connective Tissue,

Morphology of Cells
IL1R1 Interleukin-1 receptor type 1 Signal transduction Cell Movement, Proliferation of Cells, Injury of Lung
IL1RN Interleukin-1 receptor antagonist protein Interleukin-1 inhibition Cell Movement, Proliferation of Cells, Degradation of Connective Tissue,

Morphology of Cells
IRF7 Interferon regulatory factor 7 Transcription Cell Movement
MMP12 Macrophage metalloelastase Peptidase Cell Movement, Proliferation of Cells, Injury of Lung
MYD88 Myeloid differentiation primary response

protein MyD88
Immune response Cell Movement, Proliferation of Cells, Morphology of Cells

PTGS2 Prostoglandin G/H synthase 2 Inflammation Cell Movement, Proliferation of Cells, Injury of Lung, Degradation of
Connective Tissue

SELE E-selectin Immune response Cell Movement, Proliferation of Cells, Morphology of Cells
SELP P-selectin Immune response Cell Movement, Proliferation of Cells, Injury of Lung, Morphology of Cells
SOCS1 Suppressor of cytokine signaling 1 Signal transduction Cell Movement, Proliferation of Cells
TIMP1 Metalloproteinase inhibitor 1 Proteinase inactivation Cell Movement, Proliferation of Cells
TNF Tumor necrosis factor Immune response Cell Movement, Proliferation of Cells, Injury of Lung, Degradation of

Connective Tissue, Morphology of Cells
TNFAIP3 Tumor necrosis factor alpha-induced protein 3 Inflammation Cell Movement, Proliferation of Cells
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the process which are most strongly related to the input pattern. Not
all genes in the leading set will exactly resemble the pattern, but the
average expression of the leading set will. The identified significant
genes (SAM analysis; p b 0.05; FDR b1%; fold change N1.5) in the
leading sets were then entered into IPA to identify genes functionally
associated with inflammation and fibrosis and to depict molecular
interactions in the lung. Based on the comprehensive evaluation,
vegfa and ccl2 were selected for in vitro validation.

Identification of biological processes with expression patterns resembling
MWCNT-induced inflammation or fibrosis pathology

A computational system was used to identify genes and biological
processes with transcriptional activities, which matched the observed
pathological patterns of lung inflammation or fibrotic collagen in the al-
veolar wall in the MWCNT-exposed mice (Fig. 1B). The preprocessing
step found 2996 unique probes which were significantly (p b 0.05;
FDR b1%; fold change N1.5) up-regulated (Fig. 2A) or down-regulated
(Fig. 2B) using Significance Analysis of Microarrays (SAM) or a linear
model showing significant (p b 0.05; FDR b0.1%) dose–response or
dose and time interactions (Fig. 2C). Using this set of 2996 genes, quan-
titative BAL and pathological data of MWCNT-induced inflammation or
quantitative morphometric analysis of fibrosis were used as input pat-
terns to find gene coefficients for reconstruction of the gene expression.
Specifically, results for 3 sets of data were found, 2 sets relating to fibro-
sis (morphometrically determined changes in collagen within the
alveolar wall) (Mercer et al., 2011) and 1 relating to inflammation
(BAL) (Porter et al., 2010). Pathology data for fibrosis at dose 80 μg
across the 4 time points was fit as an input pattern. The computational
system found 64 total significant (BH adjusted p b 0.05) leading sets,
the subset of genes which was used to compute the Functional Process
Evaluation (FPE) score, representing the level of correlation with the fi-
brosis morphometric data for each biological process in the databases.
Morphometric data for fibrosis occurring on day 56 across 4 doses
was fit in the computational system with 84 significant (BH adjusted
p b 0.05) leading sets found. Lastly, inflammation BAL scores at dose
40 μg across 4 time points were used, and 110 leading sets were
found to be significantly (BH adjusted p b 0.05) correlated with the
inflammation pattern.

Example results for each of the pathology data are shown in Fig. 3.
The average of the mRNA expression of genes in the leading set
closely resembled the pathology data, indicating that in general, the
transcriptional activities of the leading set genes correlated with
changes in the pathology. The leading sets Reactome GPCR Ligand
Binding (Fig. 3A) and Reactome Hemostasis (Fig. 3B) were found
in the C2 Canonical Pathway database and consisted of 156 genes
(Supplementary data Table 1) and 147 genes (Supplementary data
Table 2), respectively. The leading set of Immune System Process
(Fig. 3C) was found in the C5 database and consisted of 163 genes
(Supplementary data Table 3). CCL2 (Fig. 3D) was contained in the
leading set of Reactome GPCR Ligand Binding. Although the CCL2 ex-
pression does not exactly follow the pattern, the average of all gene
expression in the leading set does. The same can be seen for VEGFA
(Fig. 3E). Importantly, our computational system does not constrain
genes to being in only one leading set, allowing for genes to be
involved in multiple processes. For instance, CCL2 was found to be in-
volved in both MWNCT-induced fibrosis (Fig. 3A) and inflammation
(Fig. 3F).

Determination of genes functionally involved in inflammation and fibrosis

To determine which genes were significantly altered in response
to MWCNT exposure, leading set genes which attained a fold change
of 1.5-fold or greater were input into Ingenuity Pathway Analysis
(IPA) to determine if they were functionally involved in inflammation
or fibrosis according to currently accepted literature.

The inflammation and fibrosis biological processes consisted of 773
and 890 unique genes, respectively, identified to be significantly altered
(p b 0.05; fold change N1.5) after MWCNT exposure (significant in-
flammation) with a false discovery rate (FDR) of 1% in SAM analysis.



Fig. 2. (A) Number of genes upregulated by using pairwise SAM at each condition.
(B) Number of genes down-regulated by using pairwise SAM at each condition. (C) Num-
ber of genes significant in the linear model for the dose and dose × time parameters.
Numbers in parentheses show the number of genes common to both lists. In all cases for
these genes, the parameters were of opposite signs.
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Of the 773 significant inflammation genes, 67were determined to bedi-
rectly involved in inflammation by IPA (Supplementary data Table 4).
Of the 890 significant fibrosis genes, 69 were determined to be directly
involved in fibrosis by IPA (Supplementary data Table 5).

A heat map of gene expression for the 67 significant inflammation
genes (Fig. 4A) suggested the up- and down-regulation of multiple
genes in response to MWCNT exposure. For each gene, the expression
fold change and statistical significance at each dose/time condition
could be visualized at (http://www.mwcnttranscriptome.org). Over-
all, expression of c3ar1, fcgr2b, pbk, pla2g10, il2ra, il1rn, ptgs1, cd14,
igf1, ccl2, ccl4, il1b, pla2g7, tnfrsf4, ghrl, slc11a1, tnfaip3, cd44, adora2b,
gja1, tnf, ptgs2, junb, cd86, cyba, fcer1g, ripk3, and socs1 was up-
regulated on all days at almost all doses. Expression of itgb2, icos,
il12b, ctss, ctsd, cd48, and il21r was down-regulated at day 1 but
increased in expression at almost all doses on days 7 and 28 and all
doses on day 56. Expression of fn1, osm, selp, thbs1, pgf, tnfsf9,
adora3, il23a, myd88, il1r1, sod2, cebpb, and nfkbia was up-regulated
at all doses on day 1 with a decrease in expression over time and
down-regulation at most doses on day 56. Spp1 was highly
up-regulated on all days, particularly at doses 40 and 80 μg, while
il6 was highly up-regulated on day 1 and had a sustained increase
in expression over time. Expression of ptger3, ikbkg, cxcl12, ccl5,
tnfsf10, card11, il24, mc2r, cort, mmp9, vcam1, agt, sphk1, app, egfr,
and abcc1 was down-regulated across all days at most doses.

Of the 69 significant fibrosis genes (Fig. 4B), il1rn, lgals3, pla2g10,
ccl17, adra2a, cxcl12, fcgr2b, s100a4, igf1, mx1, ccl8, arg1, mmp13,
il1b, sele, hpx, timp1, ccl2, adora2b, hmgcr, hmgcs1, tnfaip3, tnfrsf1b,
adora3, c3, tnf, tpgs2, and hif1a were up-regulated on all days at
almost all doses. Expression of il12b, flt3, mdk, adora1, and il2ra was
decreased on day 1 but increased over time, while expression of
pdpn, myd88, il1r1, cebpb, mmp14, fn1, socs1, irf7, selp, osm, thbs1,
oas2, ptgir, and sstr4 was increased on day 1 and decreased over
time. Il6, cxcl10, ccr1, and mmp12 were highly expressed on day 1
and remained up-regulated over time, while fas, smad4, vegfa,
eif2c1, epha2, ptk2, gsk3b, proc, f11, lyve1, pde3a, ednrb, bdkrb2, actc1,
bmpr2, and smurf2 were down-regulated across all days at almost
all doses.

Using IPA and these 67 inflammation genes and 69 fibrosis genes,
we determined those genes which were significantly involved in IPA
Function and Disease Annotations associated with MWCNT-induced fi-
brosis. A recent report by Mishra et al. (2012) determined that low,
physiologically relevant doses of MWCNT equivalent to those in our
mouse study could significantly elevate the levels of transforming
growth factor β (TGF-β) and matrix metalloproteinase-9 (MMP-9) in
lung epithelial cells, aswell as increasemechanisms of collagen produc-
tion and cellular activation. Therefore, we used IPA to determine which
genes in our significant (SAM analysis; p b 0.05; FDR b 1%; fold change
N1.5) inflammation and fibrosis gene sets were involved in these pro-
cesses (Supplementary data Tables 4 and 5). Many inflammation
genes were involved in general cell activation by functional association
with the IPA function and disease annotations, including Cell Move-
ment, Proliferation of Cells, and Morphology of Cells (Supplementary
data Table 4). Genes found in the significant inflammation set were
also involved in the function and disease annotations, including Injury
of Lung (ccl2, cd14, il6, il1r1, olr1, ptgs1, ptgs2, selp, sphk1, and tnf),
Degradation of Connective Tissue (fn1, il6, il1b, il1rn, osm, ptgs1, ptgs2,
and tnf), as well as the signaling pathway VEGF Signaling (pgf)
(Supplementary data Table 4). No significant inflammatory genes
were found in the TGF-β signaling pathway according to IPA. Many fi-
brosis genes were also involved in the general cell activation function
and disease annotations, such as Cell Movement, Proliferation of cells,
and Morphology of Cells (Supplementary data Table 5). Several genes
in the significant fibrosis set were involved in the function and disease
annotations, including Injury of Lung (adra2a, c3, ccl2, hif1a, il5, il6,
il1r1, mmp12, ptgs2, selp, tnf, and vegfa), Degradation of Connective
Tissue (fcgr2b, fn1, il6, il1b, il1rn, mmp13, osm, ptgir, tnf, and tnfrsf1b),
as well as the signaling pathway VEGF Signaling (actc1, hif1a, ptk2,
and vegfa) (Supplementary data Table 5). Interestingly, 3 genes in the
significant fibrosis set, bmpr2, smad4, and smurf2, were involved in the
IPA TGF-β signaling pathway, again suggesting that TGF-β signaling
may play an important role in the progression of fibrosis and that the
computational system was efficient in determining those biological
processes which were functionally related to MWCNT-induced inflam-
mation and fibrosis. An additional analysis of the significant inflamma-
tion (Fig. 5A) and fibrosis (Fig. 5B) genes by IPA determined those genes
that have been experimentally shown to have an interaction specifically
in the lung (Tables 1 and 2).

VEGFA and CCL2 in vivo and in vitro RNA expression

The inflammation leading set genes (Fig. 5C) and fibrosis leading
set genes (Fig. 5D) were ranked by their frequency of inclusion in

http://www.mwcnttranscriptome.org
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Fig. 3. Three leading sets found to be significant in a search of the C5 and C2 Canonical Pathway databases using pathological data. Computations were based on the observed
experimental data points only; lines have been added to emphasize the patterns used in the computational system. For each pathway, (A) Reactome GPCR Ligand Binding,
(B) Reactome Hemostasis, and (C) Immune system Process, the average of all the genes in the leading set shows strong similarity to the pathology data. The genes for these leading
sets are listed in Supplementary data Tables 1–3. Expression fold change values are shown for CCL2, which was found in the leading sets in (A) and (C), at (D) day 56 and (F) dose
40. VEGFA, found in the leading set from (B), fold change is shown in (E). Although the fold change of these two genes does not exactly match the pathology they were found in the
leading sets.
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the biological processes significantly correlated with the pathological
data. Two genes, ccl2 and vegfa, were selected for in vitro validation.
Ccl2 was the top ranked gene that was involved in most biological
processes correlated with the inflammation (Fig. 5C) and among the
top 20 genes involved in most biological processes correlated with
the fibrosis (Fig. 5D). Consistently, in the IPA lung interaction net-
works (Figs. 5A and B), ccl2 is in a hub that interacts with both TNF
and IL1β hubs in the inflammation and fibrosis networks. Vegfa was
found to be functionally associated with the fibrosis leading set and
is integral to angiogenesis, or the formation of new blood vessels
(Ferrara and Davis-Smyth, 1997). Angiogenesis is necessary for the
formation of fibrotic tissue, and VEGF has been suggested as a
serum biomarker for ranking the severity of idiopathic pulmonary fi-
brosis (Ando et al., 2010; Strieter and Mehrad, 2009; Thannickal et al.,
2004). In a separate study, angiogenesis was observed after MWCNT
exposure in human endothelial cells and in a coculture of both
human epithelial and endothelial following epithelial exposure
(Snyder-Talkington, In Review). Both genes were functionally validated
in IPA analysis as involved in inflammation and/or fibrosis. Based on
these results, ccl2 and vegfa were analyzed for their in vitro mRNA and
protein expression levels following MWCNT exposure to validate the
in vivo results. The top ranked gene for fibrosis [chemokine (C motif)
receptor 1 (XCR1)] (Fig. 5D) was not shown to be functionally involved
in fibrosis in the IPA analysis. Therefore, it was not selected for in vitro
validation.

In vivo mRNA levels of vegfa showed stable expression levels
across all days and doses with a significant decrease in expression
on day 56 at dose 40 μg (Figs. 5B and 6) and closely resembled the
time-course of the morphometric collagen score data and leading
set average of the biological process Reactome Hemostasis (Fig. 3B).
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Ccl2 showed a consistent dose-dependent increase in mRNA expres-
sion on all days with significant increases at all doses on day 1,
doses 20, 40, and 80 μg on day 7 and doses 40 and 80 μg on day 56
(Figs. 5A and 6). Ccl2 in vivomRNA expression data closely resembled
the fibrosis day 56 dose–response morphometric analysis and leading
set average of biological process Reactome GPCR Ligand Binding
(Fig. 3A) and was similar to the inflammation BAL pattern and leading
set average for Immune System Process (Fig. 3C).

To assess the ability of MWCNT to induce similar RNA expression
changes in vitro, SAEC were exposed to MWCNT at either 1 μg/ml
(approximately equivalent to the in vivo dose of 20–40 μg (Porter et
al., 2010)) or 2.5 μg/ml (approximately equivalent to the in vivo dose
of 80 μg (Porter et al., 2010)) for 24 h, and theirmRNAexpression levels
analyzed. MWCNT exposure at both 1 and 2.5 μg/ml exposure levels
induced modest but significant increases in vegfa mRNA expression
in vitro in a dose-dependent manner (Fig. 7A). MWCNT exposure at
both 1 μg/ml and 2.5 μg/ml levels induced an increase in ccl2 mRNA
expression with a significant increase at 1 μg/ml (Fig. 7B).

VEGFA and CCL2 in vitro protein expression

To determine if the change in in vitromRNA expression levels after
exposure to MWCNT resulted in an increase in protein expression,
conditioned media from cells exposed to either 1 or 2.5 μg/ml
MWCNT for 24 h was collected and analyzed by ELISA for VEGFA
Fig. 4. Heatmap representation of genes significantly altered above 1.5-fold with an FDR
significant inflammation genes across days 1, 7, 28 and 56 at doses 10, 20, 40, and 80 μg. (
at doses 10, 20, 40, and 80 μg.
and CCL2 protein expression. VEGFA showed significant increases in
protein expression levels over control after 24 h of MWCNT exposure
(Fig. 7C). CCL2 also showed significant increases in protein expression
levels after 24 h of exposure (Fig. 7D). This demonstrated that the in-
crease in mRNA expression levels of VEGFA and CCL2 after MWCNT
exposure in vitro resulted in a concordant increase in protein expres-
sion and indicated that a similar increase may occur after in vivo
exposure.

Discussion

Integrating in vivo and in vitro studies and in silico analysis is a re-
cent endeavor in toxicological sciences. Novel methods for the analy-
sis of current in vivo data are needed to develop predictive in vitro
models so as to determine the toxicity profile of multiple material
variants, such as various types of CNT. Our computational system
was sufficient to identify potentially activated functions and path-
ways, which match inflammatory BAL scores and morphometric
alveolar interstitial fibrosis data. By identifying the leading gene sets
of the significant functions and pathways, our system can extract
genes which are strongly associated with BAL markers and mor-
phometry and that have potential involvement in inflammation and
collagen production. The employment of IPA allowed for global
analysis of our leading sets throughout the body of accepted scientific
literature so as to target our results to those genes known to be
of 1% in SAM analysis in inflammation and fibrosis. (A) In vivo gene expression of 67
B) In vivo gene expression of 69 significant fibrosis genes across days 1, 7, 28, and 56
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Fig. 4 (continued).
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involved in inflammation and fibrosis. The comparable results
between gene expression profiles of our targeted genes in vivo with
those found after MWCNT exposure in vitro suggest that our compu-
tational system is sufficient to determine potential outcomes of
MWCNT exposure. This analysis may therefore identify potential
signaling pathways and mechanisms that may be studied in vitro to
determine potential in vivo outcomes and prognostic indicators of
MWCNT exposure.

The epithelial lining of the lung is the first physical barrier to
inhaled particles, and inflammation is a necessary process for the re-
sponse to and recovery from lung injury. Upon injury, inflammatory
mediators are released to trigger an immune response so as to re-
move the invading pathogen and allow for wound healing, involving
processes such as re-epithelialization and angiogenesis (Thannickal
et al., 2004; Wynn, 2008). To replace the injured alveolar epithelial
cells, alveolar type II cells dedifferentiate and move into the wound-
ed area where they differentiate into new alveolar type I cells.
Fibroblast-like cells in the lung secrete extracellular matrix (ECM)
along which the alveolar type II cells move (Shi et al., 2009). Upon
resolution of the injury, this ECM is typically reabsorbed and normal
lung function and architecture are maintained; however, when an
inflammatory response becomes chronic due to persistent injury or
uncontrolled signaling, the inflammatory process can become path-
ogenic. Fibrosis, excessive collagen production, in the lung occurs
when the deposition of ECM is poorly controlled and there is a loss
of normal lung function and architecture (Shi et al., 2009). Because
many of the regulators of normal development and inflammation
also govern the process of fibrosis, there are multiple hypotheses
on what actions must occur for the response to switch from normal
inflammation to pathogenic fibrosis (Strieter and Mehrad, 2009).

The exposure of mice by pharyngeal aspiration to 0, 10, 20, 40, and
80 µg of MWCNT was suggested to represent an exposure that could
be compared to human occupational exposures (Porter et al., 2010).
Sampling of lungs at 1, 7, 28, and 56 days post-exposure allowed
the determination of gene expression changes that occur in the initial
inflammatory stage as well as in later fibrotic stages of disease. These
studies suggested that a single exposure to MWCNT not only induce
inflammation, but that MWCNT are biopersistent and induce a delayed
fibrotic response as determined by increased collagen in the alveolar
walls. Using a novel computational system, the correlation of global
mRNA expression profiles to the changes in BAL score andmorphomet-
ric analysis was analyzed. This identified transcription-related biologi-
cal processes with expression patterns resembling the pathological
patterns of inflammation and fibrosis in MWCNT-exposed mice,
allowing for the identification of critical toxicity pathways and potential
mechanisms for intervention. The results showed that this systematic
analysis could identify relevant genes and pathways in MWCNT-
induced lung injury from in vivo studies, which were further validated
in in vitro experiments.

Previous studies used in vivo or in vitro genome-wide mRNA
expression data to infer toxicity in carbon nanotube-exposed rats
(Alazzam et al., 2010; Ellinger-Ziegelbauer and Pauluhn, 2009; Peng
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et al., 2010). In addition, a combination of microarray data, benchmark
dose methods, and Gene Ontology annotations were used to identify
potentially adverse biological processes in toxicity (Burgoon and
Zacharewski, 2008; Thomas et al., 2007). Our novel computational
Fig. 5. (A) IPA analysis of the 67 significant inflammation genes to determine those interac
genes to determine those interactions, which specifically occur in the lung. (C) Ranking of s
significantly correlated with histopathological data. (D) Ranking of significant fibrosis gene
histopathological data.
system allowed for the discovery of non-parametric patterns, which
could be used to reconstruct microarray data, incorporated quantitative
pathological data, and was capable of working on both time-series and
dose-dependent data. Unlike traditional clustering techniques (Tamayo
tions, which specifically occur in the lung. (B) IPA analysis of the 69 significant fibrosis
ignificant inflammation genes by their frequency of appearance in biological processes
s by their frequency of appearance in biological processes significantly correlated with
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et al., 1999; Waring et al., 2001; Yeung and Ruzzo, 2001), our system
enabled genes to be included in multiple coexpression groups and be
involved with multiple patterns. As a result, 23 genes were found to
be involved in both MWCNT-induced inflammation and fibrosis in this
study (Tables 1 and 2). The leading sets could be thought of as the
genes in a function or pathway, which were most strongly influenced
by a particular pattern. Although the expression of an individual gene
in the leading set may not exactly match a pattern, the average of all
the gene expression in the leading set will, indicating that the process
as a whole responds similarly to the pattern. In this study, only genes
in the leading sets related to inflammation or fibrosis and from gene
sets which were found to be significantly represented were studied. It
should be noted that similar to the Bayesian Decomposition method,
our computational system uses data collected frommultiple conditions,
in this study either 4 time points or 4 dose conditions, for each pattern
matching and gene expression reconstruction. This computational
modelwould not be applicable tomodeling experimental data collected
with less than 3 treatment conditions. In addition, since our computa-
tional model is non-parametric, it does not make any inference of
unobserved experimental conditions.

The use of IPA to determine if genes significantly altered in the
leading sets were involved in inflammation or fibrosis allowed for
an in depth analysis based upon data derived from relationships
between genes and disease states taken from the currently accepted
literature knowledge base. These analyses were rooted in and verified
by experimental results collated from numerous sources. A total of 67
significantly altered genes were determined by IPA to be directly
involved in the inflammatory process while 69 significantly altered
genes were determine by IPA to be directly involved in fibrosis. Of
the significantly altered genes, two genes, ccl2 and vegfa, were chosen
to determine their in vivo and in vitro expression levels due to their
roles in the cell during the development of inflammation and fibrosis
as well as their rankings during gene profiling.

The formation of new blood vessels is an early response to tissue in-
jury and a continuous process in the formation of fibrosis. Angiogenesis
is necessary to sustain the tissuewith oxygen, and increased angiogenic
potential has been seen in patients with fibrosis (Strieter, 2008;
Thannickal et al., 2004). VEGFA is a predominant angiogenic factor
that acts upon endothelial cells for the proliferation of new blood ves-
sels (Ferrara and Davis-Smyth, 1997). Because angiogenesis is integral
to the formation of excessive ECM, we chose to determine if MWCNT
had the ability to increase the expression of vegfa for both inflammatory
and fibrotic processes. Additionally, we chose to determine the expres-
sion levels of ccl2 as an indicator of the inflammatory process. CCL2 is a
known stimulator of the immune response, initiating chemotaxis in a
variety of cell types, such as monocytes, lymphocytes, and basophils,
as well as inducing the production of collagen from fibroblast cells.
Due to these processes, CCL2 is suggested to play a role in inflammatory
diseases (Rose et al., 2003). Interestingly, CCL2 has also been suggested
to play a role in angiogenesis and up-regulates the expression of VEGFA
while, in turn, VEGFA has also been suggested to increase the expres-
sion of CCL2 (Hong et al., 2005; Yadav et al., 2010).

The dose-dependent increase in ccl2 mRNA expression at all days
and doses in vivo suggests its role in the initial inflammatory process.
Although the in vivo mRNA levels of vegfa remained relatively con-
stant across all days and doses, the in vivo protein levels are unknown
and may enhance collagen production. In vitro levels of ccl2 and vegfa
mRNA also increased with increasing dose, reflecting what is seen in
the in vivo analysis. In vitro analysis of the protein levels of CCL2 and
VEGFA suggests that even modest increases in mRNA levels were able
to significantly up-regulate protein expression, and a similar increase
in protein expression may occur in vivo. The analogous changes to
vegfa mRNA levels in vitro, with subsequent increases in protein
levels, suggest that MWCNT may have a similar effect in vitro to that
seen in vivo. This may allow for potentially significant cellular pro-
cesses to be identified by computational means and for the analysis
of the mechanisms and signaling cascades behind MWCNT-induced
effects to be validated in an in vitro manner.

Conclusions

A novel computational model was presented which was sufficient
to determine transcription-related biological processes strongly asso-
ciated with BAL and morphometric markers of lung inflammation and
fibrosis, respectively, following exposure to MWCNT in mice. The
biological processes were analyzed through IPA to determine genes
and signaling pathways functionally involved in lung inflammation and
fibrosis. Concordance of expression in two representative functionally



Fig. 6. Base-10 fold change of in vivo gene expression data of vegfa and ccl2 on days 1, 7, 28, and 56 at doses 10, 20, 40, and 80 μg. * fold change greater than 1.5.
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involved genes in the in vivo analysis was confirmed in vitro, and the
novel computational model was validated as a useful method to
identify potential toxicity pathways. The use of these toxicogenomic
data and in vivo animal model-based gene expression profiling
Fig. 7. In vitro gene and protein expression data of VEGFA and CCL2. (A) In vitro vegfa gene ex
ccl2 gene expression in SAEC exposure to 1 μg/ml and 2.5 μg/ml MWCNT for 24 h. (C) ELISA re
and 2.5 μg/ml (408 ± 18 pg/ml) MWCNT exposure for 24 h. (D) ELISA results of CCL2 prote
(381 ± 11 pg/ml) MWCNT exposure for 24 h. * p b 0.05.
integrated with in vitro verification may allow for successful in
vitro toxicity profiling of MWCNT as well as the identification of poten-
tial signaling pathways involved in the etiology of MWCNT-induced
injury.
pression in SAEC after exposure to 1 μg/ml and 2.5 μg/ml MWCNT for 24 h. (B). In vitro
sults of VEGFA protein expression after DM (82 ± 11 pg/ml), 1 μg/ml (239 ± 23 pg/ml),
in expression after DM (253 ± 7 pg/ml), 1 μg/ml (435 ± 15 pg/ml), and 2.5 μg/ml

image of Fig.�6
image of Fig.�7
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