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a Laboratory of Physiological Chemistry, de Duve Institute, Université Catholique de Louvain, Ave. Hippocrate 75, B-1200 Brussels, Belgium
b The Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium

Received 9 July 2008; revised 6 August 2008; accepted 22 August 2008

Available online 5 September 2008

Edited by Judit Ovádi
Abstract Our aim was to identify the product formed by sedo-
heptulokinase and to understand the mechanism of formation of
erythritol in patients with sedoheptulokinase deficiency. Mouse
recombinant sedoheptulokinase was found to be virtually specific
for sedoheptulose and its reaction product was identified as sedo-
heptulose 7-phosphate. Assays of sedoheptulose in plant extracts
disclosed that this sugar is present in carrots (�7 lmol/g) and in
several fruits. Sedoheptulose 1-phosphate is shown to be a sub-
strate for aldolase B, which cleaves it to dihydroxyacetone-phos-
phate and erythrose. This suggests that, in patients deficient in
sedoheptulose-7-kinase, sedoheptulose is phosphorylated by fruc-
tokinase to sedoheptulose 1-phosphate. Cleavage of the latter by
aldolase B would lead to the formation of erythrose, which would
then be reduced to erythritol.
� 2008 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Recent analysis of cystinosis patients with a 57 kbp deletion

inactivating the gene encoding the lysosomal cystine trans-

porter (CTNS), as well as a contiguous gene (CARKL, now re-

named SHPK) encoding a putative carbohydrate kinase, led to

the finding that these patients have abnormally high amounts

of sedoheptulose and erythritol in urine [1]. This abnormal

excretion is not found in cystinosis patients who are heterozy-

gous for this deletion. Extracts of control fibroblasts were

shown to display sedoheptulokinase activity and this activity

was markedly reduced in fibroblasts obtained from patients

with a homozygous deletion of the CARKL gene. These find-

ings led to the conclusion that sedoheptulosuria and erythritol-

uria both result from a deficiency of a new enzyme,

sedoheptulokinase, encoded by the CARKL gene. The product

of the reaction catalyzed by sedoheptulokinase was proposed

to be sedoheptulose 7-phosphate on the basis of its coelution

with authentic sedoheptulose 7-phosphate in HPLC. However,

the possibility that sedoheptulokinase phosphorylates sedo-

heptulose on its 1st carbon was not excluded. Earlier work
*Corresponding author. Fax: +32 2 764 75 98.
E-mail address: emile.vanschaftingen@uclouvain.be
(E.Van Schaftingen).

0014-5793/$34.00 � 2008 Published by Elsevier B.V. on behalf of the Feder

doi:10.1016/j.febslet.2008.08.024
has indeed indicated that liver contains a sedoheptulokinase

that converts sedoheptulose to sedoheptulose 1-phosphate

[2]. Furthermore, the mechanism leading to abnormal erythri-

tol excretion in sedoheptulokinase deficiency is not elucidated.

The purpose of this work was to identify the product of the

reaction catalyzed by sedoheptulokinase and to elucidate the

mechanism of formation of erythritol.
2. Materials and methods

2.1. Materials
2,7-Sedoheptulosan (except if otherwise indicated, all sugars and

polyols mentioned in this work are of the DD-series), transketolase,
altrose, mannoheptulose, glyceraldehyde 3-phosphate, and auxiliary
enzymes were from Sigma (St. Louis, Mo). Other chemicals were from
Merck. 2,7-Sedoheptulosan (200 mM) was heated in the presence of
0.05% perchloric acid for 2 h at 100 �C. This resulted in the formation
of �25 mM sedoheptulose, as checked with sedoheptulokinase. More
prolonged incubations did not lead to a higher conversion of sedohept-
ulosan to sedoheptulose, most likely because the thermodynamic equi-
librium of the hydrolysis of sedoheptulosan is in favor of the anhydride
[3]. The identity of the compound as sedoheptulose was confirmed by
the finding that it was converted by sedoheptulokinase to a substrate
for transketolase (see Section 3). Ribulose-5-phosphate reductase was
prepared as previously described [4]. Molecular biology enzymes were
from Fermentas (St. Leon Rot, Germany).

2.2. Overexpression and purification of mouse sedoheptulokinase
The open-reading-frame of mouse SHPK (GenBank� accession

number NP_083307) was PCR-amplified using Phusion DNA poly-
merase and mouse liver cDNA as a template. A 5 0 primer containing
the initiator codon (CACTCATATGGCTTCGCGACCTGTCACTC)
in a NdeI site (in bold) and a 3 0-primer containing the putative stop
codon (GAGCCTCGAGAACTAAGGCTCCTTCTGGCTA) flanked
by an XhoI site (in bold) were used. The 1450-bp PCR-product was di-
gested with NdeI and XhoI restriction enzymes, cloned in pBlueScript
and checked by sequencing. A NdeI–XhoI fragment was removed
from the pBlueScript plasmid and ligated in pET-15b expression vector
[5]. This vector was used to transform E. coli BL21(DE3) pLysS. Pro-
tein expression and preparation of bacterial extracts were performed as
described previously [6]. The polyHis-tagged protein was purified on
HisTrap columns (Ni2+ form) [7]. It was eluted with 150 mM imidaz-
ole, as indicated by SDS–PAGE analysis, and desalted on PD-10 col-
umns equilibrated with 25 mM HEPES, pH 7.4 and 25 mM KCl. With
this procedure, 3.5 mg of pure sedoheptulokinase was obtained per
litre of culture. Protein concentration was estimated by measuring
A280 assuming an extinction coefficient of 1.18 (mg/ml)�1 cm�1 for
sedoheptulokinase.

2.3. Measurement of enzymatic activities
The enzymatic activities were assayed spectrophotometrically at

30 �C by monitoring the changes in A340. Except if otherwise indicated,
all assays were performed in 600 ll of assay buffer containing 25 mM
HEPES, pH 7.4, 25 mM KCl, 1 mM MgCl2, 1 mM dithiothreitol
ation of European Biochemical Societies.

https://core.ac.uk/display/82568498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Kinetic properties of sedoheptulokinase. The activity of
purified mouse sedoheptulokinase was tested in the presence of the
indicated concentrations of sedoheptulose (panel A), altrose, manno-
heptulose and fructose (panel B).
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and 0.1% bovine serum albumin. Sedoheptulokinase activity was deter-
mined in assay buffer containing 1 mM ATP-Mg, 0.15 mM NADH,
0.3 mM phosphoenolpyruvate, different concentrations of sedoheptu-
lose, 10 lg/ml rabbit muscle pyruvate kinase, 5 lg/ml rabbit muscle
lactate dehydrogenase, and 0.25 lg/ml sedoheptulokinase.

Aldolase was assayed through the production of dihydroxyacetone-
phosphate in a reaction mixture containing 25 mM Tris–HCl, pH 7.5,
1 mM MgCl2, 0.15 mM NADH, rabbit muscle triose phosphate isom-
erase (3.5 U/ml) and glycerol-3-phosphate dehydrogenase (1 U/ml), the
indicated concentrations of fructose 1,6-bisphosphate, fructose 1-phos-
phate or sedoheptulose 1-phosphate, and 0.01 mg/ml purified rat liver
aldolase B.

2.4. Preparation of the phosphorylation product of sedoheptulokinase
and of sedoheptulose 1-phosphate

Sedoheptulokinase (7 lg/ml) was incubated in assay buffer (5 ml final
volume) containing 10 mM sedoheptulose and 10 mM ATP-Mg for 2 h
at 37 �C. The incubation was arrested by heating at 80 �C for 10 min.
After centrifugation, the supernatant was diluted 3-fold with water and
applied onto a 15 ml AG1X8 column, which was eluted with a contin-
uous 0–1 M NaCl gradient. The phosphate esters were measured
through the formation of inorganic phosphate [8] after alkaline phos-
phatase treatment. A peak of monophosphate ester (�20 lmol), corre-
sponding to sedoheptulose-phosphate, was eluted from the column
before the peaks of ADP and ATP. It was used to test whether the
sedoheptulokinase product was a substrate for transketolase or aldol-
ase B.

Sedoheptulose 1-phosphate was similarly prepared with partially
purified liver fructokinase [9]. The phosphorylation product
(�12 lmol) was purified by anion exchange chromatography as de-
scribed above. NaCl was removed by gel filtration on Sephadex G10
and the purified product was concentrated to �20 mM in a Speed-Vac.

2.5. Assays of sedoheptulose 7-phosphate and of sedoheptulose
Sedoheptulose 7-phosphate was assayed spectrophotometrically, at

a wavelength of 340 nm, by following the formation of ribose 5-phos-
phate in assay buffer containing 0.1 mM CTP-Mg, 0.15 mM NADPH,
0.1 mM thiamine-pyrophosphate, 0.5 mM glyceraldehyde 3-phos-
phate, 0.05 U/ml yeast transketolase, 1.7 U/ml recombinant ribose-5-
phosphate isomerase from spinach, and 0.3 U/ml recombinant Hae-
mophilus influenzae ribulose-5-phosphate reductase [4].

Sedoheptulose was assayed in neutralized perchloric acid extracts of
plant tissues as the ADP formed in the presence of sedoheptulokinase
in the same assay mixture as for sedoheptulokinase (see above). A340

was measured 5 min after all assay constituents except sedoheptulokin-
ase had been added. Sedoheptulokinase (2.5 lg/ml) was then added to
initiate the reaction, which was allowed to proceed until A340 stabi-
lized. The concentration of sedoheptulose was computed from the
change in A340.

Fruit and vegetables were homogenized in a Waring Blendor with
2 vol of water. The resulting extracts were centrifuged for 5 min at
1000 · g and a portion of the supernatant was mixed with perchloric
acid (2% final concentration). Freshly pressed orange or grapefruit
juice was mixed with perchloric acid (2% final concentration). The
resulting perchloric acid extracts were centrifuged for 5 min at
15000 · g, neutralized with K2CO3 and re-centrifuged. The concentra-
tion of sedoheptulose was determined with purified sedoheptulokinase
in the resulting supernatant.

2.6. Action of liver aldolase on sedoheptulose 1-phosphate
For the purification of liver aldolase, a rat liver extract (25 ml) pre-

pared in 4 vol of 25 mM HEPES, pH 7.1, 50 mM KCl, 5 lg/ml leupep-
tin and 5 lg/ml antipain was centrifuged and the resulting supernatant
was applied onto a 25 ml DEAE-Sepharose column. The flow-through
fractions (25 ml) were pooled and applied onto a 20-ml SP-Sepharose
column equilibrated in HEPES 25 mM, pH 7.1. The column was
washed with the same buffer and aldolase was eluted with a NaCl gra-
dient (0–500 mM) in 100 ml of the same buffer. Aldolase was purified
about 40-fold in this way to a specific activity of 10 lmol/min/mg pro-
tein as determined with fructose 1,6-bisphosphate as a substrate.

For the characterization of the products formed from sedoheptulose
1-phosphate, the aldolase preparation (0.37 mg/ml) was incubated with
2 mM sedoheptulose 1-phosphate for 150 min in the presence of 3 mM
HEPES, pH 7.1, and the reaction was stopped by heating for 5 min at
80 �C. Protein was eliminated by centrifugation and the resulting
supernatant was analyzed by mass spectrometry. All mass spectral
analyses were performed on a LCQ Deca XP ion-trap spectrometer
equipped with an electrospray source (ThermoFinnigan, San Jose,
CA). The sample dissolved in methanol was introduced directly into
the source at a flow rate of 4 ll/min. The LCQ was operated in positive
mode under manual control in the Tune Plus view with default param-
eters and active Automatic Gain Control. MS/MS analysis was done to
confirm the structure of the precursor ions using low energy collision-
induced dissociation with a relative collision energy of 25%.
3. Results

3.1. Characterization of recombinant mouse sedoheptulokinase

We prepared an expression vector allowing the production

of mouse sedoheptulokinase as a N-terminal fusion protein

with a polyHis tag. The protein was expressed in Escherichia

coli at 16 �C for 19 h in the presence of the inducer isopropyl-

thiogalactoside. Extracts were prepared and the protein was

purified to homogeneity (not shown) by metal affinity chroma-

tography.

We determined its kinase activity using a spectrophotometric

assay in which ADP formation was followed. Fig. 1A shows

that the enzyme was active with sedoheptulose as a substrate.

The enzyme displayed a KM of 190 ± 15 lM for sedoheptulose

and a Vmax of 128 ± 3 lmol/min/mg protein, corresponding to

a kcat of�115 s�1. Sedoheptulokinase did not show any activity

on 2,7-sedoheptulosan (tested at 50 mM), and was only weakly

active on two structural analogs of sedoheptulose, namely

altrose (analog of C2–C7) and mannoheptulose (C4 epimer)

(Fig. 1B), for which we calculated catalytic efficiencies

of 2.2 and 1.4 s�1 M�1, respectively, as compared to 6.0 ·
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105 s�1 M�1 for sedoheptulose. Sedoheptulokinase was inactive

on fructose, glucose, galactose (tested at up to 50 mM), eryth-

ritol and DD-erythrose (tested at up to 10 mM).

Sedoheptulose is most likely phosphorylated by sedoheptu-

lokinase either on its 7th or on its 1st carbon. To determine

which of these possibilities is true, we prepared the phosphor-

ylation product, purified it by chromatography on anion-

exchanger and titrated it through the release of inorganic phos-

phate by alkaline phosphatase. We then checked whether the

phosphorylation product reacted with transketolase, using

glyceraldehyde 3-phosphate as a co-substrate, and a combina-

tion of ribose-5-phosphate isomerase and ribulose-5-

phosphate reductase to monitor the formation of ribose

5-phosphate. With this assay, we found that the sedoheptu-

lose-phosphate produced by sedoheptulokinase was quantita-

tively converted to ribose 5-phosphate. We checked that no

decrease in A340 was observed if one of the constituents of

the assay (transketolase, thiamine-pyrophosphate, auxiliary

enzymes, glyceraldehyde 3-phosphate) was omitted. These

results indicated therefore that sedoheptulokinase phosphory-

lates its substrate on its 7th carbon.

3.2. Action of aldolase B on sedoheptulose 1-phosphate

Absence of sedoheptulokinase leads to the accumulation of

sedoheptulose and erythritol [1]. The accumulation of the hep-

tulose is the direct consequence of the lack of activity of sedo-

heptulokinase. Since this enzyme does not act on erythrose or

erythritol (see above), the accumulation of erythritol must be

the consequence of sedoheptulose accumulation. Previous

studies have shown that this heptulose is a substrate for fruc-

tokinase (ketohexokinase), which phosphorylates it with a cat-

alytic efficiency amounting to 6% of that observed with

fructose [10]. We confirmed that sedoheptulose is a substrate

for purified fructokinase (results not shown) and we prepared

sedoheptulose 1-phosphate with this enzyme. Mass spectrome-

try analysis of the purified product indicated the presence of a

positively charged ion of m/z 335, as expected for the

(M�H+2Na) form of a heptose-monophosphate (not shown).

We checked if sedoheptulose 1-phosphate was a substrate

for aldolase B by measuring the formation of dihydroxyace-

tone-phosphate. As shown in Fig. 2, liver aldolase displayed

almost as much activity on sedoheptulose 1-phosphate as on

fructose 1-phosphate. KM values of 0.6 and 0.25 mM were cal-

culated for sedoheptulose 1-phosphate and fructose 1-phos-
Fig. 2. Liver aldolase acts on sedoheptulose 1-phosphate. The activity
of partially purified rat liver aldolase B was assayed through the
formation of dihydroxyacetone-phosphate in the presence of the
indicated concentrations of fructose 1-phosphate or sedoheptulose 1-
phosphate. The results were fitted to the Michaelis–Menten equation.
phate, respectively. Vmax values were 0.4 and 0.5 lmol/min/

mg protein, respectively.

Since sedoheptulose 1-phosphate is cleaved by aldolase with

production of dihydroxyacetone-phosphate, the other product

must be erythrose. Analysis by elecrospray mass spectrometry

in positive ion mode of the reaction mixture obtained when

2 mM sedoheptulose 1-phosphate was incubated with liver

aldolase indicated the presence of dihydroxyacetone-phos-

phate (m/z 215, corresponding to the M�H+2Na form), as

well as of a product with m/z 143, corresponding to the

(M+Na) form of a tetrose (not shown). Tandem mass spec-

trometry analysis of this ion disclosed that its main fragments

had m/z values of 125 (loss of water), 113 (loss of C4) and 83

(loss of C3–C4), in full agreement with the fragmentation spec-

trum of commercial erythrose (not shown). Mass spectrometry

indicated also that neither dihydroxyacetone-phosphate, nor

erythrose were formed if aldolase had been omitted from the

reaction mixture. These findings confirmed therefore that ery-

throse is the other product of sedoheptulose 1-phosphate

cleavage by aldolase B.

We also checked that the product of phosphorylation of

sedoheptulose by sedoheptulokinase was not split by aldolase

B. This confirmed that this enzyme does not phosphorylate

sedoheptulose on its first carbon.

3.3. Presence of sedoheptulose in vegetables and fruits

Sedoheptulokinase was used to assay sedoheptulose in neu-

tralized perchloric acid extracts of a number of vegetables and

fruits (Table 1). The heptose was found in several fruits at con-

centrations of the order of 1 lmol/g. This amount was vari-

able, particularly in apples, possibly depending on the

cultivar tested or on the degree of maturity, but this was not

further explored. The heptose was most abundant in carrots,

which contained about 6.7 lmol/g sedoheptulose. The other

vegetables that we tested did not contain detectable amounts

of this heptose.
4. Discussion

4.1. Identity of the product of sedoheptulokinase

The goal of the present work was to determine more pre-

cisely the function of the protein encoded by the CARKL/
Table 1
Concentration of sedoheptulose in fruits and vegetables

Species Content (lmol/ml or lmol/g)

Apple 1.30, 0.97, 0.44, 0.20, <0.20 (3·)
Apricot 1.00, 0.83, 0.75
Banana <0.20 (2·)
Carrots 5.5, 4.3, 10.9
Grapefruit (juice) 1.06, 0.73, <0.20
Lettuce <0.20
Orange (juice) 2.31, 2.37, 0.87
Potato <0.20 (2·)
Spinach leaves <0.20
Tomato 1.18, 1.18, 0.73

The concentration was determined with purified sedoheptulokinase on
neutralized perchloric acid extracts prepared from freshly pressed juice
or from tissue extracts. Because of the wide variability from sample to
sample in some cases, individual values are shown. (2·) and (3·)
indicate that a value below the detection limit (0.2 lmol/ml or g) has
been observed in 2 or 3 different specimens.



Fig. 3. Metabolism of sedoheptulose and its alteration in sedoheptulokinase deficient patients. Sedoheptulokinase normally converts sedoheptulose
to sedoheptulose 7-phosphate, which is metabolized by enzymes of the pentose phosphate pathway. Based on the properties of fructokinase and
aldolase B, we propose that, in the absence of sedoheptulokinase, sedoheptulose would be phosphorylated by fructokinase to sedoheptulose 1-
phosphate, which would then be cleaved by aldolase B to dihydroxyacetone-phosphate and erythrose. The latter would be reduced to erythritol by
aldehyde reductase. Both sedoheptulose and erythritol are excreted in urine.
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SHPK gene. The protein was produced in E. coli and purified

to homogeneity. We showed that it phosphorylates sedoheptu-

lose on its seventh carbon and not on the first one. This con-

clusion is based on the finding that the phosphorylation

product is a substrate for transketolase, but not for aldolase

B. It agrees also with the finding that altrose, an analog of

C2–C7 of sedoheptulose, is slowly but detectably phosphory-

lated by this enzyme, but that this is not the case for fructose,

an analog of C1–C6. The catalytic efficiency of sedoheptulo-

kinase was more than five orders of magnitude higher when

sedoheptulose was used as a substrate than with any other su-

gar that we tested. This enzyme is therefore very specific and

suitable to assay sedoheptulose.

The conclusion on the identity of the product formed by

sedoheptulokinase differs from that of a previous work [2]

showing that a sedoheptulokinase partially purified from liver

phosphorylates sedoheptulose on its 1st carbon. This partially

purified enzyme also phosphorylated fructose and LL-sorbose,

and we may therefore conclude that it corresponded to fructo-

kinase. It is likely that the �true� sedoheptulokinase was lost in

the purification process used by Iwai and coworkers [2].

4.2. Mechanism of accumulation of erythritol

Sedoheptulokinase does not phosphorylate erythrose or

erythritol. Therefore the accumulation of erythritol in patients

with a deficiency in this enzyme must be indirect. The most

likely explanation (Fig. 3) is that when sedoheptulose is not

phosphorylated by sedoheptulokinase to sedoheptulose 7-

phosphate, it accumulates to concentrations at which it would

become a significant substrate for fructokinase [10]. The result-

ing sedoheptulose 1-phosphate would be converted by aldolase

B to erythrose and dihydroxyacetone-phosphate. The only

known fate for erythrose is to be reduced to erythritol by alde-

hyde reductase, a NADPH-dependent enzyme that uses DD-ery-

throse as one of its best carbohydrate substrates [11].

It is reasonable to assume that most erythritol found in urine

of patients with sedoheptulokinase deficiency is derived from

sedoheptulose. From the median excretion of erythritol and

sedoheptulose in these patients (0.32 mol/mol creatinine), we

calculate, for a child weighing 30 kg, a sedoheptulose load of

�1.4 mmol/day (assuming a creatinine excretion of 16.3 mg/

kg/day). One hundred grams of carrots represent about 40%

of that load and 100 ml of orange or grapefruit juice, about
10%. This suggests that food is the principal source for this

sugar, but does not exclude the contribution of endogenous

sources, e.g. the hydrolysis of cellular sedoheptulose 7-phos-

phate by cytosolic phosphatases.

4.3. Role of sedoheptulose in carrots

Our results indicate that sedoheptulose is usually a minor

sugar in plants. Its concentration in carrots (�0.14 g % fresh

weight), the richest source that we identified, is much lower

than those of fructose, glucose and sucrose (0.92, 1.22 and

2.83 g% fresh weight, respectively, according to Rodriguez-

Sevilla et al. [12]). The role of this heptulose is presently un-

known. It is tempting to relate its presence in carrots with that

of (�)-daucic acid, a seven-carbon sugar dicarboxylic acid,

which was initially identified in this vegetable [13]. However,

the DD-lyxo configuration of (�)-daucic acid argues against this

possibility, as do also tracer studies with potential precursors of

the related compound, chelidonic acid [14]. Sedoheptulose is a

precursor for the polyol volemitol in polyanthus [15]. It would

be interesting to know if carrots also contain this heptitol.
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