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Abstract

We show that contour trees can be computed in all dimensions by a simple algorithm that merges two trees. Our
algorithm extends, simplifies, and improves work of Tarasov and Vyalyi and of van Kreveld et al.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many imaging technologies and scientific simulations produce data in the form of sample points with
intensity values. One way to visualize this data is to convert it into geometric models by thresholding or
by taking level sets. In this paper, we focus on one tool that can help in choosing threshold values or in
interactive exploration of such data: thecontour tree.

Contour trees were used by van Kreveld et al. [28] to compute isolines on terrain maps in geographic
information systems. With terrain maps, a surface model is computed from elevation values at sample
points in the plane. Isolines, often called contours, are the curves that can be seen on a topographic map,
and consist of points at a given height. Contours can be traced from a surface model relatively easily,
given a starting point, or “seed” on each. Van Kreveld et al. use the contour tree to generate “seed sets”
for any query height value, guaranteeing that each contour has at least one seed.

We use the contour tree to compute seed sets, to trace whole or partial isosurfaces inR
3, and to

determine important values of the height function where topological changes occur in the level sets;
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these changes may correspond to important phenomena in the data studied. While van Kreveld et al. do
discuss the extension of their approach toR

3, their algorithm runs in quadratic time, which is prohibitive.
Tarasov and Vyalyi [26] gave an O(N logN) algorithm for computing contour trees inR3, whereN is

the number of simplices in the decomposition of the data. We describe their algorithm and the handling
of singularities in more detail later, but their approach can multiply the number of simplices by a factor
of 360, and is difficult to implement.

Our algorithm for contour trees begins with Tarasov and Vyalyi’s idea of three passes through the data,
but makes the following simplifications and improvements. The first two sweeps do not maintain level
sets, but construct “join” and “split” trees, which store partial topological information about the data.
We then apply a simple merge procedure to obtain the contour tree. The resulting algorithm handles
multiple singularities and extends to all dimensions. Because there are some applications in which
multiple singularities must be replaced by simple singularities, we also observe that Tarasov and Vyalyi’s
approach to resolving singularities can be extended to all dimensions.

After reviewing isosurfaces in Section 2, we define contour trees and look at their properties in
Section 3. We then give our algorithm to construct contour trees in Section 4. Finally, in Section 5, we
extend Tarasov and Vyalyi’s resolution of singularities to arbitrary dimensions. We state our conlusions
in Section 6, and give some future directions in Section 7.

2. Isosurfaces

Suppose that we are given a set ofn points {p1,p2, . . . , pn} in a fixed-dimensional spaceRd , with
corresponding scalar measurements{h1, h2, . . . , hn}. We assume that thehi are unique, perhaps by
perturbation of our data using simulation of simplicity [10].

To extend the data to the entire space, we choose a meshM with vertex set{p1,p2, . . . , pn}. Meshes
used for isosurfaces include regular rectilinear meshes (also known asvoxels or cuberilles) [1,8,9,13,15,
16,18,19,29,30], regular simplicial meshes [26,28,29,31], and irregular meshes [14,18]. We then choose
a continuous functionf to interpolate at points not in{p1,p2, . . . , pn}, and require thatf (pi)= hi: this
is typically a piecewise-linear function. For convenience, we useheight to refer to the function value.

A level set of f at some height h is the set{x ∈ R
d | f (x) = h}, and may consist of 0,1, or more

connected components. In 2-D, these connected components are calledisolines, and in 3-D,isosurfaces.
We usecontour as a general term for a connected component of a level set in a space of arbitrary
dimension.

If we think of the heightf (x) as time and watch the evolution of the level sets off over time, then
we see contours appear, split, change genus, join, and disappear. Thecontour tree, which we define in
Section 3, is a graph that tracks contours of the level set as they split and appear or join and disappear.

2.1. Previous work on isosurfaces

Isosurfaces have been widely used for segmentation and rendering, in fields such as medical imaging
[1,18,19], fluid dynamics [18], and X-ray crystallography [9,13]. The principal algorithm used to generate
isosurfaces is the “Marching Cubes” algorithm [19], which computes the desired level set by finding
the intersection of the level set with each cell of the mesh. This algorithm has several disadvantages:
the isosurface generated may have visible cracks, the time required to render an isosurface is O(N) in
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the number of cells, and the algorithm fails to distinguish between the contours of the level set. The
first disadvantage, that visible cracks appear in the generated model, can be dealt with by Nielsen and
Hamann’s Asymptotic Decider [21], or by subdividing the cells into simplices (inR

3, tetrahedra). As we
see in Section 3.1, a simplicial mesh is required for the contour tree algorithm, so we choose to subdivide
the cells into simplices.

As regards the run-time, various techniques have been proposed to reduce the cost of generating an
individual isosurface to as little as O(logN + k), wherek is an output-sensitive term. These techniques
include octrees [30], span space [18], interval trees [7–9], extrema graphs [15,16], segment trees [2,14],
and contour trees [3,28]. Of these, octrees, span space, and interval trees require large run-time data
structures(�(N) in the size of the mesh), and retain the inability to distinguish contours of the level set.
One reason for this is that these techniques fail to take advantage of the fact that each contour must be
connected: each intersection of a cell and a contour is treated as a separate object.

In contrast, the extrema graph, segment tree, and contour tree approaches take advantage of the
connectivity of individual contours. If we start at a cell known to intersect the isosurface (aseed cell), it
is possible to “follow” the contour out the faces of the cell to adjacent cells, and repeat until a complete
contour has been traced. The task remaining is then to specify sufficient seed cells to guarantee that
any contour at any isovalue intersects at least one of the seed cells. This can be done interactively [14],
heuristically (extrema graphs [15,16]), by a mark-and-sweep algorithm [2], or using contour trees [3,28].

3. Contour trees

The contour tree was introduced by Boyell and Ruston [5], as a summary of the evolution of contours
on a map (i.e. in 2-D), and used by Freeman and Morse to find terrain profiles in a contour map [11]. It
has been used for image processing and geographic information systems [12,17,24,25], but principally in
2-D applications. It appears that van Kreveld et al. were the first to identify its applicability to isosurfaces
as well as isolines [28]. Since the contour tree is related to the field of Morse theory, we will make some
remarks about Morse theory in Section 3.1, then give a definition of the contour tree in Section 3.2,
a definition of a related structure called the augmented contour tree in Section 3.3, and a summary of
previous work in Section 3.4.

3.1. Morse theory

The field of Morse theory [4,20,23] studies the changes in topology of level sets as the heighth is
varied. Points at which the topology of the level sets change are calledcritical points. Morse theory
requires that the critical points are isolated—i.e., that they occur at distinct points and values. A function
that satisfies this condition is called aMorse function. All points other than critical points are called
regular points and do not affect the number or genus of the contours.

In order to take advantage of this, we choose our meshM to be a simplicial mesh, and our functionf
to be a piecewise-linear function such that:

(1) f is a linear function within each simplex, and
(2) f (pi)= hi for all i = 1, . . . , n.



78 H. Carr et al. / Computational Geometry 24 (2003) 75–94
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Fig. 1. Level sets off asf (x) decreases.

This definition off , as a linear interpolant over a simplicial mesh with unique data values at vertices,
ensures thatf is a Morse function, and that the critical points occur at vertices of the mesh [4]. This
makes it possible to deal with the continuously-defined functionf using a combinatorial approach. Note
that for generating isosurfaces, we are interested in a subset of the Morse critical points: we do not care
about changes of topological genus (e.g., from a disk to a torus), since these changes do not affect the
number of contours, or the number of seed cells required.

In Fig. 1, we show a set of isosurfaces from a small dataset, with large values at 4 corners of a cube,
medium values at the other 4 corners and on the faces of the cube, and small values inside and outside the
cube. As the height (i.e., the value of the function) decreases, we see contours appear, split, change genus,
join, and disappear. In particular, the level set evolves from four sticks (a), to two rings (between (b)
and (c)), to two cushions (c), to one surface (d), which gradually turns into two nested surfaces as the
“inside” and “outside” separate (between (e) and (f)). Finally (although we cannot see this), the inner
surface collapses to a point, leaving us with a single surface once more.

3.2. The contour tree

Thecontour tree is a graph that tracks contours of the level set as they split, join, appear, and disappear.
Fig. 2 shows the contour tree for the small example illustrated in Fig. 1. Starting at the global maximum,
four small contours appear in sequence(10,9,8,7): these correspond to the four leaves at the top of
the contour tree. The surfaces join(6,5) in pairs, forming larger contours, which quickly become rings.
These rings then flatten out into cushions, which join (4) to form a single contour. This contour gradually
wraps around a hollow core, and pinches off at (3), splitting into two contours: one faces inwards, the
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Fig. 2. Contour tree for Fig. 1.

other outwards. The inward contour contracts until it disappears at (2): the outward contour expands until
it reaches the global minimum (1).

In the foregoing description, we refer to the evolution of level sets as we vary the height. We make
this “evolution” more precise by defining an equivalence relation between two contours. We define ajoin
to be a critical pointx with an ε-neighbourhood that intersects at least 2 contours atf (x) + δ, where
δ, ε are suitably small values. Asplit is then a critical pointx with an ε-neighbourhood that intersects
at least 2 contours atf (x)− δ. Note that alocal maximum x must have anε-neighbourhood that does
not intersect any contours atf (x) + δ. Similarly, a local minimum x must have anε-neighbourhood
that does not intersect any contours atf (x)− δ. Collectively, we refer to joins, splits, local maxima and
local minima ascritical points: these critical points are a subset of the critical points in Morse theory
Section 3.1. We then define the equivalence relation as follows:

Definition 3.1. Let γ andγ ′ be contours at heightsh andh′, respectively, withh < h′. Thenγ andγ ′ are
equivalent(γ ≡ γ ′) if all of the following are true:

(1) neitherγ norγ ′ passes through a join, split, local maximum or local minimum,
(2) γ andγ ′ are in the same connected componentΓ of {x: f (x) � h}, and there is no joinxi ∈ Γ such

thath < hi < h′, and
(3) γ andγ ′ are in the same connected component∆ of {x: f (x) � h′}, and there is no splitxi ∈∆ such

thath < hi < h′.

We refer to the equivalence classes of this relation ascontour classes. Contours that do not pass
through critical points belong to contour classes that map 1–1 with open intervals(hi, hj), wherexi and
xj are critical points andxi < xj . We describe a contour class as beingcreated at j , athj , or atxj , and
beingdestroyed at i, athi, or atxi , thus preserving the intuitive description of a sweep from high to low
values. Contours that do pass through critical points must be the sole members of the contour classes
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to which they belong (i.e., finite contour classes). This correspondence between critical points and finite
contour classes, and between open intervals and infinite contour classes, leads to the definition of the
contour tree for a simplicial mesh:

We define thecontour tree, illustrated in Fig. 2, as a graph(V ,E). Following van Kreveld et al. [28]
we refer toV andE assupernodes andsuperarcs, respectively.

The setV contains a supernode for each finite contour class (i.e., for each critical point.) We
distinguish two types of supernodes: Aninterior supernode corresponds to a critical point at which
at least one infinite contour class is created, and at least one infinite contour class is destroyed. Aleaf
supernode corresponds to a local maximum, at which an infinite contour class is created, or a local
minimum, at which an infinite contour class is destroyed.

The setE contains a superarc for each infinite contour class. Specifically, if and only if an infinite
contour class is created at the critical point corresponding to the supernodeu and destroyed at the critical
point corresponding tov, then the superarc(u, v) ∈E.

3.3. The augmented contour tree

For some purposes, such as the generation of isosurfaces, information about vertices that are not
critical points is also required. We augment the contour tree with the remaining points to produce an
augmented contour tree. For each vertexxi in the mesh, take the contourγi to which xi belongs, and
insertxi into the superarc representing the contour class[γi]. Again following van Kreveld et al., we refer
to the resulting vertices and edges of the graph asarcs andnodes. Note that this replaces the superarcs
between supernodes with a path consisting of arcs and nodes.

Because of difficulties illustrating the behaviour of level sets in 3-D, we have constructed a small 2-D
mesh (Fig. 3), with the same contour tree (Fig. 2) as our original 3-D mesh (Fig. 1). We will continue
using this mesh as an example for the balance of this paper: since the algorithm works in arbitrary
dimensions, nothing is lost by this choice. Note that, in this 2-D example, the vertices with non-integer
labels are not critical points: Fig. 4(a) shows the augmented contour tree for this mesh. Clearly, if we
know the nodes and arcs, we can generate the supernodes and superarcs. We simplify the presentation of

Fig. 3. A small 2-D example, with the same contour tree as Fig. 1.
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(a) (b) (c)

Fig. 4. A small 2-D example, continued. (a) Augmented contour tree. (b) Join tree. (c) Split tree.

the algorithm by working only with the nodes and arcs, and use “contour tree” to refer to the augmented
contour tree for the balance of this paper (see Fig. 4(a) for an example).

3.4. Previous work

Van Kreveld et al. [28] reported the first efficient algorithm for constructing contour trees. This
algorithm performs the extraction in O(N logN) time in 2-D data fields, and O(N2) time in higher
dimensions, whereN is the number of simplices (triangles) in the mesh of then data points. The
algorithm performs a sweep from low to high value, maintaining each contour, and examines the data set
locally to determine when saddle points are encountered and how to deal with them. Multi-saddle points
are treated as a set of ordinary saddle points. The most time-consuming step is merging contours. In the
plane, the running time is reduced to O(N logN) by always merging a smaller contour into a larger; a
coordinated search in both contours is used to determine which is the smaller.

Tarasov and Vyalyi [26] presented an O(N logN) algorithm for 3-D data fields. Their algorithm
performs three sweeps: one sweep to identify joins, a second to identify splits, and a third to combine
the results of the two sweeps. Again, the level set is maintained at all times during the sweep. Multi-
saddle points are dealt with by a complicated preprocessing step (see Section 5). Running time is kept
to O(N logN) by a variation of the method used by van Kreveld et al. in the plane. Finally, boundary
effects at the edge of the dataset are handled by special cases inside the algorithm.

In both algorithms, two factors contribute to the runtime: the initial sort takes O(n logn) time, and
maintaining the level sets takes O(N logN) time. Bounds on the number of simplices,N , areN =�(n)

and N = O(nd/2�), for a mesh withn vertices ind dimensions. In dimensions greater than 2, the
difference betweenN andn can become significant for irregular meshes. It is, however, always possible
to construct a mesh in any fixed dimension such thatN =�(n) (for example, a regular grid). As a result,
the difference betweenn andN is, in most instances, a small constant factor.
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4. The contour tree algorithm

We propose an improved algorithm for constructing the contour tree for a real-valued fieldF

interpolated over a simplicial mesh ofn vertices andN simplices, with the following characteristics:

(1) time requirements of O(n logn+Nα(N)) for constructing augmented contour trees, in any number
of dimensions,

(2) space requirements of O(N) for the mesh and O(n) additional working storage,
(3) simple treatment of boundary effects, and
(4) simple treatment of multi-saddle points.

The algorithm has two stages: in the first stage, we build ajoin tree and asplit tree to identify contour
joins and splits (Section 4.1). In the second stage, we merge these two trees to obtain the contour tree
(Section 4.2).

Although the algorithm applies to any arbitrary dimension, the illustrations are in two dimensions for
clarity (see Fig. 3 for our example).

4.1. Join and split trees

In this subsection, we introduce thejoin tree andsplit tree for a height graphG (a graph with associated
heights). We demonstrate that the join treeJM of the simplicial meshM used to define our height fieldF
is identical to the join treeJC of the contour treeC of F . We then present an algorithm for constructing
JC(= JM) in O(n logn+Nα(N)) time and O(n) space.

The join tree is a graph that encapsulates all joins in the contour tree; the correspondingsplit tree
encapsulates all splits. These trees are dual if we negate all heights, so we will examine only the join tree
in detail.

We define aheight graph to be any graphG with heights{hi} associated with the vertices{xi}. For
example, the meshM underlying our functionf is a height graph. Throughout the rest of Section 4,
we use the notationG+i to refer to the subgraph ofG induced by the vertices with height> hi. Also,
although the join tree is notionally on the same set of vertices asG, we adopt the convention that ifxi is
a vertex inG, thenyi is the corresponding vertex in the join tree.

Definition 4.1. The join treeJG of a height graphG is the graph on the verticesy1, . . . , y‖G‖ in which
two verticesyi andyj , with hi < hj , are connected when:

(1) xj is the smallest-valued vertex of some connected componentΓ of G+i , and
(2) xi is adjacent inG to a vertex ofΓ .

In Fig. 4(b) and (c), we give the join and split trees corresponding to the 2-D example mesh in Fig. 3.
In order for the join tree to be useful, we must relate it to the height field that we are studying: we do so

by showing thatJC = JM , i.e., that the contour treeC and the meshM have the same join tree. We need
a couple of preliminary lemmas to show that the connected components ofC+i andM+i are identical.
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Fig. 5. Constructing a graph path from a path in space.

Lemma 4.2. xi and xj belong to the same component of M+k precisely when they belong to the same
component of {x: f (x) > hk}.

Proof. Suppose thatxi andxj belong to the same component ofM+k for any k. Therefore, there must
be a path inM connectingxi and xj such that each vertex on the path has height> hk. But since
M is embedded in the volume over whichf is defined, this path also connectsxi and xj in the set
{x: f (x) > hk}, so xi andxj belong to the same component of{x: f (x) > hk}. Now suppose thatxi
andxj belong to the same component ofM+k . Thenxi andxj are connected in{x: f (x) > hk} by some
pathP . If we trace the pathP through the simplices of the meshM (as in Fig. 5), we can “push”P up
to edges of the simplex that are above the valuehk (see Fig. 5). This gives us a pathP ′ connectingxi and
xj in the meshM . It follows thatxi andxj belong to the same component ofM+k exactly when they (xi
andxj ) belong to the same component of{x: f (x) > hk}. ✷
Lemma 4.3. For each component in C+k , there exists a component in M+k containing exactly the same
vertices (and vice versa).

Proof. Proof is by finite induction, starting with the highest vertexxn, for which the property is trivially
true. For convenience, assume that the vertices are indexed in sorted order: i.e., thath1 < h2 < · · ·< hn.

Assuming that the hypothesis is true fork � i � n, consider the vertexxk−1: the only difference
between the components ofM+k andM+k−1 is that the arcs fromxk to adjacent, higher vertices have been
added to the latter. We break the proof into three cases, based on the type of vertex thatxk is: local
maximum, join, or neither:

If xk is a local maximum, then it has no arcs leading upwards, and there are no edges added toM+k to
obtainM+k−1. A local maximum only has one edge, to a lower vertex. Thus no edges are added toC+k to
obtainC+k−1, and the hypothesis follows.

If xk is a join, then letxkxj be any edge incident toxk in C+k−1. From Section 3.3,xk andxj both
either belong to some superarc, or are endpoints of it. Since the superarcs and supernodes correspond
to contour classes, we take the union of these contour classes, and obtain a connected set in the original
space of points with values betweenhk andhj . Therefore, there is a pathP from xk to xj in this set.
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But this set is contained in some componentγ of {x: f (x) > hk−1}. So, by Lemma 4.2,xk andxj must
also be connected inM+k−1. This is true for each edgexkxj in C (with hk < hj). Also, the components of
M+k and{x: f (x) > hk} have the same vertex sets by the induction hypothesis. Thus, it follows thatxk is
connected to the same components ofM+k in M as inC.

As a result, the component ofM+k−1 to whichxk belongs will correspond directly to the component of
{x: f (x) > hk−1} to whichxk belongs. Components to whichxk does not connect will be unaffected, so
we conclude that the components ofM+k−1 andC+k−1 contain the same vertices, as required.

If xk is neither a local maximum nor a join, then it must be adjacent to exactly one component ofM+k
and an argument similar to that of Case II applies to show that the components ofM+k−1 andC+k−1 contain
the same vertices.✷
Theorem 4.4. The contour tree C and the mesh M have the same join tree (i.e., JC = JM).

Proof. In Definition 4.1, I defined the join tree of a height graphG in terms of the components ofG+i .
By Lemma 4.3, these components are identical inC andM , and we saw in the proof of Lemma 4.3 that
xi will be connected to the same components ofC+i andM+i . It follows immediately from Definition 4.1
thatJC = JM . ✷

Having now defined the join tree, we now present an algorithm to compute it efficiently.

Algorithm 4.1 (Algorithm To Construct JM ). Given the meshM , we compute the join treeJM of the
mesh (see Fig. 6) as follows. Since Definition 4.1 requires that we know the components ofM+i to
determine edges incident toxi , we use Tarjan’s union-find algorithm [27] to determine connectivity.
This information is stored in array calledComponent. In addition, Definition 4.1 requires that we know
the smallest-valued vertex in each component, so we maintain a separate array,LowestVertex, for this
information.

We sort the vertices of the mesh by the corresponding height values, then process the vertices from
highest to lowest value. For each vertexxi , we add each edgexixj to a union-find structure iffhi < hj .
After each vertexxi has been processed, all edges between two vertices whose values are at leasthi must
be contained in the union-find structure. At each vertexxi , we generate one edge in the join tree for each

Algorithm to compute JC = JM :
Input: the mesh M, with vertices x1 . . . xn in sorted order (i.e., h1 < h2 . . .hn)

Output: the join tree JC, with vertices y1 . . . yn

1. for i := n downto 1 do:

(a) Component[i] := i
(b) LowestVertex[i] :=yi
(c) for each vertex xj adjacent to xi

i. if (j < i) or (Component[i] = Component[j]) skip xj
ii. UFMerge(Component [i], Component[j])
iii. AddEdgeToJoinTree(yi, LowestVertex[Component[j]])
iv. LowestVertex[Component[j]] :=yi

Fig. 6. Algorithm 4.1 to construct a join tree.
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component ofM+i to whichxi connects, and update both the union-find structure and the smallest vertex
of each component. After we have processed all vertices, the join tree has been computed.

To see that we construct the join tree with this procedure, suppose that we are processing vertexxi ,
and thatxixk is an edge fromxi to a vertexxk whose heighthk is higher thanhi . Because Tarjan’s union-
find algorithm computes connectivity incrementally,Component represents the connectivity of all edges
added so far. Since each edge inM+i has both ends higher thanxi , they must already have been added, and
Component therefore represents the connectivity ofM+i at this stage. Now, sincehi < hk, xk has already
been processed, and must belong to some componentΓ of M+i . Since this satisfies the second condition
of Definition 4.1, we useLowestVertex to identify the smallest-valued vertexxj of Γ , and add edgexixj
to the output if it has not already been added. After processingxi , we setLowestVertex[Component[i]]
to point toxi , as it is now the lowest-valued vertex in the component to which it belongs.

This algorithm requires a sort in O(n logn) time, followed by the union-find algorithm in
O(N +Mα(M)), whereN is the number of edges in the mesh, andM is the number of union-find
merges performed (at most equal to the number of local maxima in the mesh). Note thatM +m � t �
2(M +m)− 1, wheret is the number of supernodes in the contour tree, andM,m are the number of
local maxima and minima, respectively. Thus, we can express the bound for constructing the join and
split trees as O(n logn+N + tα(t)).

4.2. Merging to form the contour tree

In this section, we give the main contribution of this paper: a simple algorithm to merge join and
split trees. First we give an overview of the concept behind the merge algorithm, define some terms, and
provide a recursive proof that the merge algorithm works. We then give a non-recursive implementation
of the algorithm that takes O(n) time.

To reconstruct the contour treeC from the join treeJC and split treeSC , we identify a leafxi of C and
its incident edgexixj . We deletexi from C, JC andSC to produce a reduced graphC \ xi , along with the
corresponding join treeJC\xi andSC\xi . We repeat the process until all edges ofC have been identified.

Before embarking on the reconstruction, we define some terms that we rely on. We useup-arc and
down-arc to refer to arcs leading up and down from a given vertex in a given graph, andup-degree(δ+)
anddown-degree(δ−) to refer to the number of up- and down- arcs at a given vertex. Note that the up-
degree of a vertexyi in JC is identical to the up-degree of the corresponding vertexxi in C, and that
the down-degree of a vertexyi in JC is always 1, except at the global minimum vertex, where it is 0.
Similarly, a vertexzi in the split tree has identical down-degree to the corresponding vertexxi in C, and
the up-degree of a vertexzi in the split tree is 1 except at the global maximum. Since we can find the
up-degree ofxi (in C) by examiningyi (in JC) and the down-degree ofxi (in C) by examiningzi in SC ,
we note that we can tell the exact degree of any vertexxi in C, even if we do not know the edges inC.
In particular, we can use this information to identify which vertices are leaves ofC. For convenience, we
will refer to leaves ofC with up-degree of 0 asupper leaves and those with down-degree of 0 aslower
leaves.

When deleting a vertexxi from C, we preserve connectivity by contracting the incident arcs into a
single arc (see Fig. 7). This operation is calledreduction to distinguish it from the simple removal of a
vertex from a graph. Theorem 4.8 will then show that applying the reduction operation on the join and
split trees gives the join and split trees of the new, smaller graph.
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Fig. 7. Vertex reductions applied to vertices 2 and 7.

Definition 4.5. DefineC � xi , the reduction of a graphC by a vertexxi whose up-degree and down-
degree are both� 1, to be:

(1) If xi has arcsxixj up andxixk down inC, then:C � xi = C \ xi ∪ xjxk .
(2) Otherwise,C � xi = C \ xi .

Lemma 4.6. If xi is an upper leaf in C, and yiyj is the incident arc to yi in JC , then xixj is the incident
arc to xi in C.

Proof. Let xi belong to some componentγ in C+j . Suppose thatxi is not the only vertex inγ . Then,
sinceγ is a connected component, there is some other vertexxk in γ to which xi is connected. By
Definition 4.1,xi is the smallest-valued vertex inγ , soxixk must be an up-arc atxi . But, sincexi is an
upper leaf, it has no up-arcs. It follows thatxi is the only vertex inγ . Applying Definition 4.1,yiyj is an
arc ofJC , thenxj must be connected to some vertex inγ . But, sincexi is the only vertex inγ , it follows
thatxj is connected toxi . ✷

We now consider what happens when we remove an edgexixj from C. Recall that our convention
(from Definition 4.1) is thatxi refers to a vertex inC, andyi the same vertex inJC .

Lemma 4.7. If xi is a leaf of C, and yjyk is an arc of the corresponding join tree JC such that hj < hk,
and i �= j, k, then yjyk is also an arc of JC\xi .

Proof. By Definition 4.1,xj is adjacent to some vertexxl in the componentγ of C+j to whichxk belongs:
i.e., there exists some pathP from xl to xk in γ . Sincexi is a leaf, it could only be at an end of the path, but
xj , xk are the path-ends, andxi �= xj , xk . Thus,P exists inC \xi , and therefore inC \x+ij , the subgraph of
C \ xi consisting of edges whose vertices have higher values thanxi does. Sincexjxl is also inC \ xi, xj
is adjacent to the componentρ of C \ x+ij to whichxk belongs.

Note that each pathP connecting two vertices ofγ is also inρ, except for paths starting or ending
at xi : thus the vertices ofγ are the same as those ofρ, with the possible exception ofxi . It then follows
thatxk is the smallest-valued vertex ofρ, so by Definition 4.1,yj is adjacent toyk in JC\xi . ✷
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Fig. 8. Reducing a join tree at a lower leaf.

Theorem 4.8. If xi is a leaf of a contour tree C, then JC\xi = JC � yi .

Proof. From Lemma 4.7, each edge ofJC that is not incident toyi is also inJC\xi . We know that both
JC andJC\xi are trees, withn− 1 andn− 2 edges, respectively.

Suppose thatyi is a leaf inJC . Then there aren − 2 edges ofJC that are not incident toyi , and by
Lemma 4.7, each of them must be inJC\xi , soJC\xi = JC � yi .

Sinceyi is not a leaf inJC , δ+(yi)= 1; sinceyi is not the global minimum,δ−(yi)= 1. After excluding
these two edges, onlyn− 3 edges ofJC remain that are not incident toyi . Again, by Lemma 4.7, each
of them must be inJC\xi , so only one edge remains to be found.

Let the down-arc atyi beyiyj , and the up-arc beyiyk (see Fig. 8). From Definition 4.1,xi belongs to
some componentγ of C+j , andxj is adjacent to some vertexxl in γ . Note thatxlxj must be a down-arc,
and sincexi has no down-arcs,xl cannot bexi . Also, sincexi is the smallest-valued vertex inγ , hi < hl.

Consider the componentρ of C+i to which xk belongs. Since each vertex ofρ has value� hk , and
hk > hj , we know thatρ ⊆ γ andxk must be inγ . Sincexi is the smallest-valued vertex ofγ , the only
arc ofγ that is not inρ must be the arc incident toxi , soρ = γ \ xi . But this must be a component of
(C \ xi)+i , the subgraph ofC \ xi containing only vertices with heights> hi . Sincexl �= xi , it follows
thatxl must have been connected toxi in γ , as wasxk . Thenxl must be connected toxk by a path whose
vertices all have values> hi . Therefore,xl andxk belong to the same component ofρ, and sincexk is
the smallest-valued vertex ofδ \ xi, yj must be connected toyk in JC\xi .

Note thatyjyk cannot be an arc inJC , becauseyiyj yk would then be a cycle inJC . Thus, we have
added an arc to then−3 arcs that we had already shown to be inJC� yi , for a total ofn−2. SinceJC\xi
is a tree onn−1 vertices, there are no more arcs to be found inJC\xi . From Definition 4.5, it follows that
JC\xi = JC � yi . ✷

We can implement this algorithm to run in time that is linear in the size of the tree. In fact, by
eliminating the tail-recursion and using static data structures forC, JC , andSC , this step changes from
being the slowest of the three sweeps in Tarasov and Vyalyi [26] to being the fastest.

Algorithm 4.2 (Algorithm To Merge JC and SC). In the merge algorithm (Fig. 9), we assume that the
join treeJC and split treeSC are stored as adjacency lists using half-arcs: that is, each arcyiyj in JC is
stored as a directed arcα in yi ’s adjacency list, linked to a directed arcα′ in yj ’s adjacency list.
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Algorithm to compute the contour tree:
Input: the join tree JC and split tree SC corresponding to C,
stored as adjacency lists

Output: the contour tree C

1. For each vertex xi, if up-degree in JC+ down-degree in SC
is 1, enqueue xi

2. Initialize C to an empty graph on ‖JC‖ vertices
3. While leaf queue size > 1

(a) Dequeue the first vertex, xi, on the leaf queue.
(b) If xi is an upper leaf, find incident arc yiyj in JC.

Else find incident arc zizj in SC.
(c) Add xixj to C.
(d) JC← JC � yi, SC← SC � zi.
(e) If xj is now a leaf, enqueue xj.

Fig. 9. Algorithm 4.2 to merge the join and split trees.

Note that, since there aren− 1 edges in the contour tree, the main loop of the algorithm iteratesn− 1
times, leaving one vertex on the queue at the end. The first and last 4 steps of this algorithm on the
example in Fig. 4 are shown in Fig. 10.

As we observed in Section 3.3, this algorithm in fact computes the augmented contour tree, but we can
convert this to the contour tree proper in O(n) time by applying the reduction operation to each regular
vertex: these can readily be identified in the contour tree, since they are the only vertices to have one
arc leading upwards and one downwards. Alternately, it is not difficult to modify Algorithm 4.1 so that
instead of storing the lowest vertex, we store the vertex at which the last join or maximum occurred.
Edges are only added to the join tree when another join is encountered, or at the global minimum. After
a separate pass to determine the split tree, all supernodes will be present in at least one of the two trees.
All supernodes that are only present in the join tree are added to the split tree, along the appropriate
arc. Although this reduces the cost of merging to O(t) from O(n), the asymptotic running time of the
algorithm is not improved.

4.3. Boundary effects and multiple singularities

Although we previously reported [6] that special treatment was required for vertices on the boundary
of the data set, it turns out that the algorithm given above needs no special cases for boundary vertices.
In addition, no special cases are required for dealing with multiple saddle points, although we extend
Tarasov and Vyalyi’s result [26] to arbitrary dimensions in Section 5, below.

4.4. Computing the (non-augmented) contour tree

As noted in Section 3.3, the presentation of the algorithm is simpler if we work with the augmented
contour tree instead of the contour tree, then reduce all regular points in the augmented contour tree to
obtain the contour tree. In practice, a slightly more efficient implementation is possible. To compute the
contour tree with Algorithm 4.2, we need to compute the join and split trees for the contour tree, rather
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Fig. 10. First four and last four steps of merge algorithm.
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(a) (b) (c) (d)

Fig. 11. Computing the (non-augmented) contour tree. (a) Join tree. (b) Full join tree. (c) Split tree. (d) Full split tree.

than for the augmented contour tree. This can be done by omitting regular points during the construction
of the join and split trees in Algorithm 4.1. Instead of adding an edge to the join tree at every vertex, we
do so only at joins and at the global minimum: the upper end of the edge will be the vertex at which the
component in the union-find data structure was last changed (i.e., created or merged). This will give us a
join tree with local maxima, joins and the global minimum only. We augment this join tree with the splits
and local minima, as shown in Fig. 11, then apply Algorithm 4.2 to compute the contour tree.

5. Resolving multiple singularities

The algorithm described by Tarasov and Vyalyi [26] requiressimple singularities, so they describe a
method for breaking multi-saddle points into multiple simple singularities in time O(N lgN). Although
our algorithm handles multi-saddles, their method is of independent interest for computation of Morse
singularities in higher dimensions; if non-simple singularities are resolved, then a general function on a
complexK is a Morse function. We therefore briefly show that their method applies in all dimensions.
We assume familiarity with concepts of PL topology such as barycentric subdivisions, star, and link [22].

We first summarize the subdivision and perturbation given in [26] and extend it trivially to general
dimensions. We then considerably simplify the proof that this method resolves non-simple singularities,
and we extend it to all dimensions. Assume thatK is am-dimensional simplicial complex,m � 3, in
R

d andf is a general function onK (i.e., f (v) �= f (w) for any pair of verticesv,w ∈ K). The first
step is to construct the barycentric subdivision, sdK , and extendf linearly over sdK . This yields a
new functionf0 with the property that no two critical points are adjacent, but which may not be a general
function. A small perturbation described in [26] transformsf0 into a general functionf1 overK1= sdK .

Now the star of each non-simple singularity is further refined. Letv be a non-simple saddle point. For
eachk-dimensional simplex in the link ofv, Lk(v), a new so-calledk-vertex is added in the star ofv,
St(v), as follows. For each vertexw in Lk(v), a corresponding 0-vertex is added on the edgevw, at a
point which is 1

4 distance fromv to w. For eachk-simplexσ in Lk(v), k � 1, a k-vertex is added in
the (k + 1)-simplex formed byv andσ , at 1

3 distance fromv to the barycenter ofσ . See Fig. 12 for an
illustration in 2 dimensions.
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Fig. 12. The subdivision of a 2-simplexvwx at a non-simple singularityv.

Simplices of this subdivision are defined as follows. Letσ be am-simplex in St(v), i.e., a simplex
of highest dimension; it containsm 0-vertices. These together withv form a newm-simplex. The rest
of σ is then a prism with two(m− 1)-simplices as bases. Now each cell containing a 1-vertex is star
triangulated from the 1-vertex, then each 2-vertex defines a star triangulation to form tetrahedra, and so
on up to the(m− 1)-vertex, where the star triangulation results inm-simplices.

The neighborhoods of all non-simple singularities are refined in this manner, yielding a new
complexK2. Now f1 is extended overK2 to yield a new functionf2. By definition, f1 = f2 at all
vertices common toK1 andK2. We now describe the extension off1 to f2, again very similar to that
described in [26].

Let h be a linear function overRd that has different values at all vertices ofK2, and letH be the
maximum difference between any two values ofh onK2, i.e.,

H =max
v,w

{
h(v)− h(w)

}
.

Let δ be the minimum gap between successive values off1 onK1. For each vertexu added in the star of
a non-simple singularityv, let

f2(u)= f1(v)+ δ

2H

(
h(u)− h(v)

)
.

Functionf2 onK2 now has the property that all singularities are simple, i.e., that the level set atf2(v)

divides St(v) into at most three components. Indeed, it is easy to see that all former regular points and
simple singularities are still regular or simple (see [26]), so we restrict ourselves here to proving that a
former non-simple singularityv is regular, and that all points added inK2 are either regular or simple.
To see thatv is a regular point, notice that after the local refinement aroundv, St(v) consists only of the
simplices formed by 0-vertices andv. f2 is by construction linear over St(v) and sov must be a regular
point. Now we use an inductive proof to show that the addedk-vertices are either regular or simple. We
define therestricted star or restricted link to be the restriction of the star or link of an added pointu to
simplices formed only by vertices added inK2.

Lemma 5.1. All k-vertices, k � 0, added in the subdivision around non-simple singularities are either
regular points or simple singularities of f2.

Proof. Let u be a 0-vertex,u is adjacent to two original vertices fromK1: the non-simple singularityv,
and the vertexw which was used to constructu. Otherwise,u is only adjacent to other added vertices.
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Sincef2 is linear over the simplices formed byv and the added vertices, the level set atf2(u) divides the
restricted St(u) into at most two connected components, one with values greater thanf2(u) and the other
with values less thanf2(u). w either belongs to one of those connected components or it forms its own
connected component. Thus,u is either a regular point or a simple singularity.

Now let u be ak-vertex,k � 1. By construction,u is not adjacent to any vertices ofK1 other than
the vertices of thek-simplex that defineu. Again, the restricted St(u) and Lk(u) can be broken by
the level set atf2(u) into at most 2 components. We now make the inductive assumption that a(k − 1)-
simplexσ ∈ Lk(u) fromK1 divides Lk(u) further into at most three components and show that under this
assumption, ak-simplex fromK1 in Lk(u) cannot divide Lk(u) further into more than three connected
components. Letσ ∈ Lk(u) be a(k − 1)-simplex fromK1, and letw ∈ Lk(u) be the additional vertex
from K1 that forms ak-simplex in Lk(u). There are three cases to consider.

(1) Suppose first that some vertices ofσ have value inf2 greater thanf2(u) and others have value less
thanf2(u). Thenw necessarily belongs to one of the existing connected components.

(2) Supposeσ belongs to one of the connected components of the restricted Lk(u). Then Lk(u) without
w consists of at most two components, andw can increase this to at most three components.

(3) Finally, assume thatσ forms a separate connected component.w is adjacent to bothσ and vertices of
the restricted Lk(u), so regardless of the value atf2(w), vertexw belongs to an existing component.

These three cases complete the proof.✷
Note that in the proof we do not need to distinguish between boundary simplices and interior simplices.

6. Conclusions

Tarasov and Vyalyi [26] stated an algorithm for constructing contour trees in three dimensions, based
on the work of van Kreveld et al. [28]. We have taken this algorithm, simplified it, and extended it to
arbitrary dimensions. We have discarded the explicit construction of contours during the third sweep in
their algorithm. In addition, our algorithm needs no special cases or preprocessing to deal with boundary
vertices or with multiple singularities. Our algorithm applies to any arbitrary dimensional data with the
same asymptotic performance, since it is no longer dependent on explicit construction of level sets during
the sweep. For cases where it is desirable to substitute simple singularities for multiple singularities,
we have also extended Tarasov and Vyalyi’s pre-processing step to arbitrary dimensions. We have also
improved the asymptotic time bound from O(N logN) to O(n logn+ tα(t)).

7. Future work

We have implemented the algorithm stated for relatively small data sets(< 106 vertices). Unlike
Marching Cubes [19] and its derivatives, we require the input data to be on a simplicial mesh. We intend
to modify the algorithm and the contour tree approach to work directly with voxels, and also intend to
implement a parallel algorithm for working with large data sets.
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