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ABSTRACT

Jeffrey’s rule of conditioning is a rule for changing an additive probability
distribution when the human perception of new evidence is obtained. It is a
generalization of the normative Bayesian inference. Shafer showed how Jeffrey’s
generalization of Bayes’ rule of conditioning can be reinterpreted in terms of the
theory of belief functions. But Shafer’s approach is different from the normative
Bayesian approach and is not a straight generalization of Jeffrey’s rule. There are
Situations in which we need inference rules that may well provide a convenient
generalization of Jeffrey’s rule. Therefore we propose new rules of conditioning
motivated by the work of Dubois and Prade. Although the weak and strong
conditioning rules of Dubois and Prade are generalizations of Bayesian condition-
ing, they fail to yield Jeffrey’s rule as a special case. Jeffrey’s rule is a direct
consequence of a special case of our conditioning rules. Three kinds of normaliza-
tions in the rules of conditioning are discussed.

KEYWORDS: theory of evidence, Dempster’s rule of combination, weak
and strong conditioning, Jeffrey’s rule of conditioning, upper and
lower probabilities

1. INTRODUCTION

For the purpose of devising reasoning techniques under uncertainty, people in
artificial intelligence (Gordon and Shortliffe [1]) pay attention to the theory of
evidence (Shafer [2]). Ishizuka et al. [3] applied this theory to the management
of uncertainty in expert systems.

Address correspondence to H. Ichihashi, Department of Industrial Engineering, University
of Osaka Prefecture, 4-804 Mozu-Umemachi, Sakai, Osaka 591, Japan.

International Journal of Approximate Reasoning 1989; 3:143-156
© 1989 Elsevier Science Publishing Co., Inc.
655 Avenue of the Americas, New York, NY 10010 0888-613X/89/$3.50 143



144 Hidetomo Ichihashi and Hideo Tanaka

The unicity of Dempster’s rule (Dempster [4]) for combining uncertain items
of information issued from independent sources was proved by Dubois and
Prade [5]). They also proposed weak and strong conditioning rules that are the
generalization of conditioning [5]. Motivated by their work, this paper proposes
three conditioning rules with normalization. Our rules are different from theirs
in the way in which normalization is achieved.

Shafer [6] explained how Jeffrey’s rule of conditioning can be understood in
terms of belief functions (Shafer [2]). But Shafer’s argument is based on the
retrospective and constructive point of view. It is not a direct generalization of
Jeffrey’s rule. When the prior beliefs are additive and the new evidence bears
only on a partition £, , E,, - -, E, of the frame (, then the new degrees of belief
P(E;) obtained by Dempster’s rule are different from those obtained by Jeffrey’s
rule. Neither the weak conditioning nor the strong conditioning rule of Dubois
and Prade yields Jeffrey’s rule as a special case. In our newly proposed rules of
conditioning, Jeffrey’s rule is a direct consequence of a special case. Our main
concern is the normalization in the rule of conditioning.

2. BAYES’ THEOREMS AND A GENERALIZATION BY JEFFREY

Let© = {6,, 0,, - - -, 6, } be a set of disjoint states of nature such as disease,
and let X = {x;, X2, ***, X;} be a set of disjoint items of information such as
information about symptoms. If the disease is 6;, then the symptom is x; with a
probability p(x;|6;). When a prior Bayesian belief function p(6,):6 — [0, 1],
which is to say, a prior probability function, is given, then a posterior Bayesian
belief function assigns any particular © the degree of belief

p(x;16)p(6:)

2.1
Em p(xj l om)p(am)

pOi|x)=

Formula (2.1) is often called the Bayes theorem. Bayesian rules of inference for
diagnosis are written for all i € {1, ---, k} and j € {1, ---, I} as follows.
o If the symptom is x;, then the diagnosis is §; with posterior probability
PO x).
Further, if the symptom is given as a Bayesian belief function p’(x):X — [0,
1], then the posterior belief function is

pBilpY=3 pGix)p’ (x) @2.2)

for all i. Hence we have X; p(8;|p’) = 1. The inference rules are written for all
i, as follows.

e If the symptom is p’, then the diagnosis is §; with a posterior probability
p@ip’).
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Equation (2.2) is Jeffrey’s rule of conditioning in its most general form. It

should be noted that
Plgp)=Y, p(Bilx)p’ (x)=p' (%)) 2.3

More generally we have
P(E;|p')=p'(E) 2.9

for the partition E; of { where p’ represents new evidence that bears directly
only on the partition E, E,, -+ -, E,. The new probability of a set E; is equal to
the probability of E; representing new evidence.

3. THE DEMPSTER-SHAFER THEORY OF EVIDENCE

Shafer’s belief function (Shafer [2]) was originally called a lower probability
by Dempster. A lower probability (Dempster {4]) is a mapping P from 2% to [0,
1]. A lower probability is uniquely defined through the specification of basic
probability assignment satisfying

p(@2)=0, Y p(B)=1 (3.1
BCO
and we have
Py(A)= E p(B), vA € 28 (3.2)
BCA

A set A such that p(A) > 0 is called a focal element. The upper probability
P*(A) = 1 — Py (A) is also defined as

P*(A)= 3, p(B) (3.3)

BNA#¢

Suppose p; is the basic probability assignment for a lower probability P4
over a frame {2, and denote the focal elements of P, by A, - - -, A;. Also, the
basic probability assignment of a second lower probability P, is p;, and its
focal elements are By, - -, B,.

In order to carry out the combination of P,y and P, , a probability mass of
measure p,(A;) p,(B;) is committed to the intersection of two sets A; and B;.
The total probability mass exactly committed to a given subset A of @ will have
measure

EU p1(A:)p2(By)

A,'nBj=A
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The difficulty with this scheme is that it may happen that
Eﬁ Pi(A:)p:(B))>0 (3.9
AiNBj=¢
A new basic probability assignment p, for the lower probability of P4 and
P, is defined by Dempster as
Elj D1(A)p2(B))
A,-ﬁBj=A
1- 3 pA)pB)
A,-nsji ®
Let Py, be a prior belief function, and let P,, represent new evidence. Let
be the Cartesian product © X X. When p, is a regular probability assignment on

© X X and p, focuses on a single focal element {x;} X O, then (3.5) is Bayes’
rule of (2.1). Thus,

Py(Xx {0;})=P*(Xx {6:})=p(6;]x)) (3.6)

When p; is also a regular probability assignment on X that is a coarsening of
© X X (p, focuses on a partition of X'), by (3.5) we have

P2({x;} x©)p1({x;} x {6:})
- Ei,j,m P2({xm} X O)p1({x;} x {6:})

{xm} xON{x;}x {6} =6

Po(A)= 3.9

po({x;} x {6:;})= "

3.7

Replacing p,({x;} x ©) and p;({x;} x {6;}) by p’(x;) and p(x;|6:) p(6,),
respectively,

P’ (x)p(x;16:)p6)
h 2,. m P’ (xm)p(x;10)D(6))

{¥m}x0N{x;} x{6;} =0

Po({x;} x {6;})= )

3.8)
Hence
Py(Xx{0;})=P*(Xx {6;})= Ej po{x;} x{6:})
E, PO |6)p0)p’ (%))
= X 3.9
where
K=1- Y p'(xm)p(x16)p6)

ij,m
{xm}x0N{x;} x{6;} =9
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Consequently we have
Py (X% {6;})=P*(Xx{0:})#p(6:|p’) (3.10)

where p(6;]p’) is obtained by applying Jeffrey’s rule. Thus (2.2) and (2.4) are
not recovered by (3.5), or Px(E;) # Py (E;).

4. NEW RULES OF CONDITIONING

In order that Jeffrey’s rule will be recovered directly when the prior belief is
Bayesian and the new evidence bears directly only on the partition E;, E,, - - -,
E,, we propose a new rule that gives a basic probability assignment such that the
total probability mass will again have measure 1.

DermNiTION 1 Let Py and P« be two lower probabilities over the same
frame Q, with basic probability assignments p, and p, and focal elements
Ay, -+, Ayand B,, - -+, By, respectively. Then the function p;: 2% = [0,
1] is defined for all A C Q as

p3(2)=0 @.1)
D1(A;)p2(B;)
)= 3 @.2)
ANB=A 1- Em pi(Am)
ApNBj=¢
where it is assumed that for all j € {1, ---, k}
E... pi(4,)<1 4.3)
AmnBj=¢

It is obvious that the function p; of (4.2) takes nonnegative values. We will
show that the p;(A) sum to 1.

Y p(A)=p:(2)+ Y, pa(A4)
AcCg ACQ
A+¢

- 2 2 p1(A,)p2(B;)
:cn AinijA - Em pi(An)
## AmnBj=¢

2’. Dp1(A)p2(By)
- E E A4;NBj=4

aca 11— Em Pi(An)

A*d

AnNBj=¢
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Y pi4)

_ A;NBj*¢ B,
275 i ®

ANB=¢

= E, p(B)=1 4.4)

Hence the function p; of Definition 1 is a basic probability assignment.

The lower probability given by p; is denoted Pyx ® P,4. This rule of
conditioning is no longer commutative, i.e., Pix ® P,y # Pyx © Pix. This
property is not shared by Dempster’s rule. The weak conditioning rule in Dubois
and Prade [5] is symmetric in the mass function being combined and so is not
equivalent to our asymmetric rule in Definition 1.

THeOREM 1 Suppose P, is given as

Pan- L BSA

for a particular subset B C Q, and P« is another lower probability over
Q. Then P« is combinable with Py, if and only if Pi«(B) < 1. If P is
combinable with P;x, then

Pix(A U B)-Pi«(B)

Py (A)= — 4.6
1 (A) ) (4.6)
and
P¥(A N B) @
P¥(A)y=————— .
’ P¥(B)
Sforall A C Q.
Proof Since B is the only focal element of Pyx and p,(B) = 1, (4.2) yields
2‘, pi(A4y)
A;NB=A
A= 4.8
pi(A4) 1-P(B) 4.8)
Pys(A)= ED p3(D)
DcA

ED >, PiA)

¢=DCA D=A;NB

1-Pix(B)
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T Pi4)

A;CAUB
A;,CB

1-pi+(B)

_Pix(4 U B)-P4(B)
1~ Py+(B)

4.9
Hence
P’;"(A)=1—P3*(fi)
P¥(B)~P1+(A U B)+P,«(B)
B P¥(B)
P¥A N B
=7

We can call (4.7) the rule of conditioning by the upper probability P¥. This
property is shared by Dempster’s rule.

B (4.10)

THEOREM 2 When P4 is given as

1 ifBcA
Pia(A)= {0 £ B g A @.11)

JSor a particular subset B C Q, and P, is another lower probability over
Q), then Py is combinable with P, if and only if for all focal elements B;
of Px, B; N B # ¢, and (4.3) is reduced to

Em Pi{An)=0 4.12)
ApNBj=¢
where A,, = B.
If P,y is combinable with P,«, then
P3x(A)=P.(A U B) 4.13)
and
P*(A)=Px(4 N B) 4.14)
forall A C Q.

Proof Since (4.12) is assumed for all j,
ps(A)="3  pi(B)py(B))

BHQ=A

3. PO (4.15)

BNC=A



150 Hidetomo Ichihashi and Hideo Tanaka

Pud)=F pD)= 3 T 2O

DcA #2DCA BNC=D

= Ec p(C)= EC p:(C)

¢xBNCCA CccAUB
cts
= 3, 0= F_PAC)=Psu(A U B) (4.16)
CCAUB cch
Hence
P¥(A)=1-P3(A)=1-P(A U B)
=1-P«(A N B)= P¥(A N B) B 4.17)
If P,y and P, are given as in Theorem 1, and
> pi(An)=0 .18)
ApNB=¢

is assumed, then, by Theorem 1,

P34 (A)=P;x(A U B) 4.19)
and

P¥(A)=P¥(A N B) 4.20)

Therefore in this case Pyx ® Py = P,y ® Pi4 holds. In other words, the rule
of combination is commutative.

Suppose @ is the Cartesian product © X X, and p, and p, are the regular
probability assignments on 6 X X and X, respectively. Then we have

P2({x} x0) - pi({x;} x{6:})

P( j 0,’ =
J({3 X {8, SRS

=Pz({xj} x0) - pi({x;} x{6:})
Empl({xj}x{am})

(4.21)
Replacing p:({x;} x ©) and pi({x;} x {6;}) by p’(x;) and p(x;|6:)p(6.),
respectively, as in (3.7), we have

P’ (x)p(x;16)p(8) _
Em p(xj l am)p (om)

Py({x;} x{6:}) = p@ilx)p’ (%) 4.22)
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Hence
PH(Xx{0;})=Pyu(Xx{8:D)=7 p@Oi|xa)p’ (xa)

=p@i|p") (4.23)

and (2.2) and (2.4) are recovered by (4.2). Generally, P:«(E;) = Py (E;)
holds. Neither Dempster’s rule nor the weak conditioning rule yields Jeffrey’s
rule as a special case.

The conditioning rule of formula (4.2) gives higher priority to the second
evidence than to the first evidence.

THeOREM 3 When p; and p, are the regular probability assignments for
the lower probabilities P, 4 and P, over a frame S and P,« is combinable

Pix ® Pyy=Py 4.24)

Proof let A, +-+, Ay denote the elements (points) of Q. Since P,y is
combinable with P, in (4.24), p,(A;) > 0 implies p,(A;) > 0, and we have
P1(A)Dp2(A)
A =——2 =pa(A) (4.25)
1- Em pl(Am)
ApNA;=¢

for all focal elements A; of P,. |

This is the extreme case where the partition E;, E,, -+, E, is as fine as Q
itself (i.e., each E; is a single point). This property is shared by the additive
probability distribution in applying Jeffrey’s rule of conditioning (see Shafer [6],
p. 4).

DerFINITION 2 Assuming that P« and P, 4 are two lower probabilities as in
Definition 1, the function p,:2% = [0, 1] is defined as

pa(2)=0 (4.26)
pl(Ai)pZ(Bj)

JACIEND Y foral A C Q (4.27)
aency 1= 2, PilAm)
AM‘VU
where
E,.. pi(4n)<l1 forallj € {1, ---, k} (4.28)

Amd B;

It is easy to prove that the function p, is a basic probability assignment. Let us
now consider the rule of conditioning by p, in Definition 2.
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Tueorem 4  Let Py and P,4 be as in Theorem 1. Then P,4 is combinable
with Py« if and only if P¥(B) < 1. If P, is combinable with P, ., then

Pix(4 N B)

Pad)=—2"5

and
P¥A U B)—P;“(B)

P75

SJorall A C Q.
Proof
Pi(A)
B 1- E pl(Am)
Apd&B
pi(C)
c 1-P*(B)

A=CCB

Pi(A)= Ei

A=A;C

20 p(C)
=A=CCB

Py(B)

ED Ec pi(C)

_ _¢#DCA D=CCHB
Pi(A)= ED ps(D)= P+(B)

DCA
Pix(4 N B)
T Pa®
Hence
PHA)=1-Pyy(A)
1-P*(4 U B)
“TTEG
P¥(A U B)-P*(B)
T 1-PrB)

(4.29)

(4.30)

4.31)

(4.32)

B 4.33)

Equation (4.29) is the rule of conditioning by the lower probability P,.

Equation (4.29) is called the geometrical rule of conditioning.

When Pyx and P,y are as in Theorem 2, then P, is combinable with Py if
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and only if for all focal elements B; C Q of Py, B; C B. Hence P, focuses
only on B. Thus Psx(A) = Pyx(A) and P}(A) = P}(A).
When p, and p, are the regular probability assignments for P, and P,4, and
P,, is combinable with P4, then we can readily see that P,y ® Py = Pjy.
As in (4.21) and (4.22), (2.2) is recovered by (4.27).

DeriNtTION 3 Assuming that P, and P,« are two lower probabilities as in
Definition 1, the function p; is defined for all A C Q as

ps(2)=0 4.34)
D1(A)Dp.(B))

)= 3 (4.35)
1= 3 pi(An)
A"nBj¢¢ Amn8j=¢
where it is assumed that for all j
%, Pdm<1 (4.36)

ApNBj=¢
Ds is a basic probability assignment.
THEOREM 5 Let P;4 and P« be as in Theorem 1. Let P}(A, B) denote

Ec pi(C)

ANC#¢
BNC#¢

If P, is combinable with P;, then

e P*(A, B)
RN
P*(A)+ P*(B)~P*(A U B)
= 5+ B) (4.37)
and !
Ps*(A)=P1*(A1)_§‘*((;) N 3 (4.38)
L %
Jor all A.
Proof
Ei pi1(A4)
A=A;
ps(A)= 3 pd) e 4.39)

‘1= Y pdm)  PIB)

A=A;
AinB$¢ AmnB=¢
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P}A)= 3 ps(D)

DNA+¢

Y, 2 na) Y p4)

DNA#¢ D=4 ANA;#4
ANB#$ BNA;#¢

P¥(B) ~ PXB)

P4, B)
)
PIA, B=1-F p(A)- 3 pA)+ T, pi(4)

AiCA A;CB AiCl{nB

=1-Pix(A)-Pix(B)+P;x(A N B)
=P}(A)+P}(B)-P¥A UB) (4.41)

(4.40)

P;"(fi, B)
P(B)
P*A U B)-P*(A)

T 1-Pa(®

Psx(A)=1-P¥A)=1-

_Pix(A)-Pix(4 N B)
1-Pix(B)

It should be noted that PF(A4, B) # P¥(A N B).

We have proposed three conditioning rules. When the focal subsets of P4 are
singletons and P, focuses only on the partition E|, E,, - -, E,, Jeffrey’s rule
of conditioning discussed in Section 2 is recovered in each case. The
denominators of the conditioning rules represent measures of the extent of the
conflict. Since P+ and P,x do not commit probability to disjoint (or
contradictory) subsets 4; and B;, the denominator of (4.2) in Definition 1
measures the extent of conflict in the sense that A; N B; = ¢, and that of (4.27)
in Definition 2 measures the extent of the conflict in the sense that 4; ¢ B;. That
of (4.35) is the same as Definition 1, but P, and P,x commit a probability to
A;, if it is not contradictory to B;. Hence we call the three conditioning rules
plausible, credible, and possible conditioning, respectively. We can choose one
of the three rules depending on the situation.

The drawback to the proposed rules of conditioning in Definitions 1-3 is that
the condition of combinability is very restrictive. To relax the condition of
combinability, we propose the following renormalizations.

B 4.42)

DEerINITION 4 Assuming that P« and P« are the same as in Definition 1,
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the functions p;, p,, and p s are defined for all A as
p(D)=0 4.43)

3, [pn(A:)pz(B,-)/<l— > p,(A,,,))]

ANBj~A ApNBi=¢ 4.49)
1- 2,- p2(B))

(U A NB=3

py(A)=

P{(2)=0 (4.45)
=, [Pl(Ai)Pz(Bj)/ (1— >, p,(A,,,))]
A=A;CB; A& B;
pj(4)="4Y (4.46)
) -3 mB)
U4, cBAm =
p(2)=0 4.47)
3 [px(Ai)pz(B,-)/<l— 3 pl(Am)>]
A=A‘,'I ApNBi=¢
ANB*e
p{(A)= (4.48)
5 1- Ei P2(B))
((U,,,A,,,)nBj)=¢

where it is assumed that the denominator of each function is not equal to zero.

5. CONCLUDING REMARKS

We have proposed three rules of conditioning that are direct generalizations of
Jeffrey’s rule of conditioning. There might be situations in which we want to
treat evidence asymmetrically, and in such cases our rules can provide a
convenient generalization of Jeffrey’s rule.

Our conditioning rules will be applied to decision problems treating the value
of information sources in the framework of the theory of evidence.
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