Jeffrey-Like Rules of Conditioning for the Dempster-Shafer Theory of Evidence

Hidetomo Ichihashi and Hideo Tanaka
University of Osaka Prefecture Osaka, Japan

Abstract

Jeffrey's rule of conditioning is a rule for changing an additive probability distribution when the human perception of new evidence is obtained. It is a generalization of the normative Bayesian inference. Shafer showed how Jeffrey's generalization of Bayes' rule of conditioning can be reinterpreted in terms of the theory of belief functions. But Shafer's approach is different from the normative Bayesian approach and is not a straight generalization of Jeffrey's rule. There are situations in which we need inference rules that may well provide a convenient generalization of Jeffrey's rule. Therefore we propose new rules of conditioning motivated by the work of Dubois and Prade. Although the weak and strong conditioning rules of Dubois and Prade are generalizations of Bayesian conditioning, they fail to yield Jeffrey's rule as a special case. Jeffrey's rule is a direct consequence of a special case of our conditioning rules. Three kinds of normalizations in the rules of conditioning are discussed.

KEYWORDS: theory of evidence, Dempster's rule of combination, weak and strong conditioning, Jeffrey's rule of conditioning, upper and lower probabilities

1. INTRODUCTION

For the purpose of devising reasoning techniques under uncertainty, people in artificial intelligence (Gordon and Shortliffe [1]) pay attention to the theory of evidence (Shafer [2]). Ishizuka et al. [3] applied this theory to the management of uncertainty in expert systems.

[^0][^1]The unicity of Dempster's rule (Dempster [4]) for combining uncertain items of information issued from independent sources was proved by Dubois and Prade [5]. They also proposed weak and strong conditioning rules that are the generalization of conditioning [5]. Motivated by their work, this paper proposes three conditioning rules with normalization. Our rules are different from theirs in the way in which normalization is achieved.

Shafer [6] explained how Jeffrey's rule of conditioning can be understood in terms of belief functions (Shafer [2]). But Shafer's argument is based on the retrospective and constructive point of view. It is not a direct generalization of Jeffrey's rule. When the prior beliefs are additive and the new evidence bears only on a partition $E_{1}, E_{2}, \cdots, E_{n}$ of the frame Ω, then the new degrees of belief $P\left(E_{i}\right)$ obtained by Dempster's rule are different from those obtained by Jeffrey's rule. Neither the weak conditioning nor the strong conditioning rule of Dubois and Prade yields Jeffrey's rule as a special case. In our newly proposed rules of conditioning, Jeffrey's rule is a direct consequence of a special case. Our main concern is the normalization in the rule of conditioning.

2. BAYES' THEOREMS AND A GENERALIZATION BY JEFFREY

Let $\theta=\left\{\theta_{1}, \theta_{2}, \cdots, \theta_{k}\right\}$ be a set of disjoint states of nature such as disease, and let $X=\left\{x_{1}, x_{2}, \cdots, x_{i}\right\}$ be a set of disjoint items of information such as information about symptoms. If the disease is θ_{i}, then the symptom is x_{j} with a probability $p\left(x_{j} \mid \theta_{i}\right)$. When a prior Bayesian belief function $p\left(\theta_{i}\right): \Theta \rightarrow[0,1]$, which is to say, a prior probability function, is given, then a posterior Bayesian belief function assigns any particular θ the degree of belief

$$
\begin{equation*}
p\left(\theta_{i} \mid x_{j}\right)=\frac{p\left(x_{j} \mid \theta_{i}\right) p\left(\theta_{i}\right)}{\sum_{m} p\left(x_{j} \mid \theta_{m}\right) p\left(\theta_{m}\right)} \tag{2.1}
\end{equation*}
$$

Formula (2.1) is often called the Bayes theorem. Bayesian rules of inference for diagnosis are written for all $i \in\{1, \cdots, k\}$ and $j \in\{1, \cdots, l\}$ as follows.

- If the symptom is x_{j}, then the diagnosis is θ_{i} with posterior probability $p\left(\theta_{i} \mid x_{j}\right)$.
Further, if the symptom is given as a Bayesian belief function $p^{\prime}(x): X \rightarrow[0$, 1], then the posterior belief function is

$$
\begin{equation*}
p\left(\theta_{i} \mid p^{\prime}\right)=\sum_{j} p\left(\theta_{i} \mid x_{j}\right) p^{\prime}\left(x_{j}\right) \tag{2.2}
\end{equation*}
$$

for all i. Hence we have $\Sigma_{i} p\left(\theta_{i} \mid p^{\prime}\right)=1$. The inference rules are written for all i, as follows.

- If the symptom is p^{\prime}, then the diagnosis is θ_{i} with a posterior probability $p\left(\theta_{i} \mid p^{\prime}\right)$.

Equation (2.2) is Jeffrey's rule of conditioning in its most general form. It should be noted that

$$
\begin{equation*}
p\left(x_{j} \mid p^{\prime}\right)=\sum_{i} p\left(\theta_{i} \mid x_{j}\right) p^{\prime}\left(x_{i}\right)=p^{\prime}\left(x_{j}\right) \tag{2.3}
\end{equation*}
$$

More generally we have

$$
\begin{equation*}
p\left(E_{j} \mid p^{\prime}\right)=p^{\prime}\left(E_{j}\right) \tag{2.4}
\end{equation*}
$$

for the partition E_{j} of Ω where p^{\prime} represents new evidence that bears directly only on the partition $E_{1}, E_{2}, \cdots, E_{n}$. The new probability of a set E_{j} is equal to the probability of E_{j} representing new evidence.

3. THE DEMPSTER-SHAFER THEORY OF EVIDENCE

Shafer's belief function (Shafer [2]) was originally called a lower probability by Dempster. A lower probability (Dempster [4]) is a mapping P_{*} from 2^{n} to [0 , 1]. A lower probability is uniquely defined through the specification of basic probability assignment satisfying

$$
\begin{equation*}
p(\varnothing)=0, \quad \sum_{B \subset \Omega} p(B)=1 \tag{3.1}
\end{equation*}
$$

and we have

$$
\begin{equation*}
P_{*}(A)=\sum_{B \subset A} p(B), \quad \forall A \in 2^{\Omega} \tag{3.2}
\end{equation*}
$$

A set A such that $p(A)>0$ is called a focal element. The upper probability $P^{*}(A)=1-P_{*}(\bar{A})$ is also defined as

$$
\begin{equation*}
P^{*}(A)=\sum_{B \cap A \neq \phi} p(B) \tag{3.3}
\end{equation*}
$$

Suppose p_{1} is the basic probability assignment for a lower probability $P_{1 *}$ over a frame Ω, and denote the focal elements of $P_{1 *}$ by A_{1}, \cdots, A_{k}. Also, the basic probability assignment of a second lower probability $P_{2 *}$ is p_{2}, and its focal elements are B_{1}, \cdots, B_{l}.

In order to carry out the combination of $P_{1 *}$ and $P_{2 *}$, a probability mass of measure $p_{1}\left(A_{i}\right) p_{2}\left(B_{j}\right)$ is committed to the intersection of two sets A_{i} and B_{j}. The total probability mass exactly committed to a given subset A of Ω will have measure

$$
\sum_{A_{i} \cap B_{j}=A} p_{1}\left(A_{i}\right) p_{2}\left(B_{j}\right)
$$

The difficulty with this scheme is that it may happen that

$$
\begin{equation*}
\sum_{A_{i} \cap B_{j}=\phi} p_{1}\left(A_{i}\right) p_{2}\left(B_{j}\right)>0 \tag{3.4}
\end{equation*}
$$

A new basic probability assignment p_{0} for the lower probability of $P_{1 *}$ and $P_{2 *}$ is defined by Dempster as

$$
p_{0}(A)=\frac{\sum_{\substack{i j \\ A_{i} \cap B_{j}=A}} p_{1}\left(A_{i}\right) p_{2}\left(B_{j}\right)}{1-\sum_{A_{i} \cap B_{j}=\phi}^{i j} p_{1}\left(A_{i}\right) p_{2}\left(B_{j}\right)}
$$

Let $P_{1 *}$ be a prior belief function, and let $P_{2 *}$ represent new evidence. Let Ω be the Cartesian product $\theta \times X$. When p_{1} is a regular probability assignment on $\theta \times X$ and p_{2} focuses on a single focal element $\left\{x_{j}\right\} \times \theta$, then (3.5) is Bayes' rule of (2.1). Thus,

$$
\begin{equation*}
P_{*}\left(X \times\left\{\theta_{i}\right\}\right)=P^{*}\left(\mathrm{X} \times\left\{\theta_{i}\right\}\right)=p\left(\theta_{i} \mid x_{j}\right) \tag{3.6}
\end{equation*}
$$

When p_{2} is also a regular probability assignment on X that is a coarsening of $\theta \times X\left(p_{2}\right.$ focuses on a partition of $\left.X\right)$, by (3.5) we have

$$
\begin{equation*}
p_{0}\left(\left\{x_{j}\right\} \times\left\{\theta_{i}\right\}\right)=\frac{p_{2}\left(\left\{x_{j}\right\} \times \theta\right) p_{1}\left(\left\{x_{j}\right\} \times\left\{\theta_{i}\right\}\right)}{1-\sum_{\substack{i, j, m \\\left\{x_{m}\right\} \times \theta \cap\left\{x_{j}\right\} \times\left\{\theta_{i}\right\}=\phi}} p_{2}\left(\left\{x_{m}\right\} \times \theta\right) p_{1}\left(\left\{x_{j}\right\} \times\left\{\theta_{i}\right\}\right)} \tag{3.7}
\end{equation*}
$$

Replacing $p_{2}\left(\left\{x_{j}\right\} \times \Theta\right)$ and $p_{1}\left(\left\{x_{i}\right\} \times\left\{\theta_{j}\right\}\right)$ by $p^{\prime}\left(x_{j}\right)$ and $p\left(x_{j} \mid \theta_{i}\right) p\left(\theta_{i}\right)$, respectively,

$$
\begin{equation*}
p_{0}\left(\left\{x_{j}\right\} \times\left\{\theta_{i}\right\}\right)=\frac{p^{\prime}\left(x_{j}\right) p\left(x_{j} \mid \theta_{j}\right) p\left(\theta_{i}\right)}{1-\sum_{\substack{ \\\left\{x_{m}\right\} \times \theta_{\cap}\left\{x_{j}\right\} \times\left\{\theta_{i}\right\}=\phi}}^{\sum_{i, j}\left(x_{m}\right) p\left(x_{j} \mid \theta_{i}\right) p\left(\theta_{i}\right)}} \tag{3.8}
\end{equation*}
$$

Hence

$$
\begin{align*}
P_{*}\left(X \times\left\{\theta_{i}\right\}\right) & =P^{*}\left(X \times\left\{\theta_{i}\right\}\right)=\sum_{j} p_{0}\left(\left\{x_{j}\right\} \times\left\{\theta_{i}\right\}\right) \\
& =\frac{\sum_{j} p\left(x_{j} \mid \theta_{i}\right) p\left(\theta_{i}\right) p^{\prime}\left(x_{j}\right)}{K} \tag{3.9}
\end{align*}
$$

where

$$
K=1-\sum_{\left\{x_{m}\right\} \times \theta \cap\left\{x_{j}\right\} \times\left(\theta_{i}\right\}=\phi} p^{\prime}\left(x_{m}\right) p\left(x_{j} \mid \theta_{i}\right) p\left(\theta_{i}\right)
$$

Consequently we have

$$
\begin{equation*}
P_{*}\left(X \times\left\{\theta_{i}\right\}\right)=P^{*}\left(X \times\left\{\theta_{i}\right\}\right) \neq p\left(\theta_{i} \mid p^{\prime}\right) \tag{3.10}
\end{equation*}
$$

where $p\left(\theta_{i} \mid p^{\prime}\right)$ is obtained by applying Jeffrey's rule. Thus (2.2) and (2.4) are not recovered by (3.5), or $P_{*}\left(E_{i}\right) \neq P_{2 *}\left(E_{i}\right)$.

4. NEW RULES OF CONDITIONING

In order that Jeffrey's rule will be recovered directly when the prior belief is Bayesian and the new evidence bears directly only on the partition E_{1}, E_{2}, \cdots, E_{n}, we propose a new rule that gives a basic probability assignment such that the total probability mass will again have measure 1.

Defintion 1 Let $P_{1 *}$ and $P_{2 *}$ be two lower probabilities over the same frame Ω, with basic probability assignments p_{1} and p_{2} and focal elements A_{1}, \cdots, A_{k} and B_{1}, \cdots, B_{l}, respectively. Then the function $p_{3}: 2^{\Omega} \rightarrow[0$, 1] is defined for all $A \subset \Omega$ as

$$
\begin{gather*}
p_{3}(\varnothing)=0 \tag{4.1}\\
p_{3}(A)=\sum_{A_{i} \cap B_{j}=A} \frac{p_{1}\left(A_{i}\right) p_{2}\left(B_{j}\right)}{1-\sum_{A_{m} \cap B_{j}=\phi} p_{1}\left(A_{m}\right)} \tag{4.2}
\end{gather*}
$$

where it is assumed that for all $j \in\{1, \cdots, k\}$

$$
\begin{equation*}
\sum_{\substack{4_{m} \cap B_{j}=\phi}} p_{1}\left(A_{m}\right)<1 \tag{4.3}
\end{equation*}
$$

It is obvious that the function p_{3} of (4.2) takes nonnegative values. We will show that the $p_{3}(A)$ sum to 1 .

$$
\begin{aligned}
\sum_{A \subset \Omega} p_{3}(A) & =p_{3}(\varnothing)+\sum_{\substack{A \subset \Omega \\
A \neq \phi}} p_{3}(A) \\
& =\sum_{\substack{A \subset \Omega \\
A \neq \phi}} \sum_{\substack{A_{i} \cap B_{j}=A}} \frac{p_{1}\left(A_{i}\right) p_{2}\left(B_{j}\right)}{1-\sum_{A_{m} \cap B_{j}=\phi} p_{1}\left(A_{m}\right)} \\
& =\sum_{\substack{A \subset \Omega \\
A \neq \phi}} \sum_{j} \frac{\sum_{i} p_{1}\left(A_{i}\right) p_{2}\left(B_{j}\right)}{1-\sum_{A_{j}=A} \sum_{m} p_{1}\left(A_{m}\right)}
\end{aligned}
$$

$$
\begin{align*}
& \quad \sum_{j} \frac{p_{1}\left(A_{i}\right)}{1-\sum_{A_{i} \cap B_{j} \neq \phi} p_{1}\left(A_{i}\right)} p_{2}\left(B_{j}\right) \\
& =\sum_{j} p_{2}\left(B_{j}\right)=1
\end{align*}
$$

Hence the function p_{3} of Definition 1 is a basic probability assignment.
The lower probability given by p_{3} is denoted $P_{1 *} \oplus P_{2 *}$. This rule of conditioning is no longer commutative, i.e., $P_{1 *} \oplus P_{2 *} \neq P_{2 *} \oplus P_{1 *}$. This property is not shared by Dempster's rule. The weak conditioning rule in Dubois and Prade [5] is symmetric in the mass function being combined and so is not equivalent to our asymmetric rule in Definition 1.

Theorem 1 Suppose $P_{2 *}$ is given as

$$
P_{2 *}(A)= \begin{cases}1 & \text { if } B \subset A \tag{4.5}\\ 0 & \text { if } B \not \subset A\end{cases}
$$

for a particular subset $B \subset \Omega$, and $P_{1 *}$ is another lower probability over Ω. Then $P_{2 *}$ is combinable with $P_{1 *}$ if and only if $P_{1 *}(B)<1$. If $P_{2 *}$ is combinable with $P_{1 *}$, then

$$
\begin{equation*}
P_{3 *}(A)=\frac{P_{1 *}(A \cup \bar{B})-P_{1 *}(\bar{B})}{1-P_{1 *}(\bar{B})} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{3}^{*}(A)=\frac{P_{1}^{*}(A \cap B)}{P_{1}^{*}(B)} \tag{4.7}
\end{equation*}
$$

for all $A \subset \Omega$.
Proof Since B is the only focal element of $P_{2 *}$ and $p_{2}(B)=1$, (4.2) yields

$$
\begin{array}{r}
p_{3}(A)=\frac{\sum_{i} p_{1}\left(A_{1}\right)}{1-P_{1 *}(\tilde{B})} \\
P_{3 *}(A)=\sum_{D \subset A} p_{3}(D) \tag{4.8}\\
=\frac{\sum_{D=D \subset A} \sum_{D=A_{i} \cap B} p_{1}\left(A_{i}\right)}{1-P_{1 *}(\bar{B})}
\end{array}
$$

$$
\begin{align*}
& \sum_{i} P_{1}\left(A_{i}\right) \\
= & \frac{\substack{A_{i} \subset A \cup B \\
A_{i} \subset B}}{1-p_{1 *}(\bar{B})} \tag{4.9}\\
= & \frac{P_{1 *}(A \cup \bar{B})-P_{1 *}(\bar{B})}{1-P_{1 *}(\bar{B})}
\end{align*}
$$

Hence

$$
\begin{align*}
P_{3}^{*}(A) & =1-P_{3 *}(\bar{A}) \\
& =\frac{P_{1}^{*}(B)-P_{1 *}(\bar{A} \cup \bar{B})+P_{1 *}(\bar{B})}{P_{1}^{*}(B)} \\
& =\frac{P_{1}^{*}(A \cap B)}{P_{1}^{*}(B)} \tag{4.10}
\end{align*}
$$

We can call (4.7) the rule of conditioning by the upper probability P_{1}^{*}. This property is shared by Dempster's rule.

Theorem 2 When $P_{1 *}$ is given as

$$
P_{1 *}(A)= \begin{cases}1 & \text { if } B \subset A \tag{4.11}\\ 0 & \text { if } B \not \subset A\end{cases}
$$

for a particular subset $B \subset \Omega$, and $P_{2 *}$ is another lower probability over Ω, then $P_{2 *}$ is combinable with $P_{1 *}$ if and only if for all focal elements B_{j} of $P_{2 *}, B_{j} \cap B \neq \phi$, and (4.3) is reduced to

$$
\begin{equation*}
\sum_{m} p_{m} p_{1}\left(A_{m}\right)=0 \tag{4.12}
\end{equation*}
$$

where $A_{m}=B$.
If $P_{2 *}$ is combinable with $P_{I *}$, then

$$
\begin{equation*}
P_{3 *}(A)=P_{2 *}(A \cup \bar{B}) \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{3}^{*}(A)=P_{2}^{*}(A \cap B) \tag{4.14}
\end{equation*}
$$

for all $A \subset \Omega$.
Proof Since (4.12) is assumed for all j,

$$
\begin{align*}
p_{3}(A) & =\sum_{B_{j}} p_{1}(B) p_{2}\left(B_{j}\right) \\
& =\sum_{B \cap C=A} p_{2}(C) \tag{4.15}
\end{align*}
$$

$$
\begin{align*}
& P_{3 *}(A)=\sum_{D \subset A} p_{3}(D)=\sum_{\phi \neq D \subset A} \sum_{B \cap C=D} p_{2}(C) \\
& =\sum_{\substack{c \\
\phi \neq B \cap C \subset A}} p_{2}(C)=\sum_{\substack{c \subset A U B \\
C \& B}} p_{2}(C) \\
& =\sum_{C \subset A \cup B} p_{2}(C)-\sum_{c \subset B} p_{2}(C)=P_{2 *}(A \cup \bar{B}) \tag{4.16}
\end{align*}
$$

Hence

$$
\begin{align*}
P_{3}^{*}(A) & =1-P_{3 *}(\bar{A})=1-P_{2 *}(\bar{A} \cup \bar{B}) \\
& =1-P_{2 *}(\overline{A \cap B})=P_{2}^{*}(A \cap B) \tag{4.17}
\end{align*}
$$

If $P_{1 *}$ and $P_{2 *}$ are given as in Theorem 1, and

$$
\begin{equation*}
\sum_{\substack{1_{m} B=\phi}} p_{1}\left(A_{m}\right)=0 \tag{4.18}
\end{equation*}
$$

is assumed, then, by Theorem 1 ,

$$
\begin{equation*}
P_{3 *}(A)=P_{1 *}(A \cup \bar{B}) \tag{4.19}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{3}^{*}(A)=P_{1}^{*}(A \cap B) \tag{4.20}
\end{equation*}
$$

Therefore in this case $P_{1 *} \oplus P_{2 *}=P_{2 *} \oplus P_{1 *}$ holds. In other words, the rule of combination is commutative.

Suppose Ω is the Cartesian product $\theta \times X$, and p_{1} and p_{2} are the regular probability assignments on $\Theta \times X$ and X, respectively. Then we have

$$
\begin{align*}
P_{3}\left(\left\{x_{j}\right\} \times\left\{\theta_{i}\right\}\right) & =\frac{p_{2}\left(\left\{x_{j}\right\} \times \theta\right) \cdot p_{1}\left(\left\{x_{j}\right\} \times\left\{\theta_{i}\right\}\right)}{1-\sum_{n \neq j, m} p_{1}\left(\left\{x_{n}\right\} \times\left\{\theta_{m}\right\}\right)} \\
& =\frac{p_{2}\left(\left\{x_{j}\right\} \times \theta\right) \cdot p_{1}\left(\left\{x_{j}\right\} \times\left\{\theta_{i}\right\}\right)}{\sum_{m} p_{1}\left(\left\{x_{j}\right\} \times\left\{\theta_{m}\right\}\right)} \tag{4.21}
\end{align*}
$$

Replacing $p_{2}\left(\left\{x_{j}\right\} \times \theta\right)$ and $p_{1}\left(\left\{x_{j}\right\} \times\left\{\theta_{i}\right\}\right)$ by $p^{\prime}\left(x_{j}\right)$ and $p\left(x_{j} \mid \theta_{i}\right) p\left(\theta_{i}\right)$, respectively, as in (3.7), we have

$$
\begin{equation*}
P_{3}\left(\left\{x_{j}\right\} \times\left\{\theta_{i}\right\}\right)=\frac{p^{\prime}\left(x_{j}\right) p\left(x_{j} \mid \theta_{i}\right) p\left(\theta_{i}\right)}{\sum_{m} p\left(x_{j} \mid \theta_{m}\right) p\left(\theta_{m}\right)}=p\left(\theta_{i} \mid x_{j}\right) p^{\prime}\left(x_{j}\right) \tag{4.22}
\end{equation*}
$$

Hence

$$
\begin{align*}
P_{3}^{*}\left(X \times\left\{\theta_{i}\right\}\right) & =P_{3 *}\left(X \times\left\{\theta_{i}\right\}\right)=\sum_{n} p\left(\theta_{i} \mid x_{n}\right) p^{\prime}\left(x_{n}\right) \\
& =p\left(\theta_{i} \mid p^{\prime}\right) \tag{4.23}
\end{align*}
$$

and (2.2) and (2.4) are recovered by (4.2). Generally, $P_{3 *}\left(E_{i}\right)=P_{2 *}\left(E_{i}\right)$ holds. Neither Dempster's rule nor the weak conditioning rule yields Jeffrey's rule as a special case.

The conditioning rule of formula (4.2) gives higher priority to the second evidence than to the first evidence.

Theorem 3 When p_{1} and p_{2} are the regular probability assignments for the lower probabilities $P_{1 *}$ and $P_{2 *}$ over a frame Ω and $P_{2 *}$ is combinable with $P_{1 *}$, then

$$
\begin{equation*}
P_{1 *} \oplus P_{2 *}=P_{2 *} \tag{4.24}
\end{equation*}
$$

Proof Let A_{1}, \cdots, A_{k} denote the elements (points) of Ω. Since $P_{2 *}$ is combinable with $P_{1 *}$ in (4.24), $p_{2}\left(A_{i}\right)>0$ implies $p_{1}\left(A_{i}\right)>0$, and we have

$$
\begin{equation*}
p_{3}\left(A_{i}\right)=\frac{p_{1}\left(A_{i}\right) p_{2}\left(A_{i}\right)}{1-\sum_{\substack{ \\A_{m} \cap A_{i}=\phi}} p_{1}\left(A_{m}\right)}=p_{2}\left(A_{i}\right) \tag{4.25}
\end{equation*}
$$

for all focal elements A_{i} of $P_{2 *}$.
This is the extreme case where the partition $E_{1}, E_{2}, \cdots, E_{n}$ is as fine as Ω itself (i.e., each E_{i} is a single point). This property is shared by the additive probability distribution in applying Jeffrey's rule of conditioning (see Shafer [6], p. 4).

Definition 2 Assuming that $P_{1 *}$ and $P_{2 *}$ are two lower probabilities as in Definition 1, the function $p_{4}: 2^{8} \rightarrow[0,1]$ is defined as

$$
\begin{gather*}
p_{4}(\varnothing)=0 \tag{4.26}\\
p_{4}(A)=\sum_{A=A_{i} \subset B_{j}} \frac{p_{1}\left(A_{i}\right) p_{2}\left(B_{j}\right)}{1-\sum_{A_{m} \Varangle B_{j}} p_{1}\left(A_{m}\right)} \quad \text { for all } A \subset \Omega \tag{4.27}
\end{gather*}
$$

where

$$
\begin{equation*}
\sum_{m}^{A_{m} \Varangle B_{j}}, p_{1}\left(A_{m}\right)<1 \quad \text { for all } j \in\{1, \cdots, k\} \tag{4.28}
\end{equation*}
$$

It is easy to prove that the function p_{4} is a basic probability assignment. Let us now consider the rule of conditioning by p_{4} in Definition 2 .

Theorem 4 Let $P_{1 *}$ and $P_{2 *}$ be as in Theorem 1. Then $P_{2 *}$ is combinable with $P_{1 *}$ if and only if $P_{1}^{*}(\bar{B})<1$. If $P_{2 *}$ is combinable with $P_{1 *}$, then

$$
\begin{equation*}
P_{4 *}(A)=\frac{P_{1 *}(A \cap B)}{P_{1 *}(B)} \tag{4.29}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{4}^{*}(A)=\frac{P_{1}^{*}(A \cup \bar{B})-P_{1}^{*}(\bar{B})}{1-P_{1}^{*}(\bar{B})} \tag{4.30}
\end{equation*}
$$

for all $A \subset \Omega$.
Proof

$$
\begin{align*}
p_{4}(A) & =\sum_{A=A_{i} \subset B} \frac{p_{1}\left(A_{i}\right)}{1-\sum_{A_{m} \Varangle B} p_{1}\left(A_{m}\right)} \\
& =\sum_{A=C C B} \frac{p_{1}(C)}{1-P_{1}^{*}(\bar{B})} \\
& =\frac{\sum_{C} p_{1}(C)}{P_{1 *}(B)} \\
P_{4 *}(A) & =\sum_{D \subset A} p_{4}(D)=\frac{\sum_{D \neq D C A} \sum_{D=C C B} p_{1}(C)}{P_{*}(B)} \\
& =\frac{P_{1 *}(A \cap B)}{P_{1 *}(B)}
\end{align*}
$$

Hence

$$
\begin{align*}
P_{4}^{*}(A) & =1-P_{4 *}(\bar{A}) \\
& =1-\frac{1-P_{1}^{*}(A \cup \bar{B})}{1-P_{1}^{*}(\bar{B})} \\
& =\frac{P_{1}^{*}(A \cup \bar{B})-P_{1}^{*}(\bar{B})}{1-P_{1}^{*}(\bar{B})} \tag{4.33}
\end{align*}
$$

Equation (4.29) is the rule of conditioning by the lower probability $P_{1 *}$. Equation (4.29) is called the geometrical rule of conditioning.

When $P_{1 *}$ and $P_{2 *}$ are as in Theorem 2, then $P_{2 *}$ is combinable with $P_{1 *}$ if
and only if for all focal elements $B_{j} \subset \Omega$ of $P_{2 *}, B_{j} \subset B$. Hence $P_{4 *}$ focuses only on B. Thus $P_{4 *}(A)=P_{1 *}(A)$ and $P_{4}^{*}(A)=P_{1}^{*}(A)$.

When p_{1} and p_{2} are the regular probability assignments for $P_{1 *}$ and $P_{2 *}$, and $P_{2 *}$ is combinable with $P_{1 *}$, then we can readily see that $P_{1 *} \oplus P_{2 *}=P_{2 *}$.

As in (4.21) and (4.22), (2.2) is recovered by (4.27).
Definition 3 Assuming that $P_{1 *}$ and $P_{2 *}$ are two lower probabilities as in Definition 1 , the function p_{5} is defined for all $A \subset \Omega$ as

$$
\begin{gather*}
p_{5}(\varnothing)=0 \tag{4.34}\\
p_{5}(A)=\sum_{\substack{A j \\
A=A_{i} \\
A_{i} \cap B_{j} \neq \phi}} \frac{p_{1}\left(A_{i}\right) p_{2}\left(B_{j}\right)}{1-\sum_{\substack{ \\
A_{m} \cap B_{j}=\phi}} p_{1}\left(A_{m}\right)} \tag{4.35}
\end{gather*}
$$

where it is assumed that for all j

$$
\begin{equation*}
\sum_{\substack{1_{m} \cap B_{j}=\phi}} p_{1}\left(A_{m}\right)<1 \tag{4.36}
\end{equation*}
$$

p_{5} is a basic probability assignment.
Theorem 5 Let $P_{1 *}$ and $P_{2 *}$ be as in Theorem 1. Let $P_{1}^{*}(A, B)$ denote

$$
\sum_{\substack{A \cap C \neq \phi \\ B \cap \neq \phi}} p_{1}(C)
$$

If $P_{2 *}$ is combinable with $P_{1 *}$, then

$$
\begin{align*}
P_{5}^{*}(A) & =\frac{P_{1}^{*}(A, B)}{P_{1}^{*}(B)} \\
& =\frac{P_{1}^{*}(A)+P_{1}^{*}(B)-P_{1}^{*}(A \cup B)}{P_{1}^{*}(B)} \tag{4.37}
\end{align*}
$$

and

$$
\begin{equation*}
P_{5 *}(A)=\frac{P_{1 *}(A)-P_{1 *}(A \cap \bar{B})}{1-P_{1 *}(\bar{B})} \tag{4.38}
\end{equation*}
$$

for all A.
Proof

$$
\begin{equation*}
\left.p_{5}(A)=\sum_{\substack{A=A_{i} \\ A_{i} \cap B \neq \phi}} \frac{p_{1}\left(A_{i}\right)}{1-\sum_{A_{m} \cap B=\phi} p_{1}\left(A_{m}\right)}=\frac{\sum_{i} \sum_{i} p_{1}\left(A_{i}\right)}{\substack{A_{i} \cap B \neq \phi}} \right\rvert\, \tag{4.39}
\end{equation*}
$$

$$
\begin{gather*}
P_{5}^{*}(A)=\sum_{D \cap A \neq \phi}^{\sum_{D}} p_{5}(D) \\
=\frac{\sum_{D \cap A \neq \phi} \sum_{\substack{D=A_{i} \\
A_{i} \cap B \neq \phi}}^{P_{i}} p_{1}\left(A_{i}\right) \sum_{\substack{A \cap A_{i} \neq \phi \\
B \cap A_{i} \neq \phi}}^{P_{i}^{*}(B)} p_{1}\left(A_{i}\right)}{P_{1}^{*}(B)} \\
\begin{aligned}
& P_{1}^{*}(A, B)=1-\sum_{i} \sum_{i} p_{1}\left(A_{i}\right)-\sum_{i} p_{1}\left(A_{i}\right)+\sum_{i} p_{1}\left(A_{i}\right) \\
&=1-P_{1 *}(\bar{A})-P_{1 *}(\bar{B})+P_{1 *}(\bar{A} \cap \bar{B}) \\
&= P_{1}^{*}(A)+P_{1}^{*}(B)-P_{1}^{*}(A \cup B) \\
& P_{5 *}(A)=1-P_{5}^{*}(\bar{A})=1-\frac{P_{1}^{*}(\bar{A}, B)}{P_{1}^{*}(B)} \\
&=\frac{P_{1}^{*}(\bar{A} \cup B)-P_{1}^{*}(\bar{A})}{1-P_{1 *}(\bar{B})} \\
&=\frac{P_{1 *}(A)-P_{1 *}(A \cap \bar{B})}{1-P_{1 *}(\bar{B})}
\end{aligned} \tag{4.40}
\end{gather*}
$$

It should be noted that $P_{1}^{*}(A, B) \neq P_{1}^{*}(A \cap B)$.
We have proposed three conditioning rules. When the focal subsets of $P_{1 *}$ are singletons and $P_{2 *}$ focuses only on the partition $E_{1}, E_{2}, \cdots, E_{n}$, Jeffrey's rule of conditioning discussed in Section 2 is recovered in each case. The denominators of the conditioning rules represent measures of the extent of the conflict. Since $P_{1 *}$ and $P_{2 *}$ do not commit probability to disjoint (or contradictory) subsets A_{i} and B_{j}, the denominator of (4.2) in Definition 1 measures the extent of conflict in the sense that $A_{i} \cap B_{j}=\phi$, and that of (4.27) in Definition 2 measures the extent of the conflict in the sense that $A_{i} \not \subset B_{j}$. That of (4.35) is the same as Definition 1, but $P_{1 *}$ and $P_{2 *}$ commit a probability to A_{i}, if it is not contradictory to B_{j}. Hence we call the three conditioning rules plausible, credible, and possible conditioning, respectively. We can choose one of the three rules depending on the situation.

The drawback to the proposed rules of conditioning in Definitions 1-3 is that the condition of combinability is very restrictive. To relax the condition of combinability, we propose the following renormalizations.

Defintion 4 Assuming that $P_{1 *}$ and $P_{2 *}$ are the same as in Definition 1,
the functions $p_{3}^{\prime}, p_{4}^{\prime}$, and p_{5}^{\prime} are defined for all A as

$$
\begin{align*}
& p_{3}^{\prime}(\varnothing)=0 \tag{4.43}\\
& p_{3}^{\prime}(A)=\frac{\sum_{\substack{A_{i} \cap B_{j}=A}}\left[p_{1}\left(A_{i}\right) p_{2}\left(B_{j}\right) /\left(1-\sum_{A_{m} \cap B_{j}=\phi} \sum_{m}\left(A_{m}\right)\right)\right]}{1-\underset{\left(\left(\cup_{m} A_{m}\right) \cap B_{j}\right)=\phi}{ }} p_{2}\left(B_{j}\right) \quad\left(\sum_{j}\right) \tag{4.44}\\
& p_{4}^{\prime}(\varnothing)=0 \\
& p_{4}^{\prime}(A)=\frac{\sum_{\substack{A=A_{j} \subset B_{j}}}\left[p_{1}\left(A_{i}\right) p_{2}\left(B_{j}\right) /\left(1-\sum_{A_{m} \Varangle B_{j}} \sum_{m}\left(A_{m}\right)\right)\right]}{1-\sum_{j} p_{2}\left(B_{j}\right)} \tag{4.46}\\
& p_{5}^{\prime}(\varnothing)=0 \tag{4.47}\\
& p_{s}^{\prime}(A)=\frac{\sum_{\substack{A=A_{i} \\
A_{i} \cap B_{j} \neq \phi}}\left[p_{1}\left(A_{i}\right) p_{2}\left(B_{j}\right) /\left(1-\sum_{A_{m} \cap B_{j}=\phi} p_{1}\left(A_{m}\right)\right)\right]}{1-\sum_{j} p_{2}\left(B_{j}\right)} \tag{4.48}
\end{align*}
$$

where it is assumed that the denominator of each function is not equal to zero.

5. CONCLUDING REMARKS

We have proposed three rules of conditioning that are direct generalizations of Jeffrey's rule of conditioning. There might be situations in which we want to treat evidence asymmetrically, and in such cases our rules can provide a convenient generalization of Jeffrey's rule.

Our conditioning rules will be applied to decision problems treating the value of information sources in the framework of the theory of evidence.

ACKNOWLEDGMENTS

We are grateful to an anonymous referee for his valuable comments.

References

1. Gordon, J., and Shortliffe, E. H., A method for managing evidential reasoning in a hierarchical hypothesis space, AI. 26, 323-357, 1985.
2. Shafer, G., A Mathematical Theory of Evidence, Princeton U. P., Princeton, N.J., 1976.
3. Ishizuka, M., Fu, K. S., and Yao, J. T. P., Inference procedures under uncertainty for the problem-reduction method, Inf. Sci. 28(3), 179-206, 1982.
4. Dempster, A. P., Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Stat. 38(2), 325-339, 1968.
5. Dubois, D., and Prade, H., On the unicity of Dempster's rule of combination, Int. J. Intell. Syst. 1(2), 133-142, 1986.
6. Shafer, G., Jeffrey's rule of conditioning, Tech. Rep. No. 131, Stanford University, Stanford, Calif., 1979.

[^0]: Address correspondence to H. Ichihashi, Department of Industrial Engineering, University of Osaka Prefecture, 4-804 Mozu-Umemachi, Sakai, Osaka 591, Japan.

[^1]: International Jourmal of Approximate Reasoning 1989; 3:143-156

