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ABSTRACT 

Jeffrey's rule o f  conditioning is a rule for changing an additive probability 
distribution when the human perception of  new evidence is obtained. It is a 
generalization of  the normative Bayesian inference. Shafer showed how Jeffrey's 
generalization of  Bayes" rule of  conditioning can be reinterpreted in terms of  the 
theory of  belief functions. But Shafer's approach is different from the normative 
Bayesian approach and is not a straight generalization of  Jeffrey's rule. There are 
situations in which we need inference rules that may well provide a convenient 
generalization o f  Jeffrey's rule. Therefore we propose new rules of  conditioning 
motivated by the work of  Dubois and Prade. Although the weak and strong 
conditioning rules of  Dubois and Prude are generalizations of  Bayesian condition- 
ing, they fail to yield Jeffrey's rule as a special case. Jeffrey's rule is a direct 
consequence of  a special case of  our conditioning rules. Three kinds of  normaliza- 
tions in the rules of  conditioning are discussed. 

KEYWORDS: theory o f  evidence, Dempster 's  rule o f  combination, weak 
and strong conditioning, Jef frey 's  rule o f  conditioning, upper and 
lower probabilities 

1. INTRODUCTION 

For the purpose of devising reasoning techniques under uncertainty, people in 
artificial intelligence (Gordon and Shortliffe [1]) pay attention to the theory of 
evidence (Sharer [2]). Ishizuka et al. [3] applied this theory to the management 
of uncertainty in expert systems. 
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The unicity of Dempster's rule (Dempster [4]) for combining uncertain items 
of information issued from independent sources was proved by Dubois and 
Prade [5]. They also proposed weak and strong conditioning rules that are the 
generalization of conditioning [5]. Motivated by their work, this paper proposes 
three conditioning rules with normalization. Our rules are different from theirs 
in the way in which normalization is achieved. 

Shafer [6] explained how Jeffrey's rule of conditioning can be understood in 
terms of belief functions (Shafer [2]). But Shafer's argument is based on the 
retrospective and constructive point of view, It is not a direct generalization of 
Jeffrey's rule. When the prior beliefs are additive and the new evidence bears 
only on a partition El, E2, " ' ' ,  En of the frame [2, then the new degrees of belief 
P(Ei) obtained by Dempster's rule are different from those obtained by Jeffrey's 
rule. Neither the weak conditioning nor the strong conditioning rule of Dubois 
and Prade yields Jeffrey's rule as a special case. In our newly proposed rules of 
conditioning, Jeffrey's rule is a direct consequence of a special case. Our main 
concern is the normalization in the rule of conditioning. 

2. BAYES' THEOREMS AND A GENERALIZATION BY JEFFREY 

Let 0 = {01, 02, "" ", 0~ } be a set of disjoint states of nature such as disease, 
and let X = {Xl, x2, " " ,  xt} be a set of disjoint items of information such as 
information about symptoms. If  the disease is Oi, then the symptom is xj with a 
probability p(xjlO~). When a prior Bayesian belief function p(Oi):O "-* [0, 1], 
which is to say, a prior probability function, is given, then a posterior Bayesian 
belief function assigns any particular 0 the degree of belief 

P(xjlOi)p(Oi) 
p(Oilxy)= (2.1) 

~m P(xyIOm)p(Om) 

Formula (2.1) is often called the Bayes theorem. Bayesian rules of inference for 
diagnosis are written for all i E {1, " - ' ,  k} a n d j  E {1, . - . ,  1} as follows. 

• If  the symptom is xj, then the diagnosis is Oi with posterior probability 
P(Oilxj). 

Further, if the symptom is given as a Bayesian belief functionp'(x):X ~ [0, 
1], then the posterior belief function is 

P(OilP') = ~ p(Oi I xj)P' (xj) (2.2) 
J 

for all i. Hence we have Y,~p(Oi[p') = 1. The inference rules are written for all 
i, as follows. 

• If the symptom is p' ,  then the diagnosis is 0j with a posterior probability 

p(OilP'). 
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Equation (2.2) is Jeffrey's rule of conditioning in its most general form. It 
should be noted that 

ptxylp') = ~ ptO, lxy)p'tx,) = p '  (xy) (2.3) 
i 

More generally we have 

p (Ejlp ') =p' (EA (2.4) 

for the partition Ej of f] where p '  represents new evidence that bears directly 
only on the partition Et ,  E2, "" ", En. The new probability of a set E; is equal to 
the probability of Ej representing new evidence. 

3. THE DEMPSTER-SHAFER THEORY OF EVIDENCE 

Shafer's belief function (Shafer [2]) was originally called a lower probability 
by Dempsmr. A lower probability (I~mpster [4]) is a mapping P ,  from 2 n to [0, 
1]. A lower probability is uniquely defined through the specification of basic 
probability assignment satisfying 

p ( O ) = 0 ,  

and we have 

p(B) = 1 (3.1) 
B c f l  

P , ( A ) =  ~ p(B), VA E 2 n (3.2) 
BCA 

A set A such that p (A) > 0 is called a focal element. The upper probability 
P*(A) = 1 - P , ( A )  is also defined as 

P*(A)= ~ p(B) (3.3) 
B~A--/=O 

Suppose Pl is the basic probability assignment for a lower probability P1,  
over a frame fl, and denote the focal elements of P t ,  by At ,  "" ", Ak. Also, the 
basic probability assignment of a second lower probability P2,  is P2, and its 
focal elements are BI, " " ,  Bt. 

In order to carry out the combination of P t .  and P2, ,  a probability mass of 
measure PI(Ai) p2(Bj) is committed to the intersection of two sets Ai and Bj. 
The total probability mass exactly committed to a given subset A of fl will have 
measure 

~0" Pt(Ai)p2(BJ) 
Aif'IBj=A 
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The difficulty with this scheme is that it may happen that 

~# pl(Ai)P2(By)>O (3.4) 
,4inaj=~b 

A new basic probability assignment P0 for the lower probability of P=, and 
P2, is defined by Dempster as 

~ ,j p,(Ai)p2(Bj) 
po(A )= AiCIBJ=A (3 .5)  

1 -  ~_di j PI(Ai)P2(Bj) 
AinBj=¢ 

Let P I ,  be a prior belief function, and let P2, represent new evidence. Let fl 
be the Cartesian product O × X. Whenpl is a regular probability assignment on 
0 x X a n d p :  focuses on a single focal element {xj} x e ,  then (3.5) is Bayes' 
rule of (2.1). Thus, 

P, (Xx  {O,})=P*(X x {O,})=p(O, Ixj) (3.6) 

When P2 is also a regular probability assignment on X that is a coarsening of 
O × X (P2 focuses on a partition of X) ,  by (3.5) we have 

po({X j }  X { 0 i } ) =  pa({x/} X O ) p l ( { X j }  X {el})  

1- ~,j,,. P~({Xm} x O)p,({xA x {o;}) 
{x m} x on {xj} x (oi} =¢ 

(3.7) 

Replacing Pz({xj} x O) and Pl ({xi} x {0j}) by p'(xj)  and P(Xjl 0~) p(Oi), 
respectively, 

po({Xj} x {0,}) = 
p '  (xy)p (xylOi)p (Oi) 

1 - ~ ,o ,=  P '  (xm)P (xj]Oi)p (Oi) 
{Xm} X Of){xj} x {Oi} =¢ 

Hence 

where 

P,(Xx  {0,})=9*(xx {0,})= ~j  po({xj} x {0,}) 

~ y  p(xjlOi)p (Oi)p " (Xj) 

K 

K= 1 - ~i~/.m p'(Xm)P(xylOi)p(Oi) 
{Xm} x on {xj} x {oi} =¢ 

(3.8) 

(3.9) 
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pi(Ai) 
Aif)Bj*O 

1: g p,(A,) 
AinBy=4, 

= ~ .  P2(Bj) = 1 - - j  

p2(Bj) 

(4.4) 

Hence the function P3 of Definition 1 is a basic probability assignment. 
The lower probability given by P3 is denoted P l ,  * P2,.  This rule of 

conditioning is no longer commutative, i.e., P t ,  $ P2, * P2, * P t , .  This 
property is not shared by Dempster's rule. The weak conditioning rule in Dubois 
and Prade [5] is symmetric in the mass function being combined and so is not 
equivalent to our asymmetric rule in Definition 1. 

THEOe~M 1 Suppose Pz* is given as 

P2*(A)=IO ifBifBCAEA (4.5) 

for a particular subset B C f~, and 1)1, is another lower probability over 
ft. Then P2, is combinable with PI,  if  and only if P~,(B) < 1. l f  P2, is 
combinable with Pt, ,  then 

P t , ( A  U B ) - P I , ( B )  
Ps ,  (A) = 1 - PI* (/~) 

and 

for all A C ft. 

Proof 

P,(A n B) 
P*(A)= 

P*(B) 

(4.6) 

(4.7) 

Since B is the only focal element of P2, andp2(B) = 1, (4.2) yields 

~ ,  p,(Al) 

p3(A) = AinB~A (4.8) 
1 - PI  * ( [1)  

P 3 , ( A ) =  ~ o  P3(D) 
DcA 

E o  E i  P1(Ai) 
¢p=DcA D=AinB 

1 - P l *  ( B )  
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~i Pl(Ai) 
AicAUB 

AiCl~ 

1 - P l *  (/~) 

Hence 

PI , (A  U B ) - P I , ( B )  

1 -PI,(B) (4.9) 

P ; , ( A )  = i - P3, ( A )  

P~(B)-Pi,(7t U B)+ PI,(B) 
P*(B) 

P?(A n B) 
- P*(B) • ( 4 . 1 0 )  

We can call (4.7) the rule of conditioning by the upper probability P*. This 
property is shared by Dempster's rule. 

TrmORE~ 2 When Pt .  is given as 

1 i fB  C A 
P I . ( A ) =  0 if B ~ A (4.11) 

for  a particular subset B C fl, and P2, is another lower probability over 
f~, then P~. is combinable with P: ,  i f  and only i f  for  all focal elements Bj 
o f  Pz*, Bj f3 B :/: dp, and (4.3) is reduced to 

~m Pl(Am)=O (4.12) 
AmNBj=O 

where Am = B. 
I f  P2, is combinable with P#,, then 

P3,(A)=P2,(A U /~) (4.13) 

and 

for all A C ft. 

Proof 

P*(A)=P*(A f'l B) 

Since (4.12) is assumed for all j ,  

P3(A)= ~ j  pl(B)p2(Bj) 
BNBj= A 

= ~c P2(C) 
BC3C= A 

(4.14) 

(4.15) 
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Hence 

P~,(A)= ~ p,(D)= ~o ~c p2(C) 
DCA tb.~DcA BNC=D 

= ~,¢ p2(C)= ~¢ P2(C) 
~*BNCCA CCAUI) 

c ~  

= ~ c  p 2 ( C ) -  ~c p2(C)=P2,(A U B) 
CCAUB CCI~ 

PT(A)= l -P~,(A)= 1 -P2,(A U B) 

= 1 - P 2 ,  ( A n  B )  = P *  (n n B )  

If P1, and P2, are given as in Theorem 1, and 

~,n P'(Am)=O 
AmOB=dp 

is assumed, then, by Theorem 1, 

P3,(A)=PI,(A U [~) 

and 

(4.16) 

P*(A)=P*(A (~ B) 

• (4.17) 

(4.18) 

(4.19) 

(4.20) 

Therefore in this case P~, ® P2, = *°2, • P l ,  holds. In other words, the rule 
of combination is commutative. 

Suppose fl is the Cartesian product 0 x X, and Pl and P2 are the regular 
probability assignments on O × X and X, respectively. Then we have 

p2({x j }  x O) • p , ( {xy}  x {0,}) 
• ':'~({ xA x {o,})= 

1 - ~ . .~ j . , .  p , ( { x . }  x {o,,,}) 

P2({xj}  x O) • p,({x, / }  x {0~}) 

ZmPI({Xy} × {0m}) 
(4.21) 

Replacing p2({xy} x O) and pl({xy} x {01}) by p'(xy) and p(xylOi)p(Oi ), 
respectively, as in (3.7), we have 

p'(xy)p(xy Oi)p(Oj) p(O, x )p ' (x  ) P3({Xj} X { 0 i } )  . . . . .  :j j 

~.tm p(x j[Om)p(Om) 
(4.22) 
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Hence 

P~(xx {0,}) = P~,(xx {0,})= ~ .  p(o, lx.)p'(x~) 

=p(o, lp') (4.23) 

and (2.2) and (2.4) are recovered by (4.2). Generally, P3,(Ei) = P2,(Ei) 
holds. Neither Dempster's rule nor the weak conditioning rule yields Jeffrey's 
rule as a special case. 

The conditioning rule of formula (4.2) gives higher priority to the second 
evidence than to the first evidence. 

Tm~o~M 3 When Pl and P2 are the regular probability assignments for  
the lower probabilities P1, and P2, over a frame t2 and P2, is combinable 
with PI, ,  then 

P1, • / '2 ,  = P2, (4.24) 

Proof Let AI,  " " ,  Ak denote the elements (points) of ft. Since P2, is 
combinable with P1, in (4.24), p2(Ai) > 0 impliespl(Ai) > 0, and we have 

Pl (Ai)P2(Ai) 
P3(Ai) = = p2(Ai) (4.25) 

1 -  ~m PI(Am) 
AmNAi=O 

for all focal elements Ai of P2,.  • 

This is the extreme case where the partition E~, E2, "" ", E~ is as fine as fl 
itself (i.e., each Ei is a single point). This property is shared by the additive 
probability distribution in applying Jeffrey's rule of conditioning (see Shafer [6], 
p. 4). 

DEFINITION 2 Assuming that P I ,  and P2, are two iower probabilities as in 
Definition 1, the function p,:2 a -~ [0, 1] is defined as 

P4(~)  = 0 (4.26) 

PI(Ai)P2(Bj) 
p4(A)= __'~tj for all A C fl (4.27) 

1 -  ~= PI(Am) AffiAiCB j 
Am~Bj 

where 

XmPl (Am)<l  for ally E {I, - . . ,  k} (4.28) 
Am~Bj 

It is easy to prove that the function P4 is a basic probability assignment. Let us 
now consider the rule of conditioning by P4 in Definition 2. 
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Trmopa~4 Let Pl , and Pz, be as in Theorem 1. Then Pz, is combinable 
with PI ,  if  and only if  P~([I) < 1. I f  P2, is combinable with P1,, then 

and 

for all A C ft. 

Proof 

Pl , (A t3 B) 
P4 • (A)  = (4.29) PI, (B)  

P?(A O a ) - p , ( l } )  
P * ( A ) =  

1 - p * ( a )  
(4.30) 

Pl (Ai) 
P4(A)= ~_j, 1 -  ~ PI(Am) 

A =AiCB 

Am~B 

p~(C) 
= ~,c 1-P*(B)  

AffiCCB 

~ c  pdC)  
A f f i C C B  

Pl • (B) (4.31) 

P4 , (A)=  '~o p4(D)= O*DcA o=CcS 
P,(B) 

DCA 

P, , (A  f3 B) 
- P,,(B) (4.32) 

Hence 

P*(A)  = 1 - P4,(A) 

1-P*(A  U B) 
=1 

1 - P * ( B )  

P*(A U I~)-P~(B) 
- 1 - P * ( B )  • (4.33) 

Equation (4.29) is the rule of conditioning by the lower probability P l , .  
Equation (4.29) is called the geometrical rule of conditioning. 

When P l ,  and P2, are as in Theorem 2, then P2, is combinable with P l ,  if 
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and only if for all focal elements Bj C fl of P2,, By C B. Hence P4, focuses 
only on B. Thus P4,(A) = PI , (A)  and P~(A) = P*(A). 

When Pl and P2 are the regular probability assignments for P1, and P2,, and 
P2, is combinable with P i , ,  then we can readily see that P i ,  • P2, = P2,- 

As in (4.21) and (4.22), (2.2) is recovered by (4.27). 

D~n~-rnos 3 Assuming that PI,  and P2, are two lower probabilities as in 
Definition 1, the function p~ is defined for all A C 0 as 

Ps (~ )  = 0 (4.34) 

Pl (Ai)P2(By) (4.35) 
Ps (A)= ~ u  1 -  ~ .  Pl(Am) 

A f A  i 
AiOBjt't~ AmNBj=¢ # 

where it is assumed that for all j 

~,~ Pl(Am)< 1 (4.36) 

AmnBj=~b 

P5 is a basic probability assignment. 

THEOREM 5 Let PI,  and P2, be as in Theorem 1. Let P~(A, B) denote 

~ c  pI(C) 

B C I C ~  

I f  P2, is combinable with PI , ,  then 

P*(A, B) 
P * ( A ) =  

P*(B) 

P*(A)+P*(B) -P*(A  O B) 

and P * (B) 

for all A. 
Proof 

P I* (A) -PI , (A  f') ]~) 
P5,(A) = 

1 - P l *  (B)  

(4.37) 

(4.38) 

~ i  pI(Ai) 
AffiA i 

Pl (Ai) .4inB*¢' 
r e ( A ) =  l -  = P*(B)  

A ffi A i 
Aif3B¢~ Amf3B= 0 

(4.39) 
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P~'(A)= .~D ps(D) 
D~A.~ 

~ o  ~ ,  p,(Ai) ~ ,  p,(Ai) 
DNA*¢ D=Ai ANAi.¢ 

AiNB~4~ Bt3Ai~O 

P~(B) P*(B) 

P * ( A ,  B) 
- ( 4 . 4 0 )  P?(B) 

P~(A. B)=I-  ~, pl(Ai)- ~, p,(Ai)+ ~, pl(A,) 
Aic~ Aica A~cAna 

= 1 - P I * ( A ) - P I , ( B ) + P I , ( A  N B) 

=PI*(A) + P*(B) -P*(A  OB) (4.41) 

P*(A, B) 
P s , ( A )  = 1 - P T ( A )  = 1 

P*(B) 
P*(A U B)-P*(A) 

1 - P I  * (19) 

P I , ( A ) - P I , ( A  N 19) • (4.42) 
1 - P1 ,  (19) 

It should be noted that P~(A, B) ~ P~(A N B). 
We have proposed three conditioning rules. When the focal subsets of Pt* are 

singletons and P2,  focuses only on the partition El ,  E2, "" ", E , ,  Jeffrey's rule 
of conditioning discussed in Section 2 is recovered in each case. The 
denominators of the conditioning rules represent measures of the extent of the 
conflict. Since P l .  and P2,  do not commit probability to disjoint (or 
contradictory) subsets Ai and Bj, the denominator of (4.2) in Definition 1 
measures the extent of conflict in the sense that A~ N By = ~, and that of (4.27) 
in Definition 2 measures the extent of the conflict in the sense that A~ ~ Bj. That 
of (4.35) is the same as Definition 1, but P l ,  and P2.  commit a probability to 
Ai, if it is not contradictory to Bj. Hence we call the three conditioning rules 
plausible, credible, and possible conditioning, respectively. We can choose one 
of the three rules depending on the situation. 

The drawback to the proposed rules of conditioning in Definitions 1-3 is that 
the condition of combinability is very restrictive. To relax the condition of 
combinability, we propose the following renormalizations. 

D~,a-rlos 4 Assuming that P ~ . and P2. are the same as in Definition 1, 
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the functions p j ,  p~, and p~ are defined for  all A as 

p~(o)=o (4.43) 

[P,(A,)P2(B,)I('- Z,. p,(Am))] 
p ;  (A  ) = Atf~BJffiA Amr"lBJ=¢ 

1 - ~ S  P2(Bj) 
((Umam)naj)=¢ 

(4.44) 

p~(o)=o 

p,~ (A ) -'4 =ai~nj 

p;(~)=o 

pl(A.))] 
Am~SS 

1 -- X# p2(Bj) 

(UAmCBfAm)=~ 

A=A I AmN~=¢~ 
AINBj-~ 

p;(A)= 
1- ~j p2(BA 

((umam)na j) =, 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

where it is assumed that the denominator of each function is not equal to zero. 

5. CONCLUDING REMARKS 

We have proposed three rules of  conditioning that are direct generalizations of 
Jeffrey's rule of conditioning. There might be situations in which we want to 
treat evidence asymmetrically, and in such cases our rules can provide a 
convenient generalization of Jeffrey's rule. 

Our conditioning rules will be applied to decision problems treating the value 
of information sources in the framework of the theory of evidence. 
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