On Pointwise Convergence, Compactness, and Equicontinuity. II

A. IONESCU TULCEA*

Department of Mathematics, Northwestern University, Evanston, Illinois 60201

This note is a sequel and a completion to [5]. Its purpose is to underline the important role played by the "separation property" $(h_1 \in H, h_2 \in H, h_1 \neq h_2 \Rightarrow \tilde{h}_1 \neq \tilde{h}_2)$ in measurability questions (such as weak versus strong). The separation property is characteristic of liftings (see [4] for the definition of a lifting).

The basic notation and terminology used below is as follows:

We denote by (E, \mathscr{E}, μ) the underlying probability space and by $\mathscr{L} = \mathscr{L}(E, \mathscr{E}, \mu)$ the algebra of all \mathscr{E} -measurable mappings $f: E \to R$. For $f \in \mathscr{L}, g \in \mathscr{L}$ we write

$$f = g$$
 if $f(t) = g(t)$ for all $t \in E$

and

$$f \equiv g(\mu)$$
 if $f(t) = g(t)$ μ -almost surely.

The latter defines the usual equivalence relation in \mathscr{L} . We denote by \overline{f} the equivalence class of each $f \in \mathscr{L}$ with respect to this equivalence relation.

We say that a set *F* carries μ if $F \in \mathscr{E}$ and $\mu(E - F) = 0$.

We begin with the following result, which in a certain sense generalizes Proposition 1 of [5]:

THEOREM 1. Let $H \subseteq \mathscr{L}$ be a set with the following properties.

- (a) The relations $h_1 \in H$, $h_2 \in H$, $h_1 \neq h_2$ imply $\tilde{h}_1 \neq \tilde{h}_2$.
- (b) H is convex.

* Research supported by the U.S. Army Research Office (Durham) under contract No. DAHCO 68 C005.

171

Copyright © 1974 by Academic Press, Inc. All rights of reproduction in any form reserved.

607/12/2-3

Then the following assertions about H are equivalent:

(i) H is sequentially compact for the topology of pointwise convergence¹ on E.

H is compact metrizable for the topology of pointwise convergence (ii) on E.

H is compact for the topology of pointwise convergence on E. (iii)

Proof. We consider on H the topology C of pointwise convergence on E and the topology $\mathcal{C}^{(\mu)}$ of convergence in μ -probability.²

Since (ii) \Rightarrow (iii) obviously, it remains to prove (i) \Rightarrow (ii) and (iii) \Rightarrow (i).

Let e be the identity mapping of H into H. We begin by showing that:

(*) Under *either one* of the assumptions (i) or (iii),

 $e: (H, \mathcal{C}^{(\mu)}) \to (H, \mathcal{C})$ is continuous.

Let $f \in H$ and $(f_{\alpha})_{\alpha \in N}$ a sequence of elements of H such that

$$(f_{\alpha})_{\alpha\in N}\xrightarrow{\mathfrak{G}^{(\mu)}} f.$$

Suppose that $(f_{\alpha})_{\alpha \in N}$ does not converge pointwise to f. There is then some $t_0 \in E$ and an $\epsilon_0 > 0$ such that for any $\alpha \in N$, we can find an $\alpha' \ge \alpha$ with

$$|f_{\alpha'}(t_0)-f(t_0)|>\epsilon_0.$$

Now for each positive integer k, choose $\alpha(k) \in N$ such that

$$eta \geqslant lpha(k) \Rightarrow d(f_eta\,,f) \leqslant 1/2^k.$$

Then for $\alpha'(k) \ge \alpha(k)$ (chosen as above) we have

$$|f_{\alpha'(k)}(t_0) - f(t_0)| > \epsilon_0$$

$$d(f_{\alpha'(k)}, f) = \int \frac{|f_{\alpha'(k)} - f|}{1 + |f_{\alpha'(k)} - f|} d\mu \leqslant \frac{1}{2^k}.$$
(1)

¹ That is, for any sequence (h_n) of elements of H, there is a subsequence (h_{n_n}) and an $h \in H$ such that $h_{n_k} \to h$ pointwise on *E*. ² $\mathcal{C}^{(\mu)}$ is clearly Hausdorff, metrizable being given by the metric

$$d(h,g) = \int \frac{|h-g|}{1+|h-g|} d\mu$$

for $g \in H$, $h \in H$.

It is clear that the sequence $(f_{\alpha'(k)})_k$ converges to f, a.s. Under *either one* of the assumptions (i) or (iii), there is an element $g \in H$ which is a *cluster value* of the sequence $(f_{\alpha'(k)})_k$ for the topology of pointwise convergence on E. At a point $t \in E$ where $(f_{\alpha'(k)}(t))_k$ converges to a limit, we must have

$$g(t) = \lim_{k} f_{\alpha'(k)}(t).$$

Hence $g \equiv f(\mu)$, and using hypothesis (a), g = f. But at t_0 we have (by the first inequalities in relations (1)):

$$|f_{\alpha'(k)}(t_0) - g(t_0)| > \epsilon_0$$
 for all k.

This contradicts the fact that $g(t_0)$ is a cluster value for the sequence $(f_{\alpha'(k)}(t_0))_k$. Hence the continuity assertion (*) is proved. From (*) we easily deduce that:

(**) Under either one of the assumptions (i) or (iii), for a sequence (u_n) of elements of H and u an element of H, the following assertions are equivalent.

- (j) $u_n \rightarrow u \mu$ -almost surely.
- (jj) $u_n \rightarrow u$ in μ -probability.
- (jjj) $u_n \rightarrow u$ pointwise on E.

(i) \Rightarrow (ii). To prove this implication it is enough to note that under the assumption (i), $(H, \mathcal{C}^{(\mu)})$ is compact metrizable, that \mathcal{C} is Hausdorff and weaker than $\mathcal{C}^{(\mu)}$ (by (*)), whence $\mathcal{C} = \mathcal{C}^{(\mu)}$.

(iii) \Rightarrow (i). We divide the proof of this implication into several steps:

(I) For each $t \in E$ denote by ϵ_i the mapping $h \to h(t)$ of the compact space (H, \mathcal{C}) into R. It is clear that $\epsilon_i \in C_R(H)$ and hence that $\epsilon_i(H) = \{h(t) \mid h \in H\}$ is a *compact* subset of R. It follows that if (u_n) is an arbitrary sequence of elements of H, then $\sup_n |u_n(t)| < \infty$ for each $t \in E$, and thus

$$\sup_n |u_n| \in \mathscr{L}.$$

(II) Let (h_n) be an arbitrary sequence of elements of H. Let $h^* = \sup_{\nu \in I} |h_n|$ and define the measure ν on (E, \mathscr{E}) by

$$d\nu = (1/1 + h^*) d\mu.$$

Then ν is a *finite* measure on (E, \mathscr{E}) , ν is *equivalent* with μ (that is ν and μ admit the same sets of measure zero), and

$$\int h^*\,d\nu = \int \frac{h^*}{1+h^*}\,d\mu < \infty,$$

that is $h^* \in \mathscr{L}^1(E, \mathscr{E}, \nu)$.

From (**) above we then deduce:

(***) For a sequence (u_n) of elements of H and u an element of H we have:

$$u_n \rightarrow u$$
 v-almost surely $\Leftrightarrow u_n \rightarrow u$ pointwise on E.

(III) We next recall a remarkable theorem due to Komlós (see [6]; see also [2]) of which we shall make use below.

Let (E, \mathscr{E}, ν) be a finite measure space.

THEOREM (Komlós). Let (f_n) be a sequence of elements of $\mathscr{L}^1(E, \mathscr{E}, \nu)$ with $\sup_n ||f_n||_1 < \infty$. Then one can find a subsequence $(f_{n_k})_k$ and an element $f \in \mathscr{L}^1(E, \mathscr{E}, \nu)$ such that $(f_{n_k})_k$, as well as any further subsequence extracted from $(f_{n_k})_k$, converges Cesaro to f, ν -almost surely.

(IV) We finally show that H is sequentially compact for the topology of pointwise convergence on E.

Let (h_n) be a sequence of elements of H. As in part (II) of the proof let $h^* = \sup_n |h_n|$ and let v be the measure on (E, \mathscr{E}) with density $1/(1+h^*)$ with respect to μ . Consider the measure space (E, \mathscr{E}, v) : The sequence (h_n) , as a sequence of elements of $\mathscr{L}^1(E, \mathscr{E}, v)$, satisfies the hypothesis of Komlós' Theorem. We can then extract a subsequence satisfying the conclusion of Komlós' Theorem. To simplify the notation we shall assume that the sequence (h_n) itself satisfies the conclusion of Komlós' Theorem, i.e., there is $h \in \mathscr{L}^1(E, \mathscr{E}, v)$ such that for any subsequence (h_n) extracted from (h_n) we have:

$$\lim_{p}((h_{n_1}+h_{n_2}+\cdots+h_{n_p})/p) = h \text{ ν-almost surely.}$$
(2)

For each n define

$$g_n = \frac{h_1 + h_2 + \dots + h_n}{n}$$

Then (g_n) is a sequence of elements of H (use hypothesis (b)) and

$$\lim_{n} g_{n}(t) = h(t), \quad \nu\text{-almost surely.}$$
(3)

Let now $g \in H$ be a *cluster value* of the sequence $(g_n)_n$ for the topology of pointwise convergence on E (use assumption (iii)). Then clearly (3) implies that

$$g(t) = h(t), \quad \nu \text{-almost surely.}$$
 (4)

Since H is convex, we deduce from (2), (4), and (***) in part (II) of the proof, that for any subsequence (h_{n_n}) extracted from (h_n)

$$(h_{n_1} + h_{n_2} + \dots + h_{n_n})/p \rightarrow g$$
 pointwise on E.

This of course means that the sequence (h_n) itself converges to g pointwise on E and hence the proof of Theorem 1 is complete.

Remark 1. Let $H \subseteq \mathscr{L}$ be a set with the properties (a) and (b) of Theorem 1 and satisfying one (and hence all) of the equivalent conditions (i), (ii), and (iii) of Theorem 1. Let $B \subseteq H$. Let u be the upper envelope of B and v the lower envelope of B (the mappings u and v are defined by the equations

$$u(t) = \sup_{h \in B} h(t), \quad v(t) = \inf_{h \in B} h(t), \quad \text{for } t \in E).$$

Then $u: E \to R$, $v: E \to R$ and u, v are *C*-measurable, i.e., $u \in \mathcal{L}$ and $v \in \mathcal{L}$.

In fact, it is enough to remark that B, as a subspace of the compact metric space H, is separable, to consider an at most countable set $B_0 \subset B$ dense in B for the topology of pointwise convergence on E and to note that $u = \sup_{h \in B_0} h, v = \inf_{h \in B_0} h$.

Remark 2. In Theorem 1 above, hypothesis (b) was used only in the proof of the implication (iii) \Rightarrow (i). The equivalence (i) \Leftrightarrow (ii) holds without assuming hypothesis (b).

Using Theorem 1 above in conjection with the beautiful generalization of Egorov's theorem due to P. A. Meyer (see [7, p. 199, Proposition 2]), and the classical criterion of relative compactness for a bounded set in $B(S, \Sigma)$ (see [3, p. 260, Theorem 6]) we obtain the following result—much in the same way that we derived Theorem 1 in [5]:

THEOREM 2. Let $H \subseteq \mathscr{L}$ be a set with the following properties:

- (a) The relations $h_1 \in H$, $h_2 \in H$ and $h_1 \neq h_2$ imply $\tilde{h}_1 \neq \tilde{h}_2$;
- (b) H is convex.

Consider the following assertions about H:

(α) H is compact for the topology of pointwise convergence on E.

(β) There is a set $E_0 \in \mathscr{E}$ which carries μ , with the following property: For every $\epsilon > 0$ there is a countable partition $(E_n^{\epsilon})_n$ of E_0 into sets belonging to \mathscr{E} with $\mu(E_n^{\epsilon}) > 0$ such that

 $s \in E_n^{\epsilon}$, $t \in E_n^{\epsilon} \Rightarrow |h(s) - h(t)| \leqslant \epsilon$, for all $h \in H$.

Then $(\alpha) \Rightarrow (\beta)$.

We shall not formulate the "corresponding converse" to Theorem 2 above (see Theorem 2 in [5]). Instead we shall make the following remark which suffices for our purposes.

Remark. Let $H \subset \mathscr{L}$ be a set satisfying the following condition:

(β) There is a set $E_0 \in \mathscr{E}$ which carries μ , with the following property: For every $\epsilon > 0$ there is a countable partition (E_n^{ϵ}) of E_0 into sets belonging to \mathscr{E} with $\mu(E_n^{\epsilon}) > 0$ such that

$$s \in E_n^{\epsilon}, t \in E_n^{\epsilon} \Rightarrow |h(s) - h(t)| \leqslant \epsilon$$
, for all $h \in H$.

Then the relations $h_1 \in H$, $h_2 \in H$ and $h_{1|E_0} \neq h_{2|E_0}$ imply $\tilde{h}_1 \neq \tilde{h}_2$, that is $H_{1|E_0}$ has the "separation property."

We now turn our attention to vector-valued mappings. Let X be a Banach space, X' its Banach space dual. For the duality between X and X' we use the notation $\langle x', x \rangle = x'(x)$, for $x \in X$, $x' \in X'$. If $g: E \to X$ and $x' \in X'$, we denote by $\langle x', g \rangle$ the mapping $t \to \langle x', g(t) \rangle$ of E into R. For the sake of completeness we recall the terminology concerning weakly measurable and strongly measurable mappings of E into X, as used in [5]:

We say that $g: E \to X$ is weakly measurable ("scalairement mesurable" in Bourbaki's terminology; see [1]) if $\langle x', g \rangle \in \mathscr{L}$ for each $x' \in X'$. We say that $g: E \to X$ is strongly (Bochner) measurable if there is a sequence (s_n) of simple functions (that is $s_n: E \to X$ is countably valued and each value is assumed on a measurable set), such that $\lim_n s_n(t) = g(t)$, μ -almost surely. We may now extend Theorem 3 of [5] to *arbitrary* weakly measurable mappings, as follows:

THEOREM 3. Let $g: E \rightarrow X$ be a weakly measurable mapping. We have:

(1) Suppose that the relations $x' \in X'$, $y' \in X'$ and $\langle x', g \rangle \neq \langle y', g \rangle$ imply $\langle x', g \rangle \not\equiv \langle y', g \rangle (\mu)$. Then $g: E \to X$ is strongly measurable.

(2) Conversely, if $g: E \to X$ is strongly measurable, there is a set $E_0 \in \mathscr{E}$ carrying μ such that the relations $x' \in X'$, $y' \in X'$ and $\langle x', g \rangle_{|E_0} \neq \langle y', g \rangle_{|E_0}$ imply $\langle x', g \rangle \neq \langle y', g \rangle(\mu)$.

Proof. The proof is similar to that of Theorem 3 in [5]. In fact, let $X'_1 = \{x' \in X' \mid || x' || \leq 1\}$ and define

$$H = \{ \langle x', g \rangle \mid x' \in X_1' \}.$$

Clearly $H \subset \mathscr{L}$, H is convex and H is compact for the topology of pointwise convergence on E (Alaoglu's theorem; see [3, p. 424]).

Part (1) follows by applying Theorem 2 above. Part (2) follows by approximating g with simple functions and making use of the Remark at the end of Theorem 2 above.

Remark. It seems likely (although this is somewhat loosely stated) that in general, for abstract-valued functions, the "separation property" is what makes the difference between weak measurability and strong measurability.

References

- 1. N. BOURBAKI, Intégration, Hermann, Paris, 1959-1968.
- S. D. CHATTERJI, Un principe de sous-suites dans la théorie des probabilités, "Séminaire de Probabilités VI, Université de Strasbourg," pp. 72–89, Springer-Verlag, New York, 1972.
- 3. N. DUNFORD AND J. T. SCHWARTZ, "Linear Operators," Part I, Interscience, New York, 1958.
- 4. A. IONESCU TULCEA AND C. IONESCU TULCEA, "Topics in the Theory of Lifting," Springer-Verlag, New York, 1969.
- A. IONESCU TULCEA, On pointwise convergence, compactness and equicontinuity in the lifting topology (I), Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 26 (1973), 197-205.
- J. KOMLÓS, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungary 18 (1967), 217-229.
- P. A. MEYER, Représentation intégrale des fonctions excessives. Résultats de Mokobodzki, "Séminaire de Probabilités V, Université de Strasbourg," pp. 196–208, Springer-Verlag, Berlin, 1971.