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This note is a sequel and a completion to [5]. Its purpose is to underline 
the important role played by the "separation property" (hi ~ H, h 2 ~ H,  
h 1 ¢= h~ ~ hi ¢= h~) in measurability questions (such as weak versus 
strong). The separation property is characteristic of liftings (see [4] for 
the definition of a lifting). 

The basic notation and terminology used below is as follows: 
We denote by (E, ~, t x) the underlying probability space and by 
= ~ ( E ,  ~, I~) the algebra of all d~-measurable mappings f :  E --~ R. 

F o r f ~  £,¢, g ~ ~o we write 

f = g  if f ( t )  =g( t )  for all t e e  

and 

f ~- g (/~) if f ( t )  = g(t) /~-almost surely. 

The latter defines the usual equivalence relation in ~o. We denote by f 
the equivalence class of each f ~  ~ with respect to this equivalence 
relation. 

We say that a set F carries t~ i fF  6 o ~ and/x(E -- F) = 0. 
We begin with the following result, which in a certain sense generalizes 

Proposition 1 of [5]: 

THEOREM 1. L e t  H C ~¢ be a set with the following properties. 

(a) The relations hi ~ H, h2 ~ H, h 1 ~ h 2 imply h 1 ~= ~ . 

(b) H is convex. 
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Then the following assertions about H are equivalent: 

(i) H is sequentially compact for the topology of pointwise conver- 
gence ~ on E. 

(ii) H is compact metrizable for the topology of pointwise convergence 
on E. 

(iii) H is compact for the topology of pointwise convergence on E. 

Proof. We consider on H the topology ~3 of pointwise convergence 
on E and the topology 23~,~ of convergence in /~-probabi l i ty)  

Since ( i i ) ~  (iii) obviously, it remains to prove ( i ) ~  (ii) and 
(iii) ~ ( i ) .  

Let  e be the identity mapping of H into H. We begin by showing that: 

(*) Under  either one of the assumptions (i) or (iii), 

e: (H, 23 (")) --+ (H, ~G) is continuous. 

Le t  f s H and (f~)~N a sequence of elements of H such that 

Suppose that (f~)*~N does not converge pointwise to f .  There  is then some 
t o ~ E and an % > 0 such that for any o~ ~ N, we can find an c~' ~ o~ with 

[f~'(to) -- f(to)l > ¢o- 

N o w  for each positive integer k, choose c~(k) ~ N such that 

a(A,f) l/2 - 

Then  for a'(k) >/ a(k) (chosen as above) we have 

]f~,(~)(to) -- f(t0)[ > Eo (1) 

If~ '(k)--f l  d/~ ~ 1 ( d(f~,(~) 
3 1 47 If~'(k)--fl ~ "  

1 Tha t  is, for any sequence (h~) of  elements of H,  there  is a subsequence (hn)  and an 
h ~ H such that  h% --~ h pointwise on E. 

2 °13 (m is clearly Hausdorff ,  metrizable being given by the metric 

f (h [ 
d(h, g) 

1 + l  - g  

for gEH,  h ~ H .  
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I t  is clear that the sequence (f~'(k))k converges to f ,  a.s. Under  either one 
of the assumptions (i) or (iii), there is an element g e H which is a cluster 
value of the sequence (f,'(k))k for the topology of pointwise convergence 
on E. At a point t ~ E where (f~,(k)(t))k converges to a limit, we must  
have 

g(t) = lipL,(k)(t) .  

Hence g ~ f(/~), and using hypothesis (a), g ----f. But at t o we have 
(by the first inequalities in relations (1)): 

I£,(~)(to) - g(to)[ > eo for all k. 

This contradicts the fact that g(to) is a cluster value for the sequence 
(f~.(k)(t0))k. Hence  the continuity assertion (*) is proved. From ( * )  
we easily deduce that: 

(**) Under  either one of the assumptions (i) or (iii), for a sequence 
(u~) of elements of H and u an element of H,  the following assertions are 
equivalent. 

(j) u~ --+ u/x-almost surely. 

(jj) u~ ~ u in/~-probability. 

(jjj) u~ --+ u pointwise on E. 

(i) ~ (ii). To  prove this implication it is enough to note that under  
the assumption (i), (H, ~(")) is compact metrizable, that ~6 is Hausdorff  
and weaker than ~6 (") (by (*)), whence ~6 --~ "6(,). 

(iii) ~ (i). We divide the proof of this implication into several steps: 

(I) For each t c E denote by ~t the mapping h --+ h(t) of the compact 
space (H, ~)  into R. I t  is clear that et ~ CR(H) and hence that Et(H ) = 
{h(t) I h ~ H} is a compact subset of R. It follows that if (u~) is an arbitrary 
sequence of elements of H, then SUpn ] u~(t)l < 0o for each t ~ E, and thus 

sup ] u, l ~ .£a. 
n 

(II) Let  (h~) be an arbitrary sequence of elements of H.  L e t  h* = 
sup I hn ] and define the measure v on (E, ~) by 

= (1/1 + h*) Jr,. 
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Then  v is a finite measure on (E, o~), v is equivalent with/~ (that is v and/x 
admit the same sets of measure zero), and 

h*  

that is h* ~ 5al(E, ~, v). 
From (**) above we then deduce: 

(***) For a sequence (u~) of elements of H and u an element of H 
we have: 

us --+ u v-almost surely <> un --~ u pointwise on E. 

(III) We next recall a remarkable theorem due to Koml6s (see [6]; 
see also [2]) of which we shall make use below. 

Let  (E, d ~, v) be a finite measure space. 

THEOREM (Koml6s). Let (fn) be a sequence of elements of ~L~'I(E, ~, v) 
with sup .  [Ifn 1il < oo. Then one can f ind a subsequence ( f ~ ) k  and an 
element f ~ ~ I ( E ,  ~, v) such that ( f ~ ) k  , as well as any further subsequence 
extracted from ( f n ) k  , converges Cesaro to f ,  v-almost surely. 

(IV) We finally show that H is sequentially compact for the topology 
of pointwise convergence on E. 

Let  (h~) be a sequence of elements of H. As in part (II) of the proof let 
h* = sups I h~ ] and let v be the measure on (E, d °) with density 1/(1 + h * )  
with respect to /x. Consider the measure space (E, ~ ,  u): The  sequence 
(h~), as a sequence of elements of 5el(E, d ~, v), satisfies the hypothesis of 
Koml6s'  Theorem. We can then extract a subsequence satisfying the 
conclusion of Koml6s '  Theorem. To simplify the notation we shall 
assume that  the sequence (h~) itself satisfies the conclusion of Koml6s '  
Theorem, i.e., there is h ~ 5FI(E, ~, v) such that for any subsequence 
(h%) extracted from (h,~) we have: 

lipm((h.1 + h.~ + "'" + hn)/p) = h v-almost surely. (2) 

For each n define 

ha + h~ + "" + h,~ 
gn n 
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Then  (gn) is a sequence of elements of H (use hypothesis (b)) and 

limgn(t) = h(t), v-almost surely. (3) 

Let  now g E H be a cluster value of the sequence (gn)~ for the topology of 
pointwise convergence on E (use assumption (iii)). Then  clearly (3) 
implies that 

g(t) ~- h(t), v-almost surely. (4) 

Since H is convex, we deduce from (2), (4), and (***) in part (II) of 
the proof, that for any subsequence (h~) extracted from (h~) 

(hnl + h~ 2 + "'" + hn~)/P ~ g pointwise on E. 

This  of course means that the sequence (hn) itself converges tog  pointwise 
on E and hence the proof of Theorem 1 is complete. 

Remark 1. Let  H C ~o be a set with the properties (a) and (b) of 
Theorem 1 and satisfying one (and hence all) of the equivalent conditions 
(i), (ii), and (iii) of Theorem 1. Let  B C H. Let  u be the upper envelope 
of B and v the lower envelope of B (the mappings u a'ffd v are defined by 
the equations 

,,(t) = sup  h(t), ~(t) = i~f  h(t), for  t e E) .  
h~B h~B 

Then  u: E--+ R, v: E ~ R and u, v are g-measurable, i.e., u ~ ~ and 
v e ~ .  

In fact, it is enough to remark that B, as a subspace of the compact  
metric space H, is separable, to consider an at most countable set B 0 C B 
dense in B for the topology of pointwise convergence on E and to note 
that u = suph~  ° h, v = infn~. ° h. 

Remark 2. In Theorem 1 above, hypothesis (b) was used only in 
the proof  of the implication (iii) ~ (i). The  equivalence (i) 4> (ii) holds 
without  assuming hypothesis (b). 

Using Theorem 1 above in conjection with the beautiful generalization 
of Egorov's  theorem due to P. A. Meyer  (see [7, p. 199, Proposition 2]), 
and the classical criterion of relative compactness for a bounded set in 
B(S ,  ~v) (see [3, p. 260, Theorem 6]) we obtain the following resu l t - -  
much in the same way that we derived Theorem 1 in [5]: 
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THEOREM 2. Let H C ~ be a set with the following properties: 

(a) The relations h 1 ~ H, h~ ~ H and hi ~= h2 imply h 1 C= h2; 

(b) H is convex. 

Consider the following assertions about H: 

(o~) H is compact for the topology of pointwise convergence on E. 

(/3) There is a set E o E ~ which carries tz, with the following property: 
For every E > 0 there is a countable partition (E~)n of E o into sets belonging 
to ~ with I~(E~) > 0 such that 

s ~ g~,  t ~ E~ ~ ] h(s) -- h(t)l ~ ~, for all h ~ H. 

Then (cz) => (/3). 

We shall not formulate the "corresponding converse" to Theorem 2 
above (see Theorem 2 in [5]). Instead we shall make the following remark 
which suffices for our purposes. 

Remark. Let H C ~ be a set satisfying the following condition: 

(/3) There is a set E 0 ~ 8 which carries /z, with the following 
property: For every E > 0 there is a countable partition (E~) of E o into 
sets belonging to o* with/z(E~) > 0 such that 

s e E~ , t ~ E~ :~ I h(s) -- h(t)[ <~ ~, for all h ~ H .  

Then  the relations h 1 ~ H, h~ ~ H and hlleo ~ h21e ° imply h 1 =/=/~2, 
that is HIE ° has the "separation property."  

We now turn our attention to vector-valued mappings. Let  X be a 
Banach space, X '  its Banach space dual. For the duality between X and X '  
we use the notation (x' ,  x )  -= x'(x), for x E X ,  x' e X ' .  If  g: E ~ X and 
x' ~ X ' ,  we denote by (x' ,  g )  the mapping t -+ (x' ,  g( t))  of E into R. 
For the sake of completeness we recall the terminology concerning 
weakly measurable and strongly measurable mappings of E into X,  as 
used in [5]: 

We say thatg:  E --~ X is weakly measurable ("scalairement mesurable" 
in Bourbaki 's  terminology; see [1]) if (x' ,  g )  e 5¢ for each x' ~ X' .  We 
say that g: E ~ X is strongly (Bochner) measurable if there is a sequence 
(s.) of simple functions (that is s~: E -+ X is countably valued and each 
value is assumed on a measurable set), such that lim~ s,~(t)= g(t), 
/~-almost surely. 
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We may  now extend T h e o r e m  3 of [5] to arbitrary weakly measurable  
mappings ,  as follows: 

THEOREM 3. Let g: E--~ X be a weakly measurable mapping. We have: 

(1) Suppose that the relations x' ~ X' ,  y' ~ X '  and (x', g) ~ ( y', g)  
imply (x', g) ~ ( y', g)(tz). Then g: E -+ X is strongly measurable. 

(2) Conversely, i f  g: E--+ X is strongly measurable, there is a set 
E o ~ d carrying tz such that the relations x' ~ X' ,  y' ~ X '  and (x', g)le o ~: 

( y', g)iE O imply (x', g) ~ ( y', g)(tz). 

Proof. T h e  proof  is similar to that  of T h e o r e m  3 in [5]. In  fact, let 
X 1' = {X' E X t [[[ x '  [l ~ l} and define 

H = {(x', g) [ x' ~ XI' }. 

Clearly H C ~ ,  H is convex and H is compact  for the topology of 
pointwise convergence on E (Alaoglu's  theorem;  see [3, p. 424]). 

Part  (1) follows by  applying T h e o r e m  2 above. Part  (2) follows by 
approx imat ing  g with s imple functions and making use of the Remark  
a t  the end of T h e o r e m  2 above. 

Remark. I t  seems likely (although this is somewhat  loosely stated) 
that  in general, for abst ract -valued functions, the "separat ion p rope r ty"  
is what  makes the difference between weak measurabi l i ty  and strong 
measurabil i ty.  
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