On Pointwise Convergence, Compactness, and Equicontinuity. II

A. IONESCU TULCEA*

Department of Mathematics, Northwestern University, Evanston, Illinois 60201

This note is a sequel and a completion to [5]. Its purpose is to underline the important role played by the "separation property" $(h_1 \in H, h_2 \in H,$ $h_1 \neq \hat{h}_2 \Rightarrow \hat{h}_1 \neq \hat{h}_2$) in measurability questions (such as weak versus strong). The separation property is characteristic of liftings (see [4] for the definition of a lifting).

The basic notation and terminology used below is as follows:

We denote by (E, \mathscr{E}, μ) the underlying probability space and by $\mathscr{L} = \mathscr{L}(E, \mathscr{E}, \mu)$ the algebra of all \mathscr{E} -measurable mappings $f: E \to R$. For $f \in \mathscr{L}$, $g \in \mathscr{L}$ we write

$$
f = g \qquad \qquad \text{if} \quad f(t) = g(t) \quad \text{for all} \ \ t \in E
$$

and

$$
f \equiv g(\mu)
$$
 if $f(t) = g(t)$ μ -almost surely.

The latter defines the usual equivalence relation in \mathscr{L} . We denote by \tilde{f} the equivalence class of each $f \in \mathscr{L}$ with respect to this equivalence relation.

We say that a set *F carries* μ if $F \in \mathscr{E}$ and $\mu(E - F) = 0$.

We begin with the following result, which in a certain sense generalizes Proposition 1 of [5]:

THEOREM 1. Let $H \subseteq \mathcal{L}$ be a set with the following properties.

- (a) *The relations* $h_1 \in H$, $h_2 \in H$, $h_1 \neq h_2$ *imply* $\tilde{h}_1 \neq \tilde{h}_2$.
- (b) *H is convex.*

* Research supported by the U.S. Army Research Office (Durham) under contract No. DAHCO 68 C005.

171

Copyright © 1974 by Academic Press, Inc. All rights of reproduction in any form reserved.

6o7/I212-3

Then the following assertions about H are equivalent:

(i) *H is sequentially compact for the topology of pointwise conver-* ℓ *gence¹* on E .

(ii) *H is compact metrizable for the topology of pointwise convergence on E.*

(iii) *H is compact for the topology of pointwise convergence on E.*

Proof. We consider on H the topology $\mathfrak G$ of pointwise convergence on E and the topology $\mathfrak{S}^{(\mu)}$ of convergence in μ -probability.²

Since (ii) \Rightarrow (iii) obviously, it remains to prove (i) \Rightarrow (ii) and $(iii) \Rightarrow (i).$

Let e be the identity mapping of H into H . We begin by showing that:

(*) Under *either one* of the assumptions (i) or (iii),

 $e: (H, \mathcal{C}^{(\mu)}) \to (H, \mathcal{C})$ is continuous.

Let $f \in H$ and $(f_{\alpha})_{\alpha \in N}$ a sequence of elements of H such that

$$
(f_{\alpha})_{\alpha \in N} \xrightarrow{\mathfrak{E}^{(\mu)}} f.
$$

Suppose that $(f_{\alpha})_{\alpha \in N}$ does *not* converge pointwise to f. There is then some $t_0 \in E$ and an $\epsilon_0 > 0$ such that for *any* $\alpha \in N$, we can find an $\alpha' \geq \alpha$ with

$$
|f_{\alpha'}(t_0)-f(t_0)|>\epsilon_0.
$$

Now for each positive integer k, choose $\alpha(k) \in N$ such that

$$
\beta\geqslant \alpha(k)\Rightarrow d(f_{\beta}\,,f)\leqslant 1/2^{k}.
$$

Then for $\alpha'(k) \geq \alpha(k)$ (chosen as above) we have

$$
|f_{\alpha'(k)}(t_0) - f(t_0)| > \epsilon_0
$$

$$
d(f_{\alpha'(k)}, f) = \int \frac{|f_{\alpha'(k)} - f|}{1 + |f_{\alpha'(k)} - f|} d\mu \leq \frac{1}{2^k}.
$$
 (1)

¹ That is, for any sequence (h_n) of elements of H, there is a subsequence (h_{n_k}) and an $h \in H$ such that $h_n \to h$ pointwise on E.

 $2^2 G(\mu)$ is clearly Hausdorff, metrizable being given by the metric

$$
d(h,g)=\int\frac{|h-g|}{1+|h-g|}\,d\mu
$$

for $g \in H$, $h \in H$.

It is clear that the sequence $(f_{\alpha'(k)})_k$ converges to f, a.s. Under *either one* of the assumptions (i) or (iii), there is an element $g \in H$ which is a *cluster value* of the sequence $(f_{\alpha'(k)})_k$ for the topology of pointwise convergence on E. At a point $t \in E$ where $(f_{\alpha'(k)}(t))_k$ converges to a limit, we must have

$$
g(t)=\lim_{k}f_{\alpha'(k)}(t).
$$

Hence $g \equiv f(\mu)$, and using hypothesis (a), $g = f$. But at t_0 we have (by the first inequalities in relations (1)):

$$
|f_{\alpha'(k)}(t_0)-g(t_0)|>\epsilon_0\qquad\text{for all }k.
$$

This contradicts the fact that $g(t_0)$ is a cluster value for the sequence $(f_{\alpha'(k)}(t_0))_k$. Hence the continuity assertion (*) is proved. From (*) we easily deduce that:

(**) Under *either one* of the assumptions (i) or (iii), for a sequence (u_n) of elements of H and u an element of H, the following assertions are equivalent.

- (i) $u_n \rightarrow u$ μ -almost surely.
- (jj) $u_n \rightarrow u$ in μ -probability.
- (iii) $u_n \to u$ pointwise on E.

 $(i) \Rightarrow (ii)$. To prove this implication it is enough to note that under the assumption (i), $(H, \mathcal{C}^{(\mu)})$ is compact metrizable, that $\mathcal C$ is Hausdorff and weaker than $\mathfrak{G}^{(\mu)}$ (by (*)), whence $\mathfrak{G} = \mathfrak{G}^{(\mu)}$.

(iii) \Rightarrow (i). We divide the proof of this implication into several steps:

(I) For each $t \in E$ denote by ϵ_t the mapping $h \to h(t)$ of the compact space (H, σ) into R. It is clear that $\epsilon_i \in C_R(H)$ and hence that $\epsilon_i(H) =$ ${h(t) \mid h \in H}$ is a *compact* subset of R. It follows that if (u_n) is an arbitrary sequence of elements of H, then $\sup_n |u_n(t)| < \infty$ for each $t \in E$, and thus

$$
\sup_n |u_n| \in \mathscr{L}.
$$

(II) Let (h_n) be an arbitrary sequence of elements of H. Let $h^* =$ sup $|h_n|$ and define the measure ν on (E, \mathscr{E}) by

$$
dv=(1/1+h^*) d\mu.
$$

Then v is a *finite* measure on (E, \mathscr{E}) , v is *equivalent* with μ (that is v and μ) admit the same sets of measure zero), and

$$
\int h^* dv = \int \frac{h^*}{1+h^*} d\mu < \infty,
$$

that is $h^* \in \mathscr{L}^1(E, \mathscr{E}, \nu)$.

From (**) above we then deduce:

(***) For a sequence (u_n) of elements of H and u an element of H we have:

$$
u_n \to u
$$
 v-almost surely $\Leftrightarrow u_n \to u$ pointwise on E.

(III) We next recall a remarkable theorem due to Komlós (see [6]; see also [2]) of which we shall make use below.

Let (E, \mathscr{E}, ν) be a finite measure space.

THEOREM (Komlós). Let (f_n) be a sequence of elements of $\mathscr{L}^1(E, \mathscr{E}, \nu)$ with $\sup_n \|f_n\|_1 < \infty$. Then one can find a subsequence $(f_{n_k})_k$ and an *element* $f \in \mathscr{L}^1(E, \mathscr{E}, \nu)$ such that $(f_{n_k})_k$, as well as any further subsequence *extracted from* $(f_{n_k})_k$, converges Cesaro to f, v-almost surely.

 (IV) We finally show that H is sequentially compact for the topology of pointwise convergence on E .

Let (h_n) be a sequence of elements of H. As in part (II) of the proof let $h^* = \sup_n |h_n|$ and let v be the measure on (E, \mathscr{E}) with density $1/(1+h^*)$ with respect to μ . Consider the *measure space* (E, \mathscr{E} , ν): The sequence (h_n) , as a sequence of elements of $\mathscr{L}^1(E, \mathscr{E}, \nu)$, satisfies the hypothesis of Komlós' Theorem. We can then extract a subsequence satisfying the conclusion of Komlós' Theorem. To simplify the notation we shall assume that the sequence (h_n) itself satisfies the conclusion of Komlós' Theorem, i.e., *there is* $h \in \mathscr{L}^1(E, \mathscr{E}, \nu)$ such that for *any* subsequence (h_{n}) extracted from (h_{n}) we have:

$$
\lim_{b}((h_{n_1}+h_{n_2}+\cdots+h_{n_p})/p)=h\nu\text{-almost surely.}\tag{2}
$$

For each n define

$$
g_n=\frac{h_1+h_2+\cdots+h_n}{n}
$$

Then (g_n) is a sequence of elements of H (use hypothesis (b)) and

$$
\lim g_n(t) = h(t), \qquad \nu\text{-almost surely.} \tag{3}
$$

Let now $g \in H$ be a *cluster value* of the sequence $(g_n)_n$ for the topology of pointwise convergence on E (use assumption (iii)). Then clearly (3) implies that

$$
g(t) = h(t), \qquad \nu\text{-almost surely.} \tag{4}
$$

Since H is convex, we deduce from (2), (4), and $(***)$ in part (II) of the proof, that for *any* subsequence (h_n) extracted from (h_n)

$$
(h_{n_1} + h_{n_2} + \cdots + h_{n_n})/p \rightarrow g
$$
 pointwise on E.

This of course means that the sequence (h_n) itself converges to g pointwise on E and hence the proof of Theorem 1 is complete.

Remark 1. Let $H \subset \mathscr{L}$ be a set with the properties (a) and (b) of Theorem 1 and satisfying one (and hence all) of the equivalent conditions (i), (ii), and (iii) of Theorem 1. Let $B \subset H$. Let u be the *upper envelope* of B and v the *lower envelope* of B (the mappings u and v are defined by the equations

$$
u(t) = \sup_{h \in B} h(t), \qquad v(t) = \inf_{h \in B} h(t), \qquad \text{for} \quad t \in E.
$$

Then $u: E \to R$, $v: E \to R$ and u, v are *&*-measurable, i.e., $u \in \mathscr{L}$ and $v\in\mathscr{L}$.

In fact, it is enough to remark that B , as a subspace of the compact metric space H, is separable, to consider an at most countable set $B_0 \subset B$ dense in B for the topology of pointwise convergence on E and to note that $u = \sup_{h \in B_0} h, v = \inf_{h \in B_0} h.$

Remark 2. In Theorem 1 above, hypothesis (b) was used only in the proof of the implication (iii) \Rightarrow (i). The equivalence (i) \Rightarrow (ii) holds without assuming hypothesis (b).

Using Theorem 1 above in conjection with the beautiful generalization of Egorov's theorem due to P. A. Meyer (see [7, p. 199, Proposition 2]), and the classical criterion of relative compactness for a bounded set in $B(S, \Sigma)$ (see [3, p. 260, Theorem 6]) we obtain the following result-much in the same way that we derived Theorem 1 in [5]:

THEOREM 2. Let $H \subseteq \mathscr{L}$ be a set with the following properties:

- (a) *The relations* $h_1 \in H$, $h_2 \in H$ and $h_1 \neq h_2$ *imply* $\tilde{h}_1 \neq \tilde{h}_2$;
- (b) *H is convex.*

Consider the following assertions about H:

 (α) *H* is compact for the topology of pointwise convergence on E.

(β) There is a set $E_0 \in \mathscr{E}$ which carries μ , with the following property: For every $\epsilon > 0$ there is a countable partition $(E_n^{\epsilon})_n$ of E_0 into sets belonging to $\mathscr E$ with $\mu(E_n^{\epsilon}) > 0$ such that

 $s \in E_n^{\epsilon}$, $t \in E_n^{\epsilon} \Rightarrow |h(s) - h(t)| \leqslant \epsilon$, *for all* $h \in H$.

Then $(\alpha) \Rightarrow (\beta)$.

We shall not formulate the "corresponding converse" to Theorem 2 above (see Theorem 2 in [5]). Instead we shall make the following remark which suffices for our purposes.

Remark. Let $H \subset \mathscr{L}$ be a set satisfying the following condition:

(β) There is a set $E_0 \in \mathscr{E}$ which carries μ , with the following property: For every $\epsilon > 0$ there is a countable partition (E_n^{ϵ}) of E_0 into sets belonging to $\mathscr E$ with $\mu(E_n^{\epsilon}) > 0$ such that

$$
s\in E_n^{\epsilon},\ t\in E_n^{\epsilon} \Rightarrow |h(s)-h(t)| \leqslant \epsilon,\qquad \text{for all}\quad h\in H.
$$

Then the relations $h_1 \in H$, $h_2 \in H$ and $h_{1|E_0} \neq h_{2|E_0}$ imply $\tilde{h}_1 \neq \tilde{h}_2$, that is $H_{\mathcal{F}_n}$ has the "separation property."

We now turn our attention to vector-valued mappings. Let X be a *Banach space, X'* its *Banach space dual.* For the duality between X and X' we use the notation $\langle x', x \rangle = x'(x)$, for $x \in X$, $x' \in X'$. If $g: E \to X$ and $x' \in X'$, we denote by $\langle x', g \rangle$ the mapping $t \to \langle x', g(t) \rangle$ of E into R. For the sake of completeness we recall the terminology concerning weakly measurable and strongly measurable mappings of E into *X,* as used in [5]:

We say that $g: E \to X$ is *weakly measurable* ("scalairement mesurable" in Bourbaki's terminology; see [1]) if $\langle x', g \rangle \in \mathscr{L}$ for each $x' \in X'$. We say that $g: E \to X$ is *strongly* (Bochner) *measurable* if there is a sequence (s_n) of simple functions (that is $s_n: E \to X$ is countably valued and each value is assumed on a measurable set), such that $\lim_{n} s_n(t) = g(t)$, μ -almost surely.

We may now extend Theorem 3 of [5] to *arbitrary* weakly measurable mappings, as follows:

THEOREM 3. Let $g: E \rightarrow X$ be a weakly measurable mapping. We have:

(1) *Suppose that the relations* $x' \in X'$, $y' \in X'$ and $\langle x', g \rangle \neq \langle y', g \rangle$ *imply* $\langle x', g \rangle \not\equiv \langle y', g \rangle(\mu)$ *. Then* $g: E \to X$ *is strongly measurable.*

(2) *Conversely, if* $g: E \to X$ *is strongly measurable, there is a set* $E_0 \in \mathscr{E}$ carrying μ such that the relations $x' \in X'$, $y' \in X'$ and $\langle x', g \rangle_{|E_0} \neq 0$ $\langle y', g \rangle_{E_n}$ *imply* $\langle x', g \rangle \not\equiv \langle y', g \rangle (\mu)$ *.*

Proof. The proof is similar to that of Theorem 3 in [5]. In fact, let $X_1' = \{x' \in X' \mid ||x'|| \le 1\}$ and define

$$
H = \{ \langle x', g \rangle \mid x' \in X_1' \}.
$$

Clearly $H \subset \mathscr{L}$, H is convex and H is compact for the topology of pointwise convergence on E (Alaoglu's theorem; see [3, p. 424]).

Part (1) follows by applying Theorem 2 above. Part (2) follows by approximating g with simple functions and making use of the Remark at the end of Theorem 2 above.

Remark. It seems likely (although this is somewhat loosely stated) that in general, for abstract-valued functions, the "separation property" is what makes the difference between weak measurability and strong measurability.

REFERENCES

- 1. N. BOURBAKI, Intégration, Hermann, Paris, 1959-1968.
- 2. S. D. CHATTERJI, Un principe de sous-suites dans la théorie des probabilités, "Séminaire de Probabilités VI, Université de Strasbourg," pp. 72-89, Springer-Verlag, New York, 1972.
- 3. N. DUNFORD AND J. T. SCHWARTZ, "Linear Operators," Part I, Interscience, New York, 1958.
- 4. A. IONESCU TULCEA AND C. IONESCU TULCEA, "Topics in the Theory of Lifting," Springer-Verlag, New York, 1969.
- 5. A. IONESCU TULCEA, On pointwise convergence, compactness and equicontinuity in the lifting topology (I), *Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 26* (1973), 197-205.
- 6. J. KOML6S, A generalization of a problem of Steinhaus, *Acta Math. Acad. Sci. Hungary* 18 (1967), 217-229.
- 7. P. A. MEYER, Repr6sentation int6grale des fonctions excessives. R6sultats de Mokobodzki, "Séminaire de Probabilités V, Université de Strasbourg," pp. 196-208, Springer-Verlag, Berlin, 1971.