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On the Size of Edge Chromatic Critical Graphs
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1. INTRODUCTION

All graphs G ¼ ðV ;EÞ are finite and simple. The chromatic index w0ðGÞ of a
graph G is the minimum number of colors required to color the edges of G
so that two adjacent edges receive different colors. A graph G of maximum
degree D is class one if w0ðGÞ ¼ D: Otherwise, Vizing’s theorem [8] guarantees
w0ðGÞ ¼ Dþ 1 and G is said to be class two. A D-critical graph G is a
connected graph of maximum degree D such that G is class two and G� e is
class one for each edge e of G: The following is a well-known conjecture of
Vizing proposed in 1968.

Conjecture (Vizing [10]). If G is a D-critical graph, then jEj51
2
fjV j

ðD� 1Þ þ 3g:

Vizing’s conjecture has been proved for the case D45 [5, 7]. It was proved
in 1975 by Fiorini [2] that if G is a D-critical graph, then jEj51

4
jV jðDþ 1Þ:
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More than 20 years later, Fiorini’s result was improved by two recent papers
which are summarized by the following theorem.

Theorem 1 (See Clark and Haile [1]; Haile [4]). If G is a D-critical graph,
then jEj5f ðDÞjV j; where

f ðDÞ ¼

Dþ 1

3
if 64D48;

3ðDþ 2Þ
10

if D ¼ 9; 11; 13;

15 þ
ffiffiffiffiffi
29

p
4

if D ¼ 15;

D
4
þ

6D
4ðDþ 4Þ

if D510; D is even;

D
4
þ

7Dþ 3

4ðDþ 5Þ
ifD57; D is odd:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

For more results about the above conjecture, see [3, 6, 11]. Let k ¼
1
2
ðDþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D� 1

p
Þ: In this paper, by applying the discharging method which

was used to solve the 4-color problem, we give a simple and short proof of
the following theorem which is a stronger result than Theorem 1 for D510
and D=11:

Theorem 2. Let G be a D-critical graph, then jEj5
kjV j

2
:

Comparing Theorem 2 with Theorem 1, one can easily check that
k
2
� f ðDÞ50 for D 2 f10; 12; 13; . . .g and limD!1ðk

2
� f ðDÞÞ ¼ 1: Further-

more, the method in this paper is totally different from one used in the
proofs of previous results and this is the first time that the discharging
method is applied to a graph theory problem in which Euler’s formula is not
used and embeddings of graphs in surfaces are not mentioned.

Before proceeding, we introduce some notation. For x 2 V ; the degree of x
is denoted by dðxÞ: An i-vertex, 5 i-vertex or 4i-vertex is a vertex of degree
i; at least i or at most i: We define diðxÞ to be the number of i-vertices
adjacent to x:

2. PROOF OF THEOREM 2

Before we prove Theorem 2, we need the following lemmas.

Lemma 1 (Vizing’s Adjacency Lemma [9]). If x is a vertex of a D-critical

graph and diðxÞ51; then dDðxÞ5maxf2;D� iþ 1g:
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Lemma 2. Let hðxÞ ¼ x�k
xþðn�D�1Þ: Then hðxÞ is decreasing if D� k5n� 1;

and hðxÞ is increasing if D� k4n� 1:

The proof of Lemma 2 is easy. Hence we omit it.

Claim 1. If n52; then the following two inequalities are true:

k4
nðnþ D� 1Þ

2n� 1
; ð1Þ

k � n�
nðD� kÞ
n� 1

40 ð2Þ

Proof. Since k ¼ 1
2
ðDþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D� 1

p
Þ; we have

nðnþ D� 1Þ
2n� 1

� k ¼
nðnþ D� 1Þ � 2nk þ k

2n� 1

¼
n2 � ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D� 1

p
þ 1Þnþ D

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D� 1

p
2n� 1

¼
ðn� 1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D� 1

p
þ 1ÞÞ2

2n� 1
50:

Thus, (1) is true. Similarly, we can show (2). ]

Claim 2. Let n52: If D� k4n� 1; then

gðnÞ ¼ k � n�
ðD� k þ 1ÞðD� kÞ

n� 1
40:

Proof. If n ¼ D� k þ 1; then one can check that

gðnÞ ¼ k � ðD� k þ 1Þ � ðD� k þ 1Þ

¼ 3k � 2D� 2 ¼ 3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D� 1

p
� D

2
� 2

¼ � 1
2
ð

ffiffiffiffiffiffiffiffiffiffiffi
D� 1

2

q
� 3

2

ffiffiffi
2

p
Þ240:

Assume that gðnÞ40 for some n5D� k þ 1: Since D� k4n� 1 and
D� k þ 14n; it follows that

ðD� k þ 1ÞðD� kÞ4nðn� 1Þ or ðD� k þ 1ÞðD� kÞð 1
n�1

� 1
nÞ � 140:

Adding the above inequality to gðnÞ gives gðnþ 1Þ40: ]
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Proof of Theorem 2. Suppose that G ¼ ðV ;EÞ is a D-critical graph with
jEj51

2
kjV j: Denote k � dðxÞ by MðxÞ; for each vertex x: Then

X
x2V ðGÞ

MðxÞ ¼
X

x2V ðGÞ

ðk � dðxÞÞ ¼ kjV j � 2jEj > 0:

We call the number MðxÞ the initial charge of x for x 2 V : We will assign a
new charge denoted by M 0ðxÞ to each x 2 V according to the discharging rule

R below:
R: Let x be a 5k-vertex. Then x sends dðyÞ�k

dðxÞþdðyÞ�D�1
to each > k-vertex y

adjacent to it.

Note that the rule only moves charge around, and does not affect the sum.
Therefore,

X
x2V ðGÞ

MðxÞ ¼
X

x2V ðGÞ

M 0ðxÞ:

Now we check M 0ðxÞ and show M 0ðxÞ40 for each x 2 V : Let x be a k-
vertex. Then by R; MðxÞ ¼ M 0ðxÞ ¼ 0: Let x be an n-vertex with n > k: Then
MðxÞ ¼ k � n: Let m be the lowest degree of a neighbor of x: By Lemma 1, x
is adjacent to at least D� mþ 1 D-vertices. By R; each of the at most
n� ðD� mþ 1Þ ð5kÞ-vertices adjacent to x sends at most n�k

mþn�D�1
to x and

thus M 0ðxÞ4k � nþ ½n� ðD� mþ 1Þ� n�k
mþn�D�1

¼ 0:
Let x be an n-vertex with n5k: Then MðxÞ ¼ k � n: Since G is critical with

D > 1; we have n52: We consider two cases according to D� k5n� 1 or
D� k4n� 1:

Case 1. D� k5n� 1: By Lemma 1, if y is adjacent to x; then dðyÞ5Dþ
2 � dðxÞ ¼ ðD� nþ 1Þ þ 15k þ 1: By R and Lemma 2, x sends at least D�k

n�1

to each neighbor, and the total charge that x sends out is at least nðD�kÞ
n�1

: Thus,
by Claim 1, we have M 0ðxÞ4k � n� nðD�kÞ

n�1
40:

Case 2. D� k4n� 1: Let m be the number of D-neighbors of x: First we
assume that m5D� k þ 1: Since x sends out D�k

n�1
to each D-vertex adjacent

to it, our claim 2 implies that M 0ðxÞ4k � n� ðD� k þ 1ÞD�k
n�1

40: Now we
consider the case when m5D� k þ 1: Let y be a vertex adjacent to x: By
Lemma 1, x has at least D� dðyÞ þ 1 D-neighbors, that is, m5D� dðyÞ þ 1:
Hence we have

dðyÞ5D� mþ 1 > Dþ 1 � ðD� k þ 1Þ ¼ k:

Since D� k4n� 1; by Lemma 2, x sends at least D�mþ1�k
n�m to each 5D-vertex

adjacent to it. Thus x sends out at least

m
D� k
n� 1

þ ðn� mÞ
D� mþ 1 � k

n� m
¼ m

D� k
n� 1

þ D� mþ 1 � k



SANDERS AND ZHAO412
to its neighbors. Since D�k
n�1

41; we have

m
D� k
n� 1

þ D� mþ 1 � k5ðD� k þ 1Þ
D� k
n� 1

;

which leads to

M 0ðxÞ4k � n� m
D� k
n� 1

þ D� mþ 1 � k
	 


4k � n� ðD� k þ 1Þ
D� k
n� 1

40:

Hence, we have

05
X

x2V ðGÞ

MðxÞ ¼
X

x2V ðGÞ

M 0ðxÞ40;

a contradiction. ]
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