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A subset S of the vertex set of a graph G is called an F-set if every o € I'(G), the
automorphism group of G, is completely specified by specifying the images
under « of all the points of S, and S has a minimum number of points. The
number of points, k(G), in an F-set is an invariant of G, whose properties are
studied in this paper. For a finite group I" we define k(I") = max{k(G) | I'(G) =
Iy, Graphs with a given Abelian group and given k-value (k < k(1)) have been
constructed. Graphs with a given group and k-value 1 are constructed which
give simple proofs to the theorems of Frucht and Bouwer on the existence of
graphs with given abstract/permutation groups.

1. INTRODUCTION

In this paper we consider finite ordinary graphs. Generally, we follow the
notations and terminology in [3]. Let G be a graph whose automorphism
group I'(G) is not the identity group. A subset S of the vertex set V(G)
is called an f-set if every o € I'(G) is completely specified by giving the images
of the points of S alone. An f-set with a minimum number of points is called
an F-set. The cardinality of an F-set S of G is denoted by k(G). If I'(G) = {e},
let (G) = 1.

The aim of this paper is to study the properties of k(G) (this section)
and the existence of graphs with a given value for k(G) (Section 2). One
particularly interesting class of graphs with k(G) = 1 provides alternative
proofs for the theorems of Frucht [2] and Bouwer [1].

THEOREM 1. If there exists a o € I'(G) such that o is completely specified
by giving the images of S(C V(GQ)), then S is an f-set.

Proof. 1If not, there exist o,, g, € I'(G) such that o;(s) == op(s) Vs S
and oy # 0,. But then, oy'oy(s) == sVse S and o;'0y # e, the identity
automorphism. This implies oo3%0,(s) = o(s)VseS and ooz'oy # 0, a
contradiction establishing the theorem.
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COROLLARY 1.1. To check whether a set S C V(G) is an f-set, it is enough
to check whether identity is the only automorphism of G which fixes S pointwise.

THEOREM 2. If S is an f-set, then o(S) is also an f-set for any o € I'(G).

The simple proof is omitted.

Note 1. A minimal f~set of G need not be an F-set. For example, con-
sider the graph in Fig. 1. Here {1, 2} is a minimal f-set but not an F-set,
since k(G) = 1 and { g;} is an F-set.

Ficure 1

Lemma . If k(G) = 1 and if {t} is an F-set of G, then | I'(G)| = the
number of points which are similar to v.

Proof. If uissimilar to v, there exists a unique « € I'(G) such that «u(v) = u.

DEFINITION. A set of elements of a group I is said to be independent
if no element of the set can be generated by the remaining elements of the
set.

THEOREM 3. Let I' be a finite group. If G is a graph with I'(G) = I, then
KG) < max{| X | | X is an independent set of I'}.

Proof. let S =={1,2,...,k} be an F-set of G. Define subgroups #; of
I'as H, = {ce I'(G) | o(j) = j,j # i}. Since S is an F-set, each H, +# {e}
and H; N H; = {e} if i # j. Since any element of the subgroup generated
by {H;|j # i} keeps I fixed, no element (54 ¢) of H; can be generated by
{H;|j # i}. So a set containing one element (# ¢) from each H; forms an
independent set of I'. Hence k(G) = k < max{| X' | | X is an independent
set of I'}.

CoroLLARY 3.1. If I' is a finite cyclic group and not a direct product
of nontrivial subgroups then k(G) = 1 for any graph with I'(G) = I.
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Proof. Any maximal independent set of I' contains only one element.

DeRNITION.  Let k(") = max{k(G) | G such that I'(G) = I'}.
The following are easy to see: k(K,) = n — 1 and k(K ,) =m +n — 2
ifm-+n > 2.

THEOREM 4. Let G be a block-graph with blocks {B,}. Let r; be the number
of non-cut-points of B;. Then, 3, 1(r; — 1) < k(G) < Zri>1(r,,; — 1) + M,
where

Mzzri"’l if Zri#o
7;=1

riml

=0 otherwise.

Proof. In the block B;, if r, = 2, then all the non-cut-points of B;
except one have to be in any F-set. Hence the first inequality.

Let S = {U 4;} U B where(l) A4, is any one subset of r, — 1 non-cut-
points of B;, if r; > 1 and (2) if C is the set of all non-cut-points in the
B;s with r; = 1, then B is any one subset of C with | C| — 1 points if
C+# zand B= g if C = &. It can be easily seen that if every point of S
is fixed then all the non-cut-points of G are fixed and hence all the cut-points
are also fixed. Hence S is an f-set of G. This gives the second inequality.

COROLLARY 4.1. If T is a tree then k(T) < number of pendent vertices
of T.

Note 2. The above inequalities may be strict inequalities or equalities.
Figure 2 gives four examples in which all the combinations are realized.

AL ART DD

N=k=M+N N= k<M+N N<k=M+N N<k<M+N
a c d

FIGURE 2
2. GraPHS WITH GIVEN k(G)
The graph products considered here are Cartesian products.
THEOREM 5. Let {G;} be a finite number of connected prime graphs. A

set of necessary and sufficient conditions for a subset S of V(G) to be an f-set

OfG:HG1 is
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(1) pAS)is an f-set of Gy, Vi, where p; is the projection mapping of G
to the i th coordinate space G, .

(2) the map «: p{S)— pi(S) given by o pAS)) = p,(S)Vse S is not
a restriction of an isomorphism of G; to G; , Vi + .

Proof. Picture the points of G; as plotted on the ith axis of an n-dimen-
sional space, where i € {1, 2,..., n.} The points of G are then among the lattice
points in the nonnegative orthant.

Since graph multiplication is commutative, we can write G = G, X
(I'Ts= Gy). If condition (1) is not satisfied then by Corollary 1.1, there exists
a nontrivial automorphism of I'(G,), fixing pAS). This naturally extends to
an automorphism of G which fixes all the points whose ith coordinates are
in the set p,(S). Hence condition (1) is necessary. If (2) were not satisfied,
then there exists an isomorphism o: G; — G; such that of p(s)) = p;(s).
Arrange the points of G; such that ( g; , o g;)) forms a diagonal in the (7, j)th
plane, as shown in Fig. 3. Now, there is an automorphism of G; X Gj

N
j thaxis

alg) ¢ : : ’ i th axis

"y
rd

- ¥ +——

9 9%

FIGURE 3

fixing the diagonal points ( g; , ( g;)), and hence a nontrivial automorphism
of G fixing the points of S, which implies that S is not an f-set of S, a contra-
diction.

Since the automorphisms of G are only of the above two types, it is clear
that conditions (1) and (2) are sufficient to ensure that S is an f-set. This
completes the proof.

THEOREM 6. Let G and H be two connected graphs which are prime fo
each other. Then k(G X H) = Max(k(G), k(H)).

Proof. Let{l,2,.., m} bean F-set of G and {1’, 2',..., n'} be an F-set of H.
Let m >= n'. By Theorem 5, it is clear that &(G X H) > m. Since G and H
are prime to each other the second condition of Theorem 5 is always satisfied
for any subset S of V(G x H). Consider S = {(1,1),(2,2),...,(n, n),
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(n ++ 1, n),..., (m, n')}. Tt is easy to see that the first condition of Theorem 3
is also satisfied by S and hence, having the minimum number of points, S
is an F-set of G X H, proving the theorem.

COROLLARY 6.1. Let G = [1,., G%, where G; are prime to each other.
Then k(G) = max; k(G}).

Now, let us consider F-sets of G”, where G is a prime graph. Let
{8; = Wi, Uy s, V) | £ = 1,2,..., k} be an F-set of G*. By Theorem 5,
{vy 11 =1,2,...,k}is an f-set of G for j = 1, 2,..., n, and there do not exist
automorphisms of G such that v — v, , 1 = 1,..., kforany /, me {1, 2,..., n}.
It i1s not necessary that the elements v,; should be different for a given /.
Let us say that two ordered f-sets (v; ,..., 1) and (vy',..., v;,") with k& (not neces-
sarily distinct) points of G are dust.uct if there does not exist an automorphism
of G taking v, — v;’. So, by the above discussion, if there are m,, distinct
ordered f-sets of G with k points, then writing these sets as columns of a
matrix and considering the rows as points of G™, we get an f-set of G™* with
k points. Hence k(G™) <C k. First we prove that my, is a strictly increasing
function of k. List all the m,_; ordered f-sets with & — 1 points. Let © # v
be points of G. To each of these ordered f-sets add the point u at the end.
Obtain another f~set by adding v to one of the original m,_; f-sets. It is easily
secen that these my_, -+ 1 ordered f-sets are distinct f-sets with k& points.
Hence my_; << my, . Suppose r = k(G™) < k. Then consider an F-set §
of G™=. Consider the m, projections of S into the coordinate spaces. They
give m,, ordered fsets for G, with r elements each. Since m, < my, , at least
two of these are not distinct, and by Theorem 5, S is not an f-set of G™,
a contradiction. Hence k(G™) > k. Thus k(G™) = k and we have proved

THEOREM 7. A(G™) =k if myy <n < my.

Note 3. It seems very difficult to find m,, for a given graph, even for small
values of k. (It is obvious that &k > k(G).)

THeorEM 8. Let G = K, . Then
Fy = 2k-1 if k is odd,
= k-1 |

Dt

( k > otherwise
k/2 )

Proof. my = 2% = 1 is clear. Let the points of K, be {0, 1}. The only
nontrivial automorphism of K, interchanges 0 and 1. If ac{0, 1}, let
denote the other element. If {b,,b,,..., b} is an ordered f-set then
{by, by ,..., by} is not distinct from {b, ,..., by}. So the number of distinct
f-sets with & points (not necessarily distinct) are given by different placings
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of O°’s and 1’s in the & places. In other words, if there are r zeros and (k — r)
ones, then it is just choosing the r places for the zeros. This is done in (£)
ways. Sincer = 0, 1,.., kj2ifkisevenandr =0, 1,..., (kK — 1)/2if k is odd,
(the other choices for 0 giving no new distinct ordered f-set, as noted before),
we get the number of distinct ordered f-sets with & points as (}) — (%) +- +
(o) if k is even and (§) + (1) + ~ + (a0 if &k is odd. That is 2#2 if
k is odd and (2/2) + () if k is even.

Note 4. Since @, , the r-dimensional cube is just (K,)*, we have cal-

culated k(Q,).
Let us now turn our attention to graphs with prescribed k-values.

THEOREM 9. Let I' be a finite Abelian group and 1 < k < the maximum
number of elements in any independent set of I'. Then there exists a graph G

(indeed infinitely many) such that I(G) = I' and k(G) = k.

Proof. Since I' is Abelian, it is a direct product of cyclic groups. Let
I' = TT; T'; where each I’ is cyclic and is not a direct product of nontrivial
groups. This 7 is nothing but the maximum number of elements in an
independent set of I'. Let {H;} be graphs such that I'(H,) = I, and H;
are mutually prime. For example, if | ;| = 3 we can take any of the graphs
in Fig. 4, as H;.

FIGURE 4

Consider H = [, """ H,. By Corollary 3.1, k(H) = 1, Vi = 1,2,.,n,
and by Theorem 6, k(H{) = 1. Now construct G as follows. Let
V(G = VEVVEH) i =n—k + 2,..., 0} Y{u},
and
EG) =EHV{EH) i=n—k+2,.,1
U{(u, ke V(H) or V(H,), i = n —k + 2,...,n}.

It is easily seen that J(G) = [11 I, = I' and that any f-set of G’ must con-
tain one point from H and each of {H,/i = n — k + 2,..., n}. Since such a
set actually forms an F-set, k(G) = k.
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We leave the similar results for non-Abelian groups as the following two
conjectures.

Conjecture 1. If I' is a finite non-Abelian group, k(I") = maximum
number of elements in an independent set of I'.

Conjecture 2. If I' is a finite non-Abelian group and | < & < &(I),
then there exists a graph G with I'(G) = I" and k(G) = k.

3. Graras WiITH GIVEN GROUP

In this section we construct graphs with k(G) = 1 which are simpler than
the Frucht graphs [2] and Bouwer graphs [1]. We start with the construction
of graphs G, which are basic in our construction of graphs with a given
group. G, is defined to be K and Gj is as in Fig. 1.

The points 1, 2, 3 are called the S-points (special points) of (5 and the
other points are called the G-points (group points) of G;. For n =3, G, is
constructed inductively from K, as follows. Start with a K, . The points of
K, (in G,) are the S-points of G,,. On each line of K, introduce two new
points. In the resulting homeomorph of X, , each S-point has a neighborhood
containing n — 1 points. Identify the S-points of a copy of G,_; with these
n — 1 points. Thus, for each point of K, , we have introduced a copy of
G,_; . The resulting graph is G,, . The collection of the G-points of all the
copies of G,_; present in G, constitute the set of G-points of G,, . It is clear
that there are n! G-points in G, . All these have degree three and are similar
to each other. Further, if any one of these points, say g, is fixed, then the
whole graph is fixed. (For g belongs to a unique G, which is included in a
unigue Gy, etc., and fixing g fixes the points of this G, and in turn this G,
and so on.) Thus each G-point is an F-set of G, . Name the S-points of G,
as 1, 2,..., n. Name any of the G-points as g, = e € S, . Since g, is an F-set,
if a(g,) (for « € I'(G,)) is given then « is specified completely. This « restricted
to the S-points of G, gives an element, say g,, of S, . Name «(g;) as g, .
Similarly ali the G-points of G, can be named (uniquely and unambiguously)
by the elements of S,,. Now by Lemma 1, I'(G,) = S, .

THEOREM 10. Any automorphism a of G, when restricted to the G-points,
is a left multiplication by ofe).

Proof. Let ofe) = x and o y) = z. Let us denote the automorphism
taking e to x as oy . S0 a,(y) = z and «,(e) = y. Therefore o,u,e) = z,
1.e., agle) = z, which implies xy = z. Hence a,(y) = xy = a,e) y.

TreoReM 11 (Frucht [2]). Given a finite group I, there exists a graph G
such that T(G) = T
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Proof.  As any finite group can be viewed as a subgroup of some S, ,
let I" be a subgroup of S, , for some #. In the G, corresponding to this n,
for each G-point (named with the elements of I') take a copy of K, and iden-
tify one of its points with this G-point. The new graph, say H,, , is the required
graph. For, ¢ = g; is an F-set in H, also, and only the G-points named with
elements of I" are similar to g, , since, under an automorphism x,, where
g € I' (by Theorem 10) the points with the names of elements of I” go among
themselves. By Lemma 1, I'(H,) o= I,

CoroLLARY 11.1 (Bouwer {11). Given a permutation group P and a
graph Y such thar P C I'(Y) (as permutation groups), there exists a graph G
such that

(1) Y is an induced subgraph of G.

Q) When I'(G) is restricted to the vertex set of Y, it is isomorphic
to P as a permutation group.

(3) I'(G) = P (as abstract groups).

Proof. Construct H, as before with the automorphism group 2. Identify
the points of ¥ with the S-points of H,, (i.e., the points having the same labet
are identified). It is clear that this new graph is the required G with the
S-points forming the subgraph Y.

Note 5. The proof for Bouwer’s theorem is simple here, as we start with
a new type of graph with a given group.

Note 6. By replacing each line joining two G-points of G, with a graph
whose group is the cyclic group of order 2, where two points which are similar
are identified with the G-points, we get an infinite number of graphs with a
given group.
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