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A subset S of the vertex set of a graph G is called an F-set if every o( E r(G), the 
automorphism group of G, is completely specified by specifying the images 
under a: of all the points of S, and S has a minimum number of points. The 
number of points, k(G), in an F-set is an invariant of G, whose properties are 
studied in this paper. For a finite group r we define k(r) = max{k(G) I r(G) = 
r). Graphs with a given Abelian group and given k-value (k < k(r)) have been 
constructed. Graphs with a given group and k-value 1 are constructed which 
give simple proofs to the theorems of Frucht and Bouwer on the existence of 
graphs with given abstract/permutation groups. 

1. INTRODUCTION 

In this paper we consider finite ordinary graphs. Generally, we follow the 
notations and terminology in [3]. Let G be a graph whose automorphism 
group r(G) is not the identity group. A subset S of the vertex set V(G) 
is called an.f-set if every u f r(G) is completely specified by giving the images 
of the points of S alone. An&et with a minimum number of points is called 
an F-set. The cardinality of an F-set S of G is denoted by k(G). If r(G) = (e}, 
let k(G) = 1. 

The aim of this paper is to study the properties of k(G) (this section) 
and the existence of graphs with a given value for k(G) (Section 2). One 
particularly interesting class of graphs with k(G) = 1 provides alternative 
proofs for the theorems of Frucht [2] and Bouwer [I]. 

THEOREM 1. I f  there exists a 0 E r(G) suciz that u is completely spec$ecl 
by giving the images of S(C V(G)), then S is an f-set. 

Proof. If not, there exist o1 , o2 E r(G) such that ~~(3) = am Vs ES 
and crl # u2 . But then, U;%,(S) = s ‘v’s E S and o;?zrl # e, the identity 
automorphism. This implies ~;‘q(s) = u(s) Vs E S and o.u;‘a, # 0, a 
contradiction establishing the theorem. 
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COROLLARY 1.1. To check whether a set S _C V(G) is an f-set, it is enough 
to check whether identity is the onIy automorphism of G which fixes Spointwise. 

THEOREM 2. If S is an f-set, then a(S) is also an f-set for any CJ E I’(G). 

The simple proof is omitted. 

Note 1. A minimal f-set of G need not be an F-set. For example, con- 
sider the graph in Fig. 1. Here (1, 21 is a minimal f-set but not an F-set, 
since k(G) = 1 and { gI} is an F-set. 

2 3 
4, g2 

FIGURE 1 

LEMMA 1. If k(G) = 1 and if (v> is an F-set of G, then / I’(G)1 = the 
number of points which are sinzilar to v. 

Proof. If u is similar to v, there exists a unique 01 E r(G) such that E(V) = II. 

DEFINITION. A set of elements of a group F is said to be independent 
if no element of the set can be generated by the remaining elements of the 
set. 

THEOREM 3. Let r be ajinite group. If G is a graph with r(G) = P: then 
k(G) < maxII 2~ I I 2~ is an independent set of r>. 

Proof. Let S = (1,2,..., k> be an F-set of G. Define subgroups I& of 
r as Hi = {U E r(G) / u(j) = j,j # i}. Since S is an F-set, each 34 # (e> 
and Hi n Hj = (e} if i # j. Since any element of the subgroup generated 
by {Hj / j # i} keeps i fixed, no element (f e) of Hi can be generated by 
(Hj 1 j # ij. So a set containing one element (# e) from each Hi forms an 
independent set of F. Hence k(G) = k < max(I X j I X is an independent 
set of r}. 

COROLLARY 3.1. If r is a finite cyclic group and not a direct product 
of nontrivial subgroups then k(G) = 1 for any graph with r(G) = r. 
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Prooj Any maximal independent set of r contains only one element. 

DEFINITION. Let k(P) = max(k(G) 1 G such that r(G) = F). 
The following are easy to see: k(KJ = pz - I and k(&,,) = m + n - 2 

ifm +n>2. 

THEQREM 4. Let G be a block-graph with blocks {Bi). Let ri be the number 
of non-cut-points of Bi . Then, CT+(ri - 1) < k(G) < C,i>l(riI - 1) + A.f, 
where 

M= cl-i-1 if C ri # 0 
ri-1 T*=l 

=o otherwise. 

Proof. In the block Bi , if ri 3 2, then all the non-cut-points of Bi 
except one have to be in any F-set. Hence the first inequality. 

Let § = (U Ai) u B where(l) Ai is any one subset of I’~ -- 1 non-cut- 
points of Bi, if ri > 1 and (2) if C is the set of all non-cut-points in the 
B;‘s with ri = 1, then B is any one subset of C with j C / - 1 points if 
C # m and B = m if C = 0. It can be easily seen that if every point of S 
is fixed then all the non-cut-points of G are fixed and hence all the cut-points 
are also fixed. Hence S is an f-set of G. This gives the second inequality. 

COROLLARY 4.1. If T is a tree then k(T) < number of pendent vertices 
of T. 

Note 2. The above inequalities may be strict inequalities or equalities. 
Figure 2 gives four examples in which all the combinations are realized. 

N=k=M+N 
0 

N=k< M+N N<k=M+N NckcMfN 
b c d 

FIGURE 2 

2. GRAPHS WITH GIVEN k(G) 

The graph products considered here are Cartesian products. 

THEOREM 5. Let (GJ be a finite number of connected prime graphs. A 
set of necessary and suficient conditions for a subset S of V(G) to be an f-set 
of G = I-J Gi is 
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(1) pi(S) is an f-set of Gi, Vi, where pi is the projection mapping of G 
to the i th coordinate space Gi . 

(2) the map ol: p;(S) -p,(S) given by a( pi(S)) = p,(S) Vs E S is not 
a restriction of an isomorphism of Gi to Gf , Vi # j. 

Proof. Picture the points of Gi as plotted on the ith axis of an n-dimen- 
sional space, where i E (1, 2 ,..., n.} The points of G are then among the lattice 
points in the nonnegative orthant. 

Since graph multiplication is commutative, we can write G = Gi x 
(flIiij GJ. If condition (1) is not satisfied then by Corollary 1.1, there exists 
a nontrivial automorphism of r(Gi), fixing pi(S). This naturally extends to 
an automorphism of G which fixes all the points whose ith coordinates are 
in the set p,(S). Hence condition (1) is necessary. If (2) were not satisfied, 
then there exists an isomorphism CX: Gi --f Gj such that a( pi(s)) = pj(s). 
Arrange the points of Gj such that ( gi, a( gJ) forms a diagonal in the (i,j)th 
plane, as shown in Fig. 3. NOW, there is an automorphism of Gi x Gj 

FIGURE 3 

fixing the diagonal points ( gi , a( gJ), and hence a nontrivial automorphism 
of G fixing the points of S, which implies that S is not anf-set of S, a contra- 
diction. 

Since the automorphisms of G are only of the above two types, it is clear 
that conditions (1) and (2) are sufficient to ensure that S is an f-set. This 
completes the proof. 

THEOREM 6. Let G atzd H be two connected graphs which are prime to 
each other. Then k(G x H) = Max(k(G), k(H)). 

ProoS, Let {1,2,..., m} be an F-set of G and (l’, 2’,..., YZ’> be an Ir-set of H. 
Let m > ~1’. By Theorem 5, it is clear that k(G x H) 3 m. Since G and H 
are prime to each other the second condition of Theorem 5 is always satisfied 
for any subset S of V(G x H). Consider S = ((1, l’), (2, 2’),...,(n, n’), 
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(II f I, n’),..., (m, n’)}. It is easy to see that the first condition of Theorem 5 
is also satisfied by S and hence, having the minimum number of points, S 
is an F-set of G x H, proving the theorem. 

COROLLARY 6.1. Let G = ny=, Gp, where Gi are prime to each other. 
Then k(G) = max, k(Gp). 

Now, let us consider F-sets of G”, where G is a prime graph. Let 
(si = (vi1 , zjiz : . . . . tin) 1 i = 1, 2 ,..., k) be an F-set of G”. By Theorem 5, 
(cij ~ i = 1,2 ,..., k) is anf-set of G for j = I,2 ,..., YI, and there do not exist 
automorphismsofGsuchthatail-+~irn,i = l,..., kforanyZ,nz~{1,2 ,..., n}. 
It is not necessary that the elements ziiz should be different for a given 1. 
Let us say that two ordered3sets (q ,...$ ulc) and (u,‘,..., vi) with k (not neces- 
sarily distinct) points of G are d&‘nct if there does not exist an automorphism 
of G taking L’~ +- z’~‘. So, by the above discussion, if there are m, distinct 
ordered f-sets of G with k points, then writing these sets as columns of a 
matrix and considering the rows as points of Gmk, we get an f-set of Gmk with 
k points. Hence k(G”k) < k. First we prove that mk is a strictly increasing 
function of k. List all the m,-, orderedf-sets with k - 1 points. Let u f u 
be points of G. To each of these ordered f-sets add the point u at the end. 
Obtain anotherf-set by adding u to one of the original m,_,f-sets. It is easily 
seen that these rnkel + 1 ordered f-sets are distinct f-sets with k points. 
Hence mR-l < nz,, . Suppose r = k(@k) < k. Then consider an F-set S 
of GQ. Consider the mk projections of S into the coordinate spaces. They 
give m, ordered f-sets for G, with r elements each. Since m, < mk , at least 
two of these are not distinct, and by Theorem 5, S is not anf-set of Gm*, 
a contradiction. Hence k(G”Ii> 3 k. Thus k(G”lc> = k and we h.ave proved 

THEOREM 7. k(G”) = k if rnkpl < n < mk . 

Note 3. It seems very difficult to find mk for a given graph, even for small 
values of k. (It is obvious that k 3 k(G).) 

THEOREM 8. Let G = K, . Then 

otherwise. 

Prooj m, = 2O = 1 is clear. Let the points of Kz be (0, 11. The only 
nontrivial automorphism of K, interchanges 0 and 1. If a E (0, I>, let Z 
denote the other element. If (b, , b, ,..., bk} is an ordered f-set then 
(61 ) 6, )...) 6,) iS not distinct from (b, ,..., bk). So the number of distinct 
f-sets with k points (not necessarily distinct) are given by different placings 
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of O’s and l’s in the k places. In other words, if there are Y zeros and (k - I.) 
ones, then it is just choosing the P places for the zeros. This is done in (f) 
ways. Since I’ = 0, I,..., k/2 if k is even and r = 0, I,..., (k - I)/2 if k is odd, 
(the other choices for 0 giving no new distinct orderedf-set, as noted before), 
we get the number of distinct orderedf-sets with k points as (k) - (t) t... + 
(&) if k is even and (0”) + (f) + ... + ((k-!)lP) if k is odd. That is 2”/2 if 
k is odd and (2k/2) + $(&) if k is even. 

Note 4. Since Q, , the rz-dimensional cube is just (K,)“, we have cal- 
culated k(QJ. 

Let us now turn our attention to graphs with prescribed k-values. 

THEOREM 9. Let T be a finite Abelian group apzd 1 < k < the maximum 
nunzber of elements in any independent set of r. Then there exists a graph G 
(indeed infinitely many) such that T(G) = r and k(G) = k. 

Proof. Since I’ is Abelian, it is a direct product of cyclic groups. Let 
r = n: ri where each ri is cyclic and is not a direct product of nontrivial 
groups. This n is nothing but the maximum number of elements in an 
independent set of r. Let {HJ be graphs such that r(H,) = ri and pii 
are mutually prime. For example, if I ri / = 3 we can take any of the graphs 
in Fig. 4, as H, . 

FIGURE 4 

Consider H = ny-“‘” Hi. By Corollary 3.1, k(HJ = E, ‘Vi = !, 2 ,..., n, 
and by Theorem 6, k(H) = 1. Now construct G as follows. Let 

V(G) = P’(H) u (V(H<) j i = n - k + 2,..., n} w {a], 

and 

E(G) = E(H) u {IT(&) 1 i = n - k + 2,..., n} 

u ((u, h)/h E V(H) 01’ V(H,), i = n - k + 2 ,..., n>. 

It is easily seen that r(G) = n: .Pi = r and that any f-set of G must con- 
tain one point from H and each of (Hi/i = n - k + 2,..., n}. Since such a 
set actually forms an F-set, k(G) = k. 
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We leave the similar results for non-Abelian groups as the following two 
conjectures. 

Conjecture 1. If P is a finite non-hbelian group, k(T) = maximum 
number of elements in an independent set of r. 

Conjecture 2. If r is a finite non-abelian group and 1 < k < k(T), 
then there exists a graph G with r(G) = I’ and k(G) = k. 

3. GRAPHS WITH GIVEN GROUP 

In this section we construct graphs with k(G) = 1 which are simpler than 
the Frucht graphs [2] and Bouwer graphs [l]. We start with the construction 
of graphs G, which are basic in our construction of graphs with a given 
group. G, is defined to be K, and G, is as in Fig. 1. 

The points 1, 2, 3 are called the S-points (special points) of G, and the 
other points are called the G-points (group points) of G, . For IZ 3 3, 6, is 
constructed inductively from K, as follows. Start with a K, . The points of 
K, (in G,) are the S-points of G, . On each line of K, introduce two new 
points. In the resulting homeomorph of K, , each S-point has a neighborhood 
containing E - 1 points. Identify the S-points of a copy of G,_, with these 
I? - 1 points. Thus, for each point of K, , we have introduced a copy of 
G,_, . The resulting graph is G, . The collection of the G-points of all the 
copies of G,-l present in G, constitute the set of G-points of G, . It is clear 
that there are n! G-points in G, . All these have degree three and are similar 
to each other. Further, if any one of these points, say g, is fixed, then the 
whole graph is fixed. (For g belongs to a unique Gz which is included in a 
unique G, , etc., and fixing g fixes the points of this Gz and in turn this G3 
and so on.) Thus each G-point is an F-set of G, . Name the S-points of G, 
as 1, 2,..., 11. Name any of the G-points as g, = e E S, . Since ,gl is an F-set, 
if cL(g,) (for 2 E r(G,)) is given then 01 is specified completely. This 01 restricted 
to the §-points of G, gives an element, say g, , of S, . Name a(gl) as g, . 
Similarly all the G-points of G, can be named (uniquely and unambiguously) 
by the elements of S, . Now by Lemma 1, r(G,) = S, . 

THEOREM 10. Any automorphism 01 of G, when restricted to the G-points, 
is a left muIti’lication by a(e). 

Proof. Let a(e) = x and a(y) = z. Let us denote the automorphism 
taking e to .X as 01,. So a,(y) = z and a,(e) = y. Therefore a,ol,(e) = z, 
i.e., a,,(e) = z, which implies xy = z. Hence a,(y) = my = n,(e) y. 

THEOREM 11 (Frucht [2]). Given a finite group r, there exists a graph G 
SLICK that r(c) = r. 
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PIWO$ As any finite group can be viewed as a subgroup of some S, , 
let r be a subgroup of S, , for some II. In the G, corresponding to this n, 
for each G-point (named with the elements of IJ take a copy of rC, and iden- 
tify one of its points with this G-point. The new graph, say H, , is the required 
graph. For, e = g, is an F-set in H, also, and only the G-points named with 
elements of r are similar to g, , since, under an automorphism x0 , where 
g E I’ (by Theorem IO) the points with the names of elements of I’ go among 
themselves. By Lemma 1: QH,) g r. 

COROLLARY 11.1 (Bouwer [l]). Given a pennutatioi~ group P urzd u 
graph Y such that P C r(Y) ( as p ermutation groups), there exists a graph G 
such that 

(1) Y is an induced subgraph of G. 

(2) When r(G) is restricted to the vertex set of Y, it is isomorphic 
to P as a permutation group. 

(3) r(G) g P (us abstract groups). 

Proof. Construct H, as before with the automorphism group P. Identify 
the points of Y with the S-points of H, (i.e., the points having the same label 
are identified). It is clear that this new graph is the required G with the 
S-points forming the subgraph Y. 

Note 5. The proof for Bouwer’s theorem is simple here, as we start with 
a new type of graph with a given group. 

Note 6. By replacing each line joining two G-points of G, with a graph 
whose group is the cyclic group of order 2, where two points which are similar 
are identified with the G-points, we get an infinite number of graphs with a 
given group. 
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