F-Sets in Graphs

V. Krishnamoorthy* and K. R. Parthasarathy
Department of Mathematics, Indian Institute of Technology, Madras, India

Received December 10, 1974

Abstract

A subset S of the vertex set of a graph G is called an F-set if every $\alpha \in \Gamma(G)$, the automorphism group of G, is completely specified by specifying the images under α of all the points of S, and S has a minimum number of points. The number of points, $k(G)$, in an F-set is an invariant of G, whose properties are studied in this paper. For a finite group Γ we define $k(\Gamma)=\max \{k(G) \mid \Gamma(G)=$ $I\}$. Graphs with a given Abelian group and given k-value ($k \leqslant k(T)$) have been constructed. Graphs with a given group and k-value 1 are constructed which give simple proofs to the theorems of Frucht and Bouwer on the existence of graphs with given abstract/permutation groups.

1. Introduction

In this paper we consider finite ordinary graphs. Generally, we follow the notations and terminology in [3]. Let G be a graph whose automorphism group $\Gamma(G)$ is not the identity group. A subset S of the vertex set $V(G)$ is called an f-set if every $v \in \Gamma(G)$ is completely specified by giving the images of the points of S alone. An f-set with a minimum number of points is called an F-set. The cardinality of an F-set S of G is denoted by $k(G)$. If $\Gamma(G)=\{e\}$, let $k(G)=1$.

The aim of this paper is to study the properties of $k(G)$ (this section) and the existence of graphs with a given value for $k(G)$ (Section 2). One particularly interesting class of graphs with $k(G)=1$ provides alternative proofs for the theorems of Frucht [2] and Bouwer [1].

Theorem 1. If there exists $a \sigma \in \Gamma(G)$ such that σ is completely specified by giving the images of $S(\subseteq V(G)$), then S is an f-set.

Proof. If not, there exist $\sigma_{1}, \sigma_{2} \in \Gamma(G)$ such that $\sigma_{1}(s)=\sigma_{2}(s) \forall s \in S$ and $\sigma_{1} \neq \sigma_{2}$. But then, $\sigma_{2}^{-1} \sigma_{1}(s)=s \forall s \in S$ and $\sigma_{2}^{-1} \sigma_{1} \neq e$, the identity automorphism. This implies $\sigma \sigma_{2}^{-1} \sigma_{1}(s)=\sigma(s) \forall s \in S$ and $\sigma \sigma_{2}^{-1} \sigma_{1} \neq \sigma$, a contradiction establishing the theorem.

[^0]Corollary 1.1. To check whether a set $S \subseteq V(G)$ is an f-set, it is enough to check whether identity is the only automorphism of G which fixes S pointwise.

Theorem 2. If S is an f-set, then $\sigma(S)$ is also an f-set for any $\sigma \in \Gamma(G)$.
The simple proof is omitted.
Note 1. A minimal f-set of G need not be an F-set. For example, consider the graph in Fig. 1. Here $\{1,2\}$ is a minimal f-set but not an F-set, since $k(G)=1$ and $\left\{g_{1}\right\}$ is an F-set.

Lemma 1. If $k(G)=1$ and if $\{0\}$ is an F-set of G, then $|\Gamma(G)|=$ the number of points which are similar to v.

Proof. If u is similar to v, there exists a unique $\alpha \in \Gamma(G)$ such that $\alpha(v)=u$.

Definition. A set of elements of a group Γ is said to be independent if no element of the set can be generated by the remaining elements of the set.

Theorem 3. Let Γ be a finite group. If G is a graph with $\Gamma(G)=\Gamma$, then $k(G) \leqslant \max \{|X| \mid X$ is an independent set of $\Gamma\}$.

Proof. Let $S=\{1,2, \ldots, k\}$ be an F-set of G. Define subgroups H_{i} of Γ as $H_{i}=\{\sigma \in \Gamma(G) \mid \sigma(j)=j, j \neq i\}$. Since S is an F-set, each $H_{i} \neq\{e\}$ and $H_{i} \cap H_{j}=\{e\}$ if $i \neq j$. Since any element of the subgroup generated by $\left\{H_{j} \mid j \neq i\right\}$ keeps i fixed, no element $(\neq e)$ of H_{i} can be generated by $\left\{H_{j} \mid j \neq i\right\}$. So a set containing one element $(\neq e)$ from each H_{i} forms an independent set of Γ. Hence $k(G)=k \leqslant \max \{|X| \mid X$ is an independent set of $\Gamma\}$.

Corollary 3.1. If Γ is a finite cyclic group and not a direct product of nontrivial subgroups then $k(G)=1$ for any graph with $\Gamma(G)=\Gamma$.

Proof. Any maximal independent set of Γ contains only one element.
Definition. Let $k(\Gamma)=\max \{k(G) \mid G$ such that $\Gamma(G)=T\}$.
The following are easy to see: $k\left(K_{n}\right)=n-1$ and $k\left(K_{m, n}\right)=m+n-2$ if $m+n>2$.

Theorem 4. Let G be a block-graph with blocks $\left\{B_{i}\right\}$. Let r_{i} be the number of non-cut-points of B_{i}. Then, $\sum_{r_{i}>1}\left(r_{i}-1\right) \leqslant k(G) \leqslant \sum_{r_{i}>1}\left(r_{i}-1\right)+M$, where

$$
\begin{aligned}
M & =\sum_{r_{i}=1} r_{i}-1 & & \text { if } \sum_{r_{i}=1} r_{i} \neq 0 \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

Proof. In the block B_{i}, if $r_{i} \geqslant 2$, then all the non-cut-points of B_{i} except one have to be in any F-set. Hence the first inequality.

Let $S=\left\{\cup A_{i}\right\} \cup B$ where(1) A_{i} is any one subset of $r_{i}-1$ non-cutpoints of B_{i}, if $r_{i}>1$ and (2) if C is the set of all non-cut-points in the B_{i} 's with $r_{i}=1$, then B is any one subset of C with $|C|-1$ points if $C \neq \varnothing$ and $B=\varnothing$ if $C=\varnothing$. It can be easily seen that if every point of S is fixed then all the non-cut-points of G are fixed and hence all the cut-points are also fixed. Hence S is an f-set of G. This gives the second inequality.

Corollary 4.1. If T is a tree then $k(T) \leqslant$ number of pendent vertices of T.

Note 2. The above inequalities may be strict inequalities or equalities. Figure 2 gives four examples in which all the combinations are realized.

$N=k=M+N$
a

$N=k<M+N$
b

$\mathrm{N}<\mathrm{k}=\mathrm{M}+\mathrm{N}$
c

$N<k<M+N$
d

Figure 2

2. Graphs with Given $k(G)$

The graph products considered here are Cartesian products.
Theorem 5. Let $\left\{G_{i}\right\}$ be a finite number of connected prime graphs. A set of necessary and sufficient conditions for a subset S of $V(G)$ to be an f-set of $G=\Pi G_{i}$ is
(1) $p_{i}(S)$ is an f-set of $G_{i}, \forall i$, where p_{i} is the projection mapping of G to the it th coordinate space G_{i}.
(2) the map $\alpha: p_{i}(S) \rightarrow p_{j}(S)$ given by $\alpha\left(p_{i}(S)\right)=p_{j}(S) \forall s \in S$ is not a restriction of an isomorphism of G_{i} to $G_{j}, \forall i \neq j$.

Proof. Picture the points of G_{i} as plotted on the i th axis of an n-dimensional space, where $i \in\{1,2, \ldots, n$.$\} The points of G$ are then among the lattice points in the nonnegative orthant.

Since graph multiplication is commutative, we can write $G=G_{i} \times$ ($\prod_{i \neq j} G_{j}$). If condition (1) is not satisfied then by Corollary 1.1, there exists a nontrivial automorphism of $\Gamma\left(G_{i}\right)$, fixing $p_{i}(S)$. This naturally extends to an automorphism of G which fixes all the points whose i th coordinates are in the set $p_{i}(S)$. Hence condition (1) is necessary. If (2) were not satisfied, then there exists an isomorphism $\alpha: G_{i} \rightarrow G_{j}$ such that $\alpha\left(p_{i}(s)\right)=p_{j}(s)$. Arrange the points of G_{j} such that $\left(g_{i}, \alpha\left(g_{i}\right)\right)$ forms a diagonal in the (i, j) th plane, as shown in Fig. 3. Now, there is an automorphism of $G_{i} \times G_{j}$

Figure 3
fixing the diagonal points ($g_{i}, \alpha\left(g_{i}\right)$), and hence a nontrivial automorphism of G fixing the points of S, which implies that S is not an f-set of S, a contradiction.

Since the automorphisms of G are only of the above two types, it is clear that conditions (1) and (2) are sufficient to ensure that S is an f-set. This completes the proof.

Theorem 6. Let G and H be two connected graphs which are prime to each other. Then $k(G \times H)=\operatorname{Max}(k(G), k(H))$.

Proof, Let $\{1,2, \ldots, m\}$ be an F-set of G and $\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$ be an F-set of H. Let $m \geqslant n^{\prime}$. By Theorem 5, it is clear that $k(G \times H) \geqslant m$. Since G and H are prime to each other the second condition of Theorem 5 is always satisfied for any subset S of $V(G \times H)$. Consider $S=\left\{\left(1,1^{\prime}\right),\left(2,2^{\prime}\right), \ldots,\left(n, n^{\prime}\right)\right.$,
$\left.\left(n+1, n^{\prime}\right), \ldots,\left(m, n^{\prime}\right)\right\}$. It is easy to see that the first condition of Theorem 5 is also satisfied by S and hence, having the minimum number of points, S is an F-set of $G \times H$, proving the theorem.

Corollary 6.1. Let $G=\prod_{i=1}^{m} G_{i}^{r_{i}}$, where G_{i} are prime to each other. Then $k(G)=\max _{i} k\left(G_{i}^{r_{i}}\right)$.

Now, let us consider F-sets of G^{n}, where G is a prime graph. Let $\left\{s_{i}=\left(v_{i 1}, v_{i 2}, \ldots, v_{i n}\right) \mid i=1,2, \ldots, k\right\}$ be an F-set of G^{n}. By Theorem 5, $\left\{v_{i j} \mid i=1,2, \ldots, k\right\}$ is an f-set of G for $j=1,2, \ldots, n$, and there do not exist automorphisms of G such that $v_{i l} \rightarrow v_{i m}, i=1, \ldots, k$ for any $l, m \in\{1,2, \ldots, n\}$. It is not necessary that the elements $v_{i l}$ should be different for a given l. Let us say that two ordered f-sets $\left(v_{1}, \ldots, v_{k}\right)$ and $\left(v_{1}^{\prime}, \ldots, v_{k}{ }^{\prime}\right)$ with k (not necessarily distinct) points of G are $d_{i s t} n c t$ if there does not exist an automorphism of G taking $v_{i} \rightarrow v_{i}^{\prime}$. So, by the above discussion, if there are $m_{i v}$ distinct ordered f-sets of G with k points, then writing these sets as columns of a matrix and considering the rows as points of $G^{m_{k}}$, we get an f-set of $G^{m_{k}}$ with k points. Hence $k\left(G^{m_{k}}\right) \leqslant k$. First we prove that m_{k} is a strictly increasing function of k. List all the m_{k-1} ordered f-sets with $k-1$ points. Let $u \neq v$ be points of G. To each of these ordered f-sets add the point u at the end. Obtain another f-set by adding v to one of the original $m_{k-1} f$-sets. It is easily seen that these $m_{k-1}+1$ ordered f-sets are distinct f-sets with k points. Hence $m_{k-1}<m_{k}$. Suppose $r=k\left(G^{m_{k}}\right)<k$. Then consider an F-set S of $G^{m_{k}}$. Consider the m_{k} projections of S into the coordinate spaces. They give m_{k} ordered f-sets for G, with r elements each. Since $m_{r}<m_{k}$, at least two of these are not distinct, and by Theorem $5, S$ is not an f-set of $G^{m_{k}}$, a contradiction. Hence $k\left(G^{m_{k}}\right) \geqslant k$. Thus $k\left(G^{m_{k}}\right)-k$ and we have proved

Theorem 7. $k\left(G^{n}\right)=k$ if $m_{k-1}<n \leqslant m_{k}$.
Note 3. It seems very difficult to find m_{k} for a given graph, even for small values of k. (It is obvious that $k \geqslant k(G)$.)

Theorem 8. Let $G=K_{2}$. Then

$$
\begin{aligned}
m_{l c} & =2^{k-1} & & \text { if } k \text { is odd }, \\
& =2^{k-1}+\frac{1}{2}\binom{k}{k / 2} & & \text { otherwise. }
\end{aligned}
$$

Proof. $m_{1}=2^{0}=1$ is clear. Let the points of K_{2} be $\{0,1\}$. The only nontrivial automorphism of K_{2} interchanges 0 and 1. If $a \in\{0,1\}$, let \bar{a} denote the other element. If $\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ is an ordered f-set then $\left\{\bar{b}_{1}, \bar{b}_{2}, \ldots, \bar{b}_{k}\right\}$ is not distinct from $\left\{b_{1}, \ldots, b_{k}\right\}$. So the number of distinct f-sets with k points (not necessarily distinct) are given by different placings
of 0 's and 1 's in the k places. In other words, if there are r zeros and $(k-r$) ones, then it is just choosing the r places for the zeros. This is done in $\binom{k}{r}$ ways. Since $r=0,1, \ldots, k / 2$ if k is even and $r=0,1, \ldots,(k-1) / 2$ if k is odd, (the other choices for 0 giving no new distinct ordered f-set, as noted before), we get the number of distinct ordered f-sets with k points as $\binom{l}{0} \div\binom{ k}{1}+\cdots+$ $\binom{k}{k / 2}$ if k is even and $\binom{k}{0}+\binom{k}{1}+\cdots+\binom{k}{k-1) / 2}$ if k is odd. That is $2^{k} / 2$ if k is odd and ($\left.2^{k} / 2\right)+\frac{1}{2}\left({ }_{k / 2}^{k}\right)$ if k is even.

Note 4. Since Q_{n}, the n-dimensional cube is just $\left(K_{2}\right)^{n}$, we have calculated $k\left(Q_{n}\right)$.

Let us now turn our attention to graphs with prescribed k-values.

Theorem 9. Let Γ be a finite Abelian group and $1 \leqslant k \leqslant$ the maximum number of elements in any independent set of Γ. Then there exists a graph G (indeed infinitely many) such that $\Gamma(G)=\Gamma$ and $k(G)=k$.

Proof. Since Γ is Abelian, it is a direct product of cyclic groups. Let $\Gamma=\prod_{1}^{n} \Gamma_{i}$ where each Γ_{i} is cyclic and is not a direct product of nontrivial groups. This n is nothing but the maximum number of elements in an independent set of Γ. Let $\left\{H_{i}\right\}$ be graphs such that $\Gamma\left(H_{i}\right)=\Gamma_{i}$ and H_{i} are mutually prime. For example, if $\left|\Gamma_{i}\right|=3$ we can take any of the graphs in Fig. 4, as H_{i}.

Figure 4
Consider $H=\prod_{1}^{n-k+1} H_{i}$. By Corollary 3.1, $k\left(H_{i}\right)=1, \forall i=1,2, \ldots, n$, and by Theorem $6, k(H)=1$. Now construct G as follows. Let

$$
V(G)=V(H) \cup\left\{V\left(H_{i}\right) \mid i=n-k+2, \ldots, n\right\} \cup\{u\}
$$

and

$$
\begin{aligned}
E(G)= & E(H) \cup\left\{E\left(H_{i}\right) \mid i=n-k+2, \ldots, n\right\} \\
& \cup\left\{(u, h) / h \in V(H) \text { or } V\left(H_{i}\right), i=n-k+2, \ldots, n\right\} .
\end{aligned}
$$

It is easily seen that $\Gamma(G)=\prod_{1}^{n} \Gamma_{i}=\Gamma$ and that any f-set of G must contain one point from H and each of $\left\{H_{i} / i=n-k+2, \ldots, n\right\}$. Since such a set actually forms an F-set, $k(G)=k$.

We leave the similar results for non-Abelian groups as the following two conjectures.

Conjecture 1. If Γ is a finite non-Abelian group, $k(\Gamma)=$ maximum number of elements in an independent set of Γ.

Conjecture 2. If Γ is a finite non-Abelian group and $1 \leqslant k \leqslant k(\Gamma)$, then there exists a graph G with $\Gamma(G)=\Gamma$ and $k(G)=k$.

3. Graphs with Given Group

In this section we construct graphs with $k(G)=1$ which are simpler than the Frucht graphs [2] and Bouwer graphs [1]. We start with the construction of graphs G_{n} which are basic in our construction of graphs with a given group. G_{2} is defined to be K_{2} and G_{3} is as in Fig. 1.

The points $1,2,3$ are called the S-points (special points) of G_{3} and the other points are called the G-points (group points) of G_{3}. For $n \geqslant 3, G_{n}$ is constructed inductively from K_{n} as follows. Start with a K_{n}. The points of K_{n} (in G_{n}) are the S-points of G_{n}. On each line of K_{n} introduce two new points. In the resulting homeomorph of K_{n}, each S-point has a neighborhood containing $n-1$ points. Identify the S-points of a copy of G_{n-1} with these $n-1$ points. Thus, for each point of K_{n}, we have introduced a copy of G_{n-1}. The resulting graph is G_{n}. The collection of the G-points of all the copies of G_{n-1} present in G_{n} constitute the set of G-points of G_{n}. It is clear that there are $n!G$-points in G_{n}. All these have degree three and are similar to each other. Further, if any one of these points, say g, is fixed, then the whole graph is fixed. (For g belongs to a unique G_{2} which is included in a unique G_{3}, etc., and fixing g fixes the points of this G_{2} and in turn this G_{3} and so on.) Thus each G-point is an F-set of G_{n}. Name the S-points of G_{n} as $1,2, \ldots, n$. Name any of the G-points as $g_{1}=e \in S_{n}$. Since g_{1} is an F-set, if $\alpha\left(g_{1}\right)$ (for $\alpha \in \Gamma\left(G_{n}\right)$) is given then α is specified completely. This α restricted to the S-points of G_{n} gives an element, say g_{2}, of S_{n}. Name $\alpha\left(g_{1}\right)$ as g_{2}. Similarly all the G-points of G_{n} can be named (uniquely and unambiguousily) by the elements of S_{n}. Now by Lemma 1, $\Gamma\left(G_{n}\right)=S_{n}$.

Theorem 10. Any automorphism α of G_{n} when restricted to the G-points, is a left multiplication by $\alpha(e)$.

Proof. Let $\alpha(e)=x$ and $\alpha(y)=z$. Let us denote the automorphism taking e to x as α_{x}. So $\alpha_{x}(y)=z$ and $\alpha_{y}(e)=y$. Therefore $\alpha_{x} \alpha_{y}(e)=z$, i.e., $\alpha_{x y}(e)=z$, which implies $x y=z$. Hence $\alpha_{x}(y)=x y=\alpha_{x}(e) y$.

Theorem 11 (Frucht [2]). Given a finite group Γ, there exists a graph G such that $\Gamma(G)=\Gamma$.

Proof. As any finite group can be viewed as a subgroup of some S_{n}, let Γ be a subgroup of S_{n}, for some n. In the G_{n} corresponding to this n, for each G-point (named with the elements of T) take a copy of K_{2} and identify one of its points with this G-point. The new graph, say H_{n}, is the required graph. For, $e=g_{1}$ is an F-set in H_{n} also, and only the G-points named with elements of Γ are similar to g_{1}, since, under an automorphism x_{g}, where $g \in \Gamma$ (by Theorem 10) the points with the names of elements of Γ go among themselves. By Lemma 1, $\Gamma\left(H_{n}\right) \cong \Gamma$.

Corollary 11.1 (Bouwer [1]). Given a permutation group P and a graph Y such that $P \subseteq \Gamma(Y)$ (as permutation groups), there exists a graph G such that
(1) Y is an induced subgraph of G.
(2) When $\Gamma(G)$ is restricted to the vertex set of Y, it is isomorphic to P as a permutation group.
(3) $\quad \Gamma(G) \cong P($ as abstract groups $)$.

Proof. Construct H_{n} as before with the automorphism group P. Identify the points of Y with the S-points of H_{n} (i.e., the points having the same label are identified). It is clear that this new graph is the required G with the S-points forming the subgraph Y.

Note 5. The proof for Bouwer's theorem is simple here, as we start with a new type of graph with a given group.

Note 6. By replacing each line joining two G-points of G_{n} with a graph whose group is the cyclic group of order 2 , where two points which are similar are identified with the G-points, we get an infinite number of graphs with a given group.

References

1. I. Z. Bouwer, Section graphs for finite permutation groups, "The Many Facets of Graph Theory," pp. 55-61, Springer-Verlag, Berlin, New York, 1968.
2. R. Frucht, Construction of a graph having prescribed automorphism group, Compositio Math. 6 (1938), 239-250.
3. F. Harary, "Graph Theory," Addison-Wesley, Reading, Mass., 1968.

[^0]: * Research supported by C.S.I.R., India.

 Present address: Faculty of Science, Madras Institute of Technology, Madras 600044 India.

