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We study the transformation leading from Arnowitt, Deser, Misner (ADM) Hamiltonian formulation
of General Relativity (GR) to the Γ Γ metric Hamiltonian formulation derived from the Lagrangian
density which was firstly proposed by Einstein. We classify this transformation as gauged canonical – i.e.
canonical modulo a gauge transformation. In such a study we introduce a new Hamiltonian formulation
written in ADM variables which differs from the usual ADM formulation mainly in a boundary term firstly
proposed by Dirac. Performing the canonical quantization procedure we introduce a new functional phase
which contains an explicit dependence on the fields characterizing the 3 + 1 splitting. Given a specific
regularization procedure our new formulation privileges the symmetric operator ordering in order to:
have a consistent quantization procedure, avoid anomalies in constraints algebra, be equivalent to the
Wheeler–DeWitt (WDW) quantization. Furthermore we show that this result is consistent with a path-
integral approach.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

The attempts towards the quantization of GR can be classi-
fied as canonical or covariant. The latter are based on a path-
integral formulation (as Causal Dynamical Triangulation [1], Spin-
Foam models [2] and the Asymptotic Safety scenario [3]), while the
former address a canonical quantization procedure by promoting
phase space coordinates to quantum operators and imposing the
associated constraints à la Dirac. In particular, quantum geometro-
dynamics (see [4] for a recent review) is based on the ADM Hamil-
tonian formulation [5]. This formulation exploits the symmetries
of gravity in a 3 + 1 representation, introducing new variables in-
stead of the metric ones, where the most general set of coordinate
transformations is reduced to arbitrary 3-dimensional transforma-
tions and time reparametrizations. In view of these symmetries,
the configuration space can be described in Superspace, i.e. the
space of Riemannian metric modulo diffeomorphisms, by requiring
the vanishing of the Superhamiltonian H operator. On a quantum
level, states are functional of 3-geometries and H = 0 is translated
into the WDW equation [6]. The regularization can be performed
via the heat kernel expansion [8]. The main issues of this approach
towards Quantum Gravity are the fixing of a proper operator order-
ing [9] and the definition of a suitable time variable [10], which
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would enable to infer a conserved scalar product among physical
states.

Loop Quantum Gravity (LQG) [11,12] is an alternative canoni-
cal formulation, in which the configuration space is parametrized
by some SU(2) connections [13] related with ADM variables by
a canonical transformation. Within this scheme, the kinematical
Hilbert space is defined from the space of distributional con-
nections. Furthermore, the Superhamiltonian operator is regular-
ized [14], but the complexity of its action does not allow us to
solve it analytically and physical space is still out of control.

Henceforth, quantum geometrodynamics and LQG are both
based on the ADM Hamiltonian formulation. Indeed, the La-
grangian formulation adopted by Einstein is based on the so-called
Γ Γ Lagrangian, LΓ Γ , and on using metric components as config-
urational variables.

In a recent work [15] it is affirmed that ADM Hamiltonian
formulation is not linked by a canonical transformation1 to the
Hamiltonian formulation proposed by Dirac in [16] and recently
extended in [17]; see also [18]. This result is taken as a sufficient
condition to claim the nonequivalence of these approaches for the

1 We define a transformation to be canonical if it preserves the value of the Pois-

son Brackets (PB): given a set of 2N canonical variables {qi , pi}, and an invertible
transformation Q j = Q j(qi , pi), P j = P j(qi , pi) we define the latter to be canoni-
cal if [A, B]q,p = [A, B]Q ,P where A and B are two functionals of the phase space
variables.
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classical dynamics. The same authors showed in [19] that Dirac’s
formulation is canonically linked to Γ Γ Hamiltonian formulation
thus extending the noncanonicity of ADM formulation to the prim-
itive metric formulation. This claim is however falsified by an early
work [20] which shows that ADM equations of motion are equiv-
alent to Einstein’s field equations. The key point that the authors
of [15] are missing is that all quantities in constrained systems are
defined up to linear combinations of constraints.

We will show that the commonly used ADM Lagrangian density
cannot be obtained from the Γ Γ one through the ADM transfor-
mation of the metric tensor alone. Indeed a boundary term firstly
used by Dirac [16] is needed. Transformations of the phase space
variables induced by a boundary term or by a transformation of La-
grangian variables are expected to be canonical for unconstrained
systems. We will see that it is not necessary for constrained sys-
tems.

In this respect, we shall propose a new Hamiltonian formula-
tion of GR, taking as a starting point the Γ Γ Lagrangian density
written in ADM variables. The new phase space variables, with
respect to the metric ones, have fundamental PB which are canon-
ical modulo a gauge transformation – i.e. modulo the PB action
of a first class constraint on some function. We shall define this
kind of canonicity as gauged, differently from the weakly canon-
ical transformations analyzed in [7], where the fundamental PB
between two sets of phase space variables are canonical on the
constraints hypersurfaces – i.e. canonical modulo a combinations
of constraints. Clearly both modifications of the notion of canonic-
ity lead to classically equivalent dynamics.

We shall then recover the common ADM formulation by means
of Dirac’s boundary term [16], which implements a transformation
which is canonical all over the phase space. We define this kind of
transformation as strongly canonical.

Our new Hamiltonian formulation is linked to the Γ Γ Hamil-
tonian formulation via a gauged canonical transformation and via
a strongly canonical transformation to the ADM Hamiltonian for-
mulation. Hence, the ADM Hamiltonian formulation is linked via a
gauged canonical transformation to the Γ Γ Hamiltonian formula-
tion. Such a classification of the notion of canonicity fully explains
the misleading conclusions reported in [15].

We shall analyze the Hamilton–Jacobi formulation of the new
theory finding the ADM secondary constraints as a transformation
of the new ones, showing that the reduced phase spaces are sym-
plectically isomorphic.

Finally we shall perform the canonical quantization procedure
on the new Hamiltonian formulation. A new functional depen-
dence on the entire set of ADM variables in the wave functional
is uniquely determined. We will outline how the consistency with
the quantum framework based on the ADM formulation privileges
the symmetric operator ordering for the WDW equation, given a
specific regularization procedure [8].

In particular, the former property will be recognized as due to
Dirac’s boundary term. We shall justify this result from a path-
integral point of view [21]. The preference of suitable operator
orderings is an unexpected quantum effect and together with the
result of gauged canonicity is the main result of this analysis.

The manuscript is organized as follows. In Section 2 Γ Γ , Dirac
and ADM Hamiltonian formulations are reviewed and the rela-
tionship between their Lagrangian densities is inferred. Section 3
is devoted to define the canonical transformations linking differ-
ent phase space variables, while in Section 4 the Hamilton–Jacobi
equations for the new Hamiltonian formulation are discussed. In
Section 5 the canonical quantization program is addressed and the
emergence of a functional phase, leading to the ADM quantum
framework, is outlined. Finally, in Section 6 brief concluding re-
marks follow.
2. Hamiltonian formulations for gravity

Let us begin by introducing the main features of ADM and Γ Γ

Hamiltonian formulations. We shall describe all properties with
respect to the Einstein–Hilbert (EH) Lagrangian density, LEH =
α

√−g R , where α = −(16π l2p)−1h̄ is a dimensional constant which
we set equal to 1 in the classical analysis in which lp is the Planck
length. The ADM transformation for the metric tensor reads

g00 = −N2 + Na Nbhab, g0i = Nahai, gij = hij, (1)

where N is the lapse function, Ni the shift vector and hij the induced
three-metric. Furthermore we shall use Kμν and K = gμν Kμν to
indicate the extrinsic curvature tensor and its trace, R̄ the three-
dimensional scalar curvature and ημ the normal vector to the
spatial hypersurfaces.

The most common way of defining the EH Lagrangian den-
sity in ADM variables is geometrical [11,12] and it splits the
action into two separated parts: a kinematical part, LADM =
N

√
h(Kμν K μν − K 2 + R̄), containing powers of fields temporal

derivatives – i.e. velocities – plus a boundary term, ∂μADMμ =
2∂μ[N

√
h(ημK − ηγ ∇γ ημ)], which happens to be covariant under

four-diffeomorphisms. Because of the spatial second order deriva-
tive terms contained in R̄ we need to fix the boundary conditions
for Hamilton’s variational principle to be well posed: choosing a
manifold M with topology M : R× Σ3 we must impose ∂Σ3 = ∅
so that the derivatives of δhij normal to the spatial boundary van-
ish. This is a common procedure [5,6,11] which however turns
out not to be necessary in the Hamiltonian treatment because of
the spatial nature of the divergence part of R̄ . Otherwise from a
Lagrangian point of view it would be possible to avoid the hy-
pothesis ∂Σ3 = ∅ imposing the additional condition ∂⊥δhij = 0 for
the derivatives normal to the spatial hypersurfaces boundary. The
primary constraints of this theory are

π ≈ 0, πk ≈ 0, (2)

being the conjugate momenta to N and Nk . With π i j as the con-
jugate momenta to hij we shall use these symbols for the ADM
Hamiltonian formulation. One usually dismisses the boundary term
which would bring in accelerations making more complex the
canonical treatment of the theory.

On the other hand we can split the EH Lagrangian density,
written in the natural metric variables, obtaining a kinemati-
cal part, the Γ Γ part used for the Hamiltonian formulation in
the early works of Pirani, Schild and Skinner [22,23], LΓ Γ =√−g gμν(Γ σ

μρΓ
ρ
νσ − Γ

ρ
μνΓ σ

ρσ ), containing powers of any field

derivative, plus a boundary term, ∂μEHμ = ∂μ[√−g(gρσ Γ
μ
ρσ −

gμρΓ σ
ρσ )], which in this case is not covariant. The primary con-

straints have a more complicated form

ψ0μ = p0μ − ∂LΓ Γ

∂∂0 g0μ
= p0μ − f μ(gαβ, ∂k gαβ) ≈ 0, (3)

being pμν the conjugate momenta to gμν . We would like to em-
phasize that LΓ Γ , which was firstly proposed by Einstein, is the
only Lagrangian density that leads to a well posed Hamilton varia-
tional principle [24] without making any hypothesis on the space–
time boundary.

Because of their different transformation properties these divi-
sions do not map onto each other under the ADM transformation
even if we are always dealing with the same Lagrangian density
which is clearly covariant. Then, the difference should lay in some
noncovariant boundary terms which must be added and subtracted
thus not changing the global nature of the action.
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On this assumption we determine these extra boundary terms
by direct subtraction of the natural boundary terms of both formu-
lations obtaining: ∂μEHμ − ∂μADMμ = ∂μDμ + ∂kSk + ∂kRk ,
where ∂μDμ is the boundary term used by Dirac in [16] to sim-
plify the primary constraints (3), ∂kSk and ∂kRk are spatial bound-
ary terms where the latter is caused by the presence of R̄ in LADM .
These boundary terms read

∂μDμ = ∂0

(√
h

N
∂k Nk

)
− ∂k

(√
h

N
∂0Nk

)
,

∂kSk = ∂k

(√
hNi

N
∂i N

k −
√

hNk

N
∂i N

i
)

,

∂kRk = ∂k
[
N

√
hhijhrk(∂ih jr − ∂rhi j)

]
. (4)

Checking the complementary result on the kinematical parts we
obtain a new algebraic relation between LADM and LΓ Γ which
reads

LADM = LΓ Γ + ∂μDμ + ∂kSk + ∂kRk. (5)

In order to discuss whether (5) results in a canonical transforma-
tion between the Hamiltonian formulations of LΓ Γ [17] and LADM

[5,11,12], Dirac’s formulation [16] is needed as an intermediate
step. The Lagrangian density used by Dirac is given by

LD = LΓ Γ + ∂μDμ. (6)

For Dirac’s formulation we shall use p̃μν for the conjugate mo-
menta keeping in mind that the primary constraints are

p̃0μ ≈ 0, (7)

because Dirac’s boundary term is chosen in order to have

p̃0μ = ∂LΓ Γ

∂∂0 g0μ
+ ∂(∂μDμ)

∂∂0 g0μ
= f μ − f μ ≈ 0. (8)

3. Transformations between different phase space coordinates

Now, our aim is to compose the ADM transformation on the
metric tensor with the insertion of Dirac’s boundary term ∂μDμ

in order to study the canonicity of (5). We can follow two different
ways: we evaluate the mapping of the conjugate momenta either
by starting from the insertion of the boundary term followed by
the transformation of variables or we proceed in the reverse way.
We shall name the Γ Γ Lagrangian density written in ADM vari-
ables as L∗

Γ Γ . In the Hamiltonian formulation of L∗
Γ Γ , H∗

Γ Γ , we
shall indicate the conjugate momenta associated to N , Nk and hij

with Π , Πk and Π i j , respectively.
We begin by performing the ADM transformation on LΓ Γ giv-

ing rise to a new Hamiltonian formulation. At the Lagrangian level
if we perform a direct comparison of the definitions of the conju-
gate momenta we obtain

Π L = −2N f 0, Π L
i = 2N jh ji f 0 + 2hij f j,

Π
i j
L = Ni N j f 0 + 2N(i f j) + pij, (9)

which is not canonical. We can however impose the canonicity of
the transformation starting from the Hamiltonian formulation of
LΓ Γ , HΓ Γ , expressed in metric variables, through the request

pμνδgμν = ΠC δN + ΠC
k δNk + Π

i j
C δhij, (10)

which eventually leads to the canonical form of the transformation
which reads
ΠC = −2Np00 ≈ Π L, ΠC
i = 2N jh ji p00 + 2hij p0 j ≈ Π L

i ,

Π
i j
C = Ni N j p00 + 2N(i p j)0 + pij ≈ Π

i j
L . (11)

It is clear that (9) differs from (11) in combinations of first class
constraints, then we can state that the transformation (9), which
is due to the ADM metric transformation (1) acting on LΓ Γ , is
gauged canonical; for instance the fundamental PB:

[
N,Π L]

g,p = [
N,ΠC ]

g,p + 2N
[
N,ψ00]

g,p

= 1 + 2N
[
N,ψ00]

g,p = 0. (12)

This relation explicitly shows that the canonical result is altered
by the PB action of a first class constraint – i.e. a gauge trans-
formation – thus explaining the noncanonicity result [N,Π L]g,p =
[N, f 0]g,p = 0.

We define then two Hamiltonian densities: the one calculated
from the transformation of LΓ Γ , and the one obtained imposing
the canonicity on the ADM transformation of variables performed
on HΓ Γ . These two Hamiltonian densities will differ in combina-
tions of constraints, which are all first class [17], so the equations
of motion will differ in a gauge transformation. The use of H∗

Γ Γ

is then fully justified and we shall denote its primary constraints
with φ and φk .

We continue now with the insertion of the boundary term
which links L∗

Γ Γ to LADM . In this case the evaluation of the trans-
formation on the conjugate momenta performed at the Lagrangian
level [19] coincides with the one performed at the Hamiltonian
level which is given by the relation

Π∂0N + Πk∂0Nk + Π i j∂0hij + ∂μDμ

= π∂0N + πk∂0Nk + π i j∂0hij, (13)

and reads

π = φ ≈ 0, πk = φk ≈ 0, π i j = Π i j +
√

h

2N
hij∂k Nk. (14)

We notice that Dirac’s boundary term plays the same role with
both metric and ADM variables: it simplifies the primary con-
straints. This transformation is canonical everywhere in the phase
space, hence strongly canonical, differently from (9). The two re-
maining boundary terms will not change this result. Hence trans-
formation (5) is gauged canonical.

We can discuss now the other procedure. Again, the transfor-
mation induced by Dirac’s boundary term in the metric formula-
tion, from LΓ Γ to LD , is strongly canonical [19]. Performing the
ADM transformation of variables on the Lagrangian density LD we
obtain the result of [15]: the conjugate momenta to hij = gij have
the same definition and we do not know how to link the primary
constraints properly. Thus we write, exploiting the main freedom
of constrained systems

π L = Aμ p̃0μ ≈ 0, π L
k = Bkμ p̃0μ ≈ 0,

π
i j
L = p̃i j + C i j

μ p̃0μ. (15)

Of course we can always fix the arbitrary coefficients Aμ , Bkμ

and C i j
μ , and reproduce the canonical form of the transformation

which formally coincides with (11). Then this transformation is
gauged canonical. The insertion of the two residual spatial bound-
ary terms will not affect this result.

The ADM Hamiltonian formulation is gauged canonically related
with the Γ Γ Hamiltonian formulation. The apparent noncanonic-
ity is now explained. For constrained systems a canonical trans-
formation can be classified as strong, gauged or weak [7]: the first
type coincides with the definition of canonicity of unconstrained
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systems, while the other two are peculiar features of constrained
systems. A gauged canonical transformation implies a gauge trans-
formation on the dynamics.

At the same time we propose a new Hamiltonian formulation,
starting from the Γ Γ Lagrangian but adopting the ADM variables.
This formulation is gauged canonically related to the Γ Γ Hamilto-
nian formulation and strongly canonically related to the ADM one.
Therefore we can relate the origin of the gauged canonicity to the
use of ADM variables which implement a diffeomorphism transfor-
mation on the original metric ones.

4. Hamilton–Jacobi equations

We continue our analysis with the Hamilton–Jacobi (HJ) equa-
tions for the new Hamiltonian formulation of L∗

Γ Γ , which exploits
the great simplification due to ADM variables. The constraints read

φ = Π −
√

h

N2
∂k Nk ≈ 0, φk = Πk − ∂k

(√
h

N

)
≈ 0,

χi = Hi + √
h∂i

(
1

N
∂k Nk

)
≈ 0,

χ = −H+ 3
√

h

8N2
∂i N

i∂k Nk + 1

2N
Π rshrs∂k Nk ≈ 0, (16)

where H = ΠabΠ i jGabi j − √
hR̄ and Hi = 2hij DaΠ

aj . Insert-
ing ADM conjugate momenta in these quantities, instead of the
new ones, we recognize H as the Superhamiltonian and Hi
as the Supermomentum of the usual ADM formulation; Gabi j =
(2

√
h )−1(haihbj + hajhbi − habhij) is the supermetric. The symbol

Di represents an algebraic expression which has the same form
of a spatial covariant derivative applied to a spatial tensor density
of weight 1/2 contracted on one index. We write the total Hamil-
tonian density as HT ∗

Γ Γ = λφ + λkφk + HC∗
Γ Γ where λ and λk are

Lagrange multipliers and

HC∗
Γ Γ = −Nχ − Niχi + ∂kRk

+ ∂k

(
2Πkihi j N

j +
√

h

N
Ni∂i N

k
)

, (17)

is known as the canonical Hamiltonian density. We notice how the
absence of a spatial boundary is crucial in order to obtain HC∗

Γ Γ as
a combination of secondary constraints only giving rise to the issue
of the frozen formalism in the canonical quantization programme.
This result, for the decomposition of the Hamiltonian density, is
equivalent to the one obtained in the metric formulation in [17].
Now, let S = S[N, Nk,hij] be Hamilton’s principal functional. The
request on S to satisfy the primary constraints results in the de-
composition S = S A[N, Nk,hij] + S B [hij] where

S A
[
N, Nk,hij

] = −
∫

d3x

√
h

N
∂k Nk, (18)

and S B [hij] is not determined. Imposing the secondary constraints
we have

Hk

(
hij,

δS B

δhij

)
≈ 0, H

(
hij,

δS B

δhij

)
≈ 0. (19)

Comparing with (14) it is easy to check that δS B/δhij = π i j . Hence,
the secondary constraints of H∗

Γ Γ reduce to the ADM ones when
imposed on S . The constraints of the ADM formulation coincide
with those of the new formulation once (14) is applied. We can
then state that the new constraints are all first class. The reduced
phase spaces are then symplectically isomorphic, being the hyper-
surfaces of constraints the same in both formulations.
The Supermomentum constraint leads to fix the dependence
of S B on an equivalence class of three-metrics linked by a spatial
diffeomorphism. We indicate this by writing S B [{hij}]. The Super-
hamiltonian constraint imposes S B to be invariant under regular
reparametrizations of x0.

We have shown that the transformation leading from our
new Hamiltonian formulation to the usual ADM one is strongly
canonical and that the constraints hypersurfaces coincide. Looking
straight to (14) and (16) and using the canonicity of the transfor-
mation we can write the equations of motion of the fundamental
variables of the new formulation in terms of the ADM ones

[
Π,HT ∗

Γ Γ

] = HADM +
[√

h

N2
∂k Nk,HT

ADM

]
,

[
Πk,HT ∗

Γ Γ

] = HADM
k +

[
∂k

(√
h

N

)
,HT

ADM

]
,

[
Π i j,HT ∗

Γ Γ

] = [
π i j,HT

ADM

] −
[√

h

2N
hij∂k Nk,HT

ADM

]
, (20)

where HT
ADM is the total Hamiltonian density of the ADM formu-

lation. The transformation acts only on the conjugate momenta
hence the equations of motion for hij , Ni and N are unchanged.
Furthermore because of the equivalence of the constraints hy-
persurfaces and the canonicity of the transformation the algebra
described by the new constraints will match that of ADM formula-
tion. It follows that the new constraints are all first class. In the
ADM formulation both N and Ni have weakly vanishing conju-
gate momenta reflecting their arbitrarity. In the new Hamiltonian
formulation we propose this does not happen and a clear answer
about their arbitrarity can be found in their equations of motion

[
N,HT ∗

Γ Γ

] = λ,
[
Nk,HT ∗

Γ Γ

] = λk, (21)

which then result as arbitrary functions showing no link to their
conjugate momenta. Hence N and Ni are still arbitrary. We briefly
comment upon the main feature of this new Hamiltonian formu-
lation: it has been formulated directly from the Γ Γ Lagrangian
density via algebraic manipulations only, no request of 3 + 1 trans-
formation properties has been imposed on ADM variables. The
strong canonicity link with ADM formulation ensures the classical
equivalence of these two formulations and indeed the latter has a
more concise expression. However through this new Hamiltonian
formulation a clear algebraic link with the Γ Γ Lagrangian density
is established giving some detailed information, such as the gauged
canonicity link to the latter or the role of Dirac’s boundary term in
simplifying ADM constraints, which were hidden behind the geo-
metrical interpretation of ADM phase space variables. We shall see
in the next section that this new Hamiltonian formulation leads to
some interesting consequences on the quantum level.

5. Canonical quantization

Let us now compare the quantum formulations associated with
the L∗

Γ Γ and LADM (we will restore the constant α). It is well
known that in the ADM formulation the Hamiltonian is given by a
combination of the secondary constraints H = ∫

d3x(NH+ NkHk).
The canonical quantization programme develops by promoting the
fields as multiplicative operators and their conjugate momenta as
functional derivatives times −ih̄. The information is encoded into
a functional of the fields Φ[N, Ni,hij] which describes the phys-
ical states once satisfied all the constraints. In the ADM formu-
lation one gets for the primary constraints πΦ = −ih̄δΦ/δN = 0
and πkΦ = −ih̄δΦ/δNk = 0. These equations can be solved by a
functional of hij solely. Solving the Supermomentum constraint
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HkΦ[hij] = 0 one has that the functional must depend on an
equivalence class of three-metrics just like observed for the HJ
treatment of the classical theory: thus we write Φ[{hij}]. The re-
quest HΦ = 0 leads to the WDW equation and its solution is one
of the main tasks of the canonical quantization programme. Fur-
thermore this equation needs to be somehow regularized [8].

We perform now the canonical quantization on the new Hamil-
tonian system described by H∗

Γ Γ adopting the same space of
states and requiring the vanishing of the constraints defined in
(16) once applied on the wave functional.

Let us begin by imposing the primary constraint φ on a generic
wave functional Ψ = Ψ [N, Nk,hij]. We obtain

φΨ = −ih̄
δΨ

δN
− α

√
h

N2
∂k NkΨ = 0

⇒ Ψ
[
N, Nk,hij

] = exp

{
− iα

h̄

∫
d3x

√
h

N
∂k Nk

}
Φ

[
Nk,hij

]
.

(22)

We continue now by imposing the other primary constraint, φk

φkΨ = 0

⇒ Ψ
[
N, Nk,hij

] = exp

{
− iα

h̄

∫
d3x

√
h

N
∂k Nk

}
Φ[hij], (23)

hence the only effect is to reduce the dependence of Φ on the
three-metric. Imposing the secondary constraint χk we obtain

Ψ
[
N, Nk,hij

] = exp

{
− iα

h̄

∫
d3x

√
h

N
∂k Nk

}
Φ

[{hij}
]
. (24)

The imposition of the constraints, φ, φk and χk , implies a fac-
torization of the wave functional Ψ = ΞΦ where Ξ denotes the
functional phase. This result does not depend on the choice of
the operator ordering: φ and φk are free from ordering ambigu-
ities; χk is just a modified version of the ADM Supermomentum
whose action is proved to be independent of the ordering choice
(see K. Kuchar’s section in [25]). Hence the functional phase is an
intrinsic property of our new Hamiltonian formulation. Moreover
this decomposition is the quantum analogue of the HJ analysis
we just performed, hence we are led to recognize in Φ the usual
ADM wave functional. Hence the imposition of three of our new
constraints on Ψ implies the imposition of three ADM constraints
on Φ

φΨ = Ξ(πΦ) = 0, φkΨ = Ξ(πkΦ) = 0,

χkΨ = Ξ(HkΦ) = 0. (25)

5.1. Quantum dynamics

As soon as χ (16) is promoted to be a quantum operator, two
main issues arise: the need to regularize the term with two mo-
menta and the operator ordering. In particular, the former can
be addressed by introducing a proper point-splitting procedure
parametrized by t , such that one replaces

Gi jkl(x)Π i j(x)Πkl(x)

→
∫

d3z Gijkl(x)K (x, z; t)Π i j(x)Πkl(z), (26)

where the function K (x, z; t) can be defined via the heat kernel ex-
pansion as shown in [8]. From here on we will use Gijab = √

hGi jab ,
because of the definition of K

lim K (x, z; t) = δ(3)(x − z)√ . (27)

t→0 h(x)
The operator ordering issue is due to the fact that two terms
are generically ambiguous on a quantum level: the one contain-
ing the supermetric, which is not polynomial in the configuration
variables, and the additional contribution proportional to Π rshrs

which is specific of the new Hamiltonian formulation. Indeed, the
ordering of these two terms is not completely arbitrary if we re-
quire Ψ (24) to be a proper solution of the whole set of con-
straints. In fact, as soon as the factorization of the wave func-
tional is performed, χΨ [N, Ni,hij] = 0 implies a certain condition
χ ′Φ[{hij}] = 0, which can be consistently solved only if it contains
no dependence on the lapse function and the shift vector.

Let us consider the following expression for χ in which the
factor-ordering choices, labeled by two real parameters β and γ
(β,γ ∈ [0,1]), are fixed such that like in [8] delta functions of the
form δ3(0) do not show up,

χ(β,γ )Ψ = − 1

α

∫
d3z Gijab(z)K (x, z; t)Π i j(x)Πab(z)Ψ

− 1 − β

α

∫
d3z

{
Π i j(x)

[
Gijab(z)K (x, z; t)

]}
Πab(z)Ψ

+ 1

2N(x)
∂k Nk(x)hij(x)Π i j(x)Ψ

+ 1 − γ

4N(x)
∂k Nk(x)Ψ

×
∫

d3z
{
Π i j(x)

[
hij(z)

√
h(z)K (x, z; t)

]}

+ α
√

h(x)R̄(x)Ψ + 3α
√

h(x)

8N2(x)
∂i N

i(x)∂k Nk(x)Ψ,

(28)

where in the 2nd and 4th terms Π i j(x) act only on the functions
within square brackets [. . .]. The heat kernel appears again in the
4th term in order to ensure that a δ3(0) term does not show up in
the final expression.

The symmetric ordering and the one with momenta on the
right correspond to β = γ = 0 and β = γ = 1, respectively. It is
possible to consider more generic orderings, but we regard the
introduction of further ambiguities in the term proportional to
Π rshrs as rather unnatural (such a term is polynomial in Π rs and
hrs). The evaluation of the action of χ on Ψ gives

χ(β,γ )Ψ = −ΞH(β,γ )Φ + ih̄

√
h(x)

4N(x)
∂k Nk(x)Ψ

×
[

3

2
(5γ + 2β)K (x, x; t)

+ (γ − β)hab(x)kab(x, x; t)

]
= 0, (29)

where Π i j K = −ih̄ki j . It is worth noting how in order to have a
solution of the secondary constraint χ (29) consistent with those
already solved (22), (23) the following condition must hold

Γ (x;β,γ ) = 3

2
(5γ + 2β)K (x, x; t)

+ (γ − β)hab(x)kab(x, x; t) = 0. (30)

The same condition ensures that the algebra of φ, φk with χ is not
anomalous. In fact, one finds

[
φ[A],χ [B]] = −A(x)B(x)

h̄2√h(x)

4N2(x)
∂k Nk(x)Γ (x;β,γ ),

[
φk

[
Ak],χ [B]] = ∂k Ak(x)B(x)

h̄2√h(x)
Γ (x;β,γ ), (31)
4N(x)



708 F. Cianfrani et al. / Physics Letters B 710 (2012) 703–709
A and B being smearing functions. Such a nonanomalous behav-
ior allows us to use the explicit solution of φΨ = φkΨ = 0 to
parametrize the hypersurfaces χΨ = 0. Once Eq. (30) is satisfied
we obtain

χ(β,γ )Ψ
[
N, Nk,hij

] = −Ξ
[
N, Nk,hij

]
H(β,γ )Φ

[{hij}
] = 0,

(32)

enforcing the quantum equivalence with the WDW formulation
and giving the possibility to realize a nonanomalous algebra for
the entire set of constraints as discussed in [26].

Therefore, the relation (30) must be imposed in order to have
a consistent solution of primary and secondary constraints. This
condition is identically solved no matter the form of the regula-
tor by fixing β = γ = 0, i.e. the symmetric operator ordering. This
ordering is thus a privileged one within this formulation. On the
contrary, when momenta in the Superhamiltonian stand on the
right (β = 1), the regulator must be fixed such that the condition
(30) holds. Even though one could fix Γ (x;1, γ ) = 0 via a proper
choice of the regulator one would not get a consistent ordering
prescription for the whole operator χ .

Hence, the requirement of dealing with a consistent set of con-
straints on a quantum level independently of the choice of the
regulator selects a proper class of operator orderings for the Su-
perhamiltonian operator. In particular, the symmetric ordering is
admissible, while one with momenta on the right is ruled out.

This procedure is very similar to the one proposed in [27] and
it enforces the quantum dynamical equivalence of both formula-
tions. Indeed, given the operator ordering, the imposition of the
new constraints on Ψ implies the imposition of ADM constraints
on Φ . Therefore, the relation (24) maps the solutions of the set of
constraints (16) into the solutions of the ADM one, if Eq. (30) is
satisfied.

The relation between ADM and Γ Γ wave functionals can be
inferred also in a path-integral formulation. The Euclidean ground
state wave functional associated with a 3-metric configuration hij
on a spatial hypersurfaces is given by [21]

Φ
[{hij}

] ∝
∫

D[g]e−SADM , (33)

where the integral is extended over all the 4-metric configurations
gμν having a boundary on which the induced metric is hij . In par-
ticular for the Γ Γ wave functional one finds, neglecting purely
spatial boundary terms

Ψ ∝
∫

D[g]e−SΓ Γ =
∫

D[g]e−SADM+∫
d4x ∂μDμ

. (34)

Being the difference between the Lagrangian densities a boundary
term (5), it receives contributions only from the boundary config-
urations. This fact implies that exp{∫ d4x ∂μDμ} comes out from
the path-integral and it gives a phase term in front of the ADM
wave functional, whose evaluation on a spatial hypersurfaces gives
the following expression

Ψ ∝ exp

{∫
d3x

√
h

N
∂k Nk

}
Φ[hij]. (35)

The phase in (35) is the Euclidean counterpart of the phase Ξ ob-
tained from the canonical analysis (24). It is interesting to see how
the path-integral analysis we just performed, where the operator
ordering is not an issue, supported the canonical frame we devel-
oped by confirming the presence of the functional phase.
6. Conclusions

This work has been motivated by the great historical impor-
tance of ADM formulation in quantizing GR. We solved the puzzle
of the noncanonicity firstly indicated in [15] with the concept of
gauged canonicity: a transformation is gauged canonical if its fun-
damental PB are canonical modulo a gauge transformation. The au-
thors of [15] were seeking a strong canonicity, the same of uncon-
strained systems. Clearly, the classical equivalence of the different
formulations is untouched because their dynamics are equivalent
on the hypersurfaces of constraints. The gauged canonicity results
imply, however, that some attention must be paid in order to have
a canonical ADM quantization equivalent to a yet unknown canon-
ical Γ Γ quantization, because fundamental PB are not preserved
by (5).

We then proposed a new Hamiltonian formulation which ex-
ploits the great deal of simplification due to the use of ADM vari-
ables. We showed that usual ADM secondary constraints can be
recovered as ‘reduced’ constraints in the HJ treatment of the new
Hamiltonian formulation. We performed the canonical quantization
procedure obtaining a new wave functional which can be factor-
ized in two terms: a functional phase containing N and Ni , which
is not 3 + 1 covariant, and a functional which can be identified
with the WDW functional. Furthermore, given a specific regular-
ization prescription studied in [8], the formulation privileges a
class of operator orderings, avoiding inconsistencies of the quan-
tization procedure, assuring the quantum equivalence with the
WDW quantization and avoiding anomalies in constraints algebra.
In this respect the symmetric ordering fulfills all these require-
ments independently of the regulator choice, which is a desirable
physical feature. The ordering result has relevant implications on
the Universe dynamics as discussed in [28,29]. Furthermore we
justified, from a path-integral point of view, the presence of the
functional phase as due to a boundary contribution in the ac-
tion.

Further developments should study the behavior of this new
wave functional under four-diffeomorphisms; one attempt could
use the class of solutions for Φ[{hij}] proposed in [8]. It will be
compelling to cast this formulation in Ashtekar’s variables [13] in
order to study possible modifications of observables in LQG frame-
work where a Hilbert space is properly defined. Furthermore it
would be interesting to induce other canonical transformations via
boundary terms in the ADM formulation and study whether the
preference for a symmetric ordering is a universal property of the
class of equivalent theories obtained via this procedure.
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