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Hematopoietic stem cells (HSCs) in the fetal liver (FL) unlike adult bone marrow (BM) proliferate extensively,
posing different metabolic demands. However, metabolic pathways responsible for the production of energy
and cellular building blocks in FL HSCs have not been described. Here, we report that FL HSCs use oxygen depen-
dent energy generating pathways significantly more than their BM counterparts. RNA-Seq analysis of E14.5 FL
versus BM derived HSCs identified increased expression levels of genes involved in oxidative phosphorylation
(OxPhos) and the citric acid cycle (TCA). We demonstrated that FL HSCs contain more mitochondria than BM
HSCs, which resulted in increased levels of oxygen consumption and reactive oxygen species (ROS) production.
Higher levels of DNA repair and antioxidant pathway gene expressionmay prevent ROS-mediated (geno)toxicity
in FL HSCs. Thus, we here for the first time highlight the underestimated importance of oxygen dependent path-
ways for generating energy and building blocks in FL HSCs.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In adult mammals, HSCs give rise to all the blood cells throughout life.
During development, HSCs originate in the dorsal aorta, fromwhere they
migrate into the FL at E11. The FL is the main site of hematopoiesis until
near birth. Around birth, HSCs migrate from the FL to the BM, where
they reside during postnatal life. In the FL, HSCs undergomultiple rounds
of symmetrical self-renewing cell divisions to give rise to the pool of stem
cells required for the lifetime of the organisms. However, in adults, the
most primitive HSCs (termed long-term repopulating (LT)-HSCs, that re-
populate the hematopoietic system long-term following transplantations,
are quiescent, dividing only every 140–180 days in mouse; Wilson et al.
2008; Foudi et al. 2009). BM HSC divisions are asymmetrical generating
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one HSC and one committed progenitor/short-term repopulating (ST)-
HSC (Takano et al. 2004). Nevertheless, quiescent LTR-HSCs can respond
very rapidly to stress or damage, and quickly exit from quiescence to re-
generate the blood system (Cheng et al. 2000). However, this is associated
with aging of LT-HSCs, demonstrated by shortening of telomeres and
skewing of LT-HSC differentiation towards the myeloid lineage (Vaziri
et al. 1994; Sudo et al. 2000).

Aside from phenotypic differences, functional differences have also
been described between adult BM and FL LT-HSCs (Higuchi et al. 2003;
Bowie et al. 2007). For instance, FL LT-HSCs display significantly faster ex-
pansion kinetics when grafted in adult mice, compared with LT-HSCs
from BM of 8-week-old mice (Bowie et al. 2007). Furthermore, FL and
early postnatal BM LT-HSCs undergo significantly more symmetrical
self-renewing cell divisions compared with 8-week-old adult BM LT-
HSCs.

Although itwould be logical to hypothesize that extensively prolifer-
ating FL LT-HSCs may require a significantly different metabolic activity
to create energy and building blocks for cell renewal, few if any studies
have addressed this question. Cell metabolism consists of anabolic and
catabolic reactions that allow cells to survive, function and synthesize
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scr.2015.11.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.scr.2015.11.001
mailto:satishkhurana@iisertvm.ac.in
mailto:Catherine.verfaillie@med.kuleuven.be
Journal logo
http://dx.doi.org/10.1016/j.scr.2015.11.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
Unlabelled image
http://www.sciencedirect.com/science/journal/18735061
www.elsevier.com/locate/scr


716 J.K. Manesia et al. / Stem Cell Research 15 (2015) 715–721
new components for cellular division. The generation of cellular energy
(ATP), reduction capacity (NADH, NADPH and FADH2) and cellular
macromolecules is mainly fueled by the consumption of glucose, gluta-
mine and fatty acids through glycolysis, glutaminolysis and β-oxidation,
respectively (Berg et al. 2007;Matés et al. 2009). The function and activ-
ity of ATP-generating pathways is known to differ dramatically in stem
cells and differentiated progeny. Most stem cells have been shown to
use glycolysis for energy production, while more differentiated cells di-
vert glucose to the mitochondria and exhibit a significantly higher rate
of OxPhos (Varum et al. 2011; Abu Dawud et al. 2012). This has also
been shown for adult BM LT-HSCs. Postnatal BM LT-HSCs depend on
glycolysis for energy production,whereas glycolysis decreases upon dif-
ferentiation and OxPhos increases (Suda et al. 2011; Klimmeck et al.
2012). While TCA cycle-related metabolites such as 2-oxoglutarate,
acetyl-CoA, and succinyl-CoA were not detected in LT-HSCs, they were
shown to accumulate pyruvate (Takubo et al. 2013). Loss of pyruvate
dehydrogenase kinase (Pdk) (Takubo et al. 2013) or lactate dehydroge-
nase (Ldha) (Wang et al. 2014), which inhibits glycolysis, results in de-
fects in LT-HSC function. As metabolic pathways used can determine
fate changes at the stem cell level (Oburoglu et al. 2014), we believe
that understanding themetabolism of proliferative FL LT-HSCs will pro-
vide insights into how it might be possible to achieve extensive self-
renewal of BM LT-HSCs, and hence, create efficient ex vivo LT-HSC ex-
pansion systems.

In this study, we tested the hypothesis that in contrast to adult BM
LT-HSCs, which use glycolysis for energy production, FL HSCs may use
alternativemetabolic pathways to fuel their ability to expand extensive-
ly, such as the OxPhos pathway. This hypothesis was based on results of
an RNA-sequencing (RNA-seq) study we performed on E14.5 FL and 8-
week-oldmurine LT-HSCs, to gain insight into themolecular differences
between fetal and adult HSCs that underlie their functional attributes. In
this screen,we surprisingly found that that FL HSCs express significantly
higher levels of OxPhos and citric acid cycle (TCA) genes comparedwith
BM HSCs.

2. Materials and methods

2.1. Animals

Six to 10 weeks old C57BL/6J-CD45.2 mice (Centre d'Elevage R.
Janvier, Le Genest-St. Isle, France, http://www.criver.com/) were bred
and maintained in the animal facility at KU Leuven, Belgium. During
the experiments, mice were maintained in isolator cages, fed with
autoclaved acidified water, and irradiated food ad libitum. Animal pro-
cedureswere performed according to protocols approved by the Institu-
tional Ethics Committee.

2.2. Isolation of LT-HSC from bone marrow and fetal liver

Total adult bonemarrow (ABM) cells were flushed from femurs and
tibiae of male C57BL/6J mice, pooled, washed twice with phosphate-
buffered saline (PBS; Gibco Invitrogen, CA) containing 0.1% bovine
serum albumin (BSA; Sigma). Lineage negative cell isolation was per-
formed using lineage cell depletion kit (Miltenyi Biotec, Germany). To
isolate LT-HSCs from ABM, resulting Lin− cells were stained with FITC
conjugated anti-Sca-1, PE conjugated anti-c-kit, APC conjugated anti-
lineage antibody cocktail (BD Pharmingen, San Diego, CA), PerCP/
Cy5.5 conjugated anti-CD150 andAPC conjugated anti-CD48 antibodies.
Cells were incubated on ice for 30 min.

FL tissues were obtained from C57BL/6J embryos dissected at em-
bryonic day (E) 14.5 (14 days after vaginal plug was observed). Ter-
119 positive erythrocytes and erythrocyte progenitors were depleted
using MACS columns (Miltenyi Biotec, Germany) and stained with
Alexa Fluor 488 conjugated anti-lineage antibody cocktail (containing
CD4, CD5, CD8a, CD45R, Ter-119, GR-1 antibodies), PE conjugated
anti-CD11b, APC conjugated anti-Sca-1, PE-Cy7 conjugated anti-CD150
and Alexa Fluor 488 conjugated anti-CD48. Cells were incubated on
ice for 30 min.

HSCs were sorted by fluorescence-activated cell sorting (FACS),
using a FACS ARIAIII (Becton Dickinson).

2.3. RNA sequencing and bioinformatics analysis

To compare the gene expression between ABM and FL HSCs, total
RNA was isolated from two biological replicates each of LT-HSCs from
E14.5 FL and adult BM using miRNeasy Micro Kit (QIAGEN) and ampli-
fied with the Ovation RNA-seq V2 system (NuGen Technologies, CA) as
per manufacturer's instructions. Amplified cDNA (1 μg) was sheared
using the Covaris system (Covaris, MA) and fragments of 200 bp
(180–220 bp) were selected to construct a cDNA library. The libraries
were subjected to 2*90 bp paired-end sequencing on an Illumina
HiSeq2000 sequencer. Raw reads generated by Illumina HiSeq2000
were subjected to quality control. Sequence reads were pre-processed
by the pipeline of BGI (Shenzhen, China) to remove adaptors and filter
low quality reads. The high quality reads were aligned to themouse ref-
erence genome mm9 using TopHat2 tool (Kim et al. 2013).

The differential gene expression analysis was performed using the R
package DESeq2 (Love et al. 2014) and differentially expressed genes
were identified using the following thresholds: false discovery rate
(FDR) b 0.05 and |log fold change| N 1.0. Gene-set enrichment analysis
(GSEA) was performed to detect significantly enriched gene sets (also
called pathways) using the R package GAGE v2.14.4 (Luo et al. 2009).
The manually curated gene-set source was downloaded from the
Bader lab (http://baderlab.org/GeneSets), which consisted of multiple
data repositories, e.g. GO (Ashburner et al. 2000), Reactome (Croft
et al. 2011), and Kyoto Encyclopedia of Genes and Genomes (KEGG) da-
tabase (Ogata et al. 1999). GSEA results were visualized by Enrichment
Map v2.1.0 (Merico et al. 2010) and Cytoscape v3.2.1 (Shannon et al.
2003). To further investigate differences on metabolic potential, KEGG
metabolic pathway maps were reconstructed to provide an overview
of gene expression profiling and molecular interactions within a single
pathway by using the R package Pathview (Luo and Brouwer 2013).
All sequencing data are deposited at the ArrayExpress database
(http://www.ebi.ac.uk/arrayexpress) with accession number: E-
MTAB-4034.

KEGG pathway analysis was also applied on the published datasets
with accession number: GSE37000 (McKinney-Freeman et al. 2012),
GSE55525 (Beerman et al. 2014) and E-MTAB-2262 (McKinney-
Freeman et al. 2012; Beerman et al. 2014; Cabezas-Wallscheid et al.
2014). In brief, normalized (FRMAmethod) datasetswith accession num-
bers GSE55525 and GSE37000 were downloaded from In silico DB
(https://insilicodb.com) and data sets on HSCs, progenitor and cultured
HSCs were analyzed for differentially regulated pathways using KEGG
pathway analysis. Normalized read-count for RNA-seq data related to ac-
cession number E-MTAB-2262, was downloaded from the published
dataset by Cabezas-Wallscheid et al. 2014 and KEGG pathway analysis
was performed.

2.4. Quantitative RT-PCR

To confirm levels of expression of some of the genes, independent
samples of BM and FL HSCs were sorted to perform qRT-PCR. RNA was
isolated from the FACS sorted cells using the miRNeasy micro kit
(Qiagen, Hilden, Germany). RNA was amplified and cDNA synthesized
using the Ovation RNA-seq V2 system (NuGen Technologies, CA) as
permanufacturer's instructions. qRT-PCRwas performed using the Plat-
inum SYBR Green qPCR SuperMix-UDG (Invitrogen). The PCR reactions
were carried out on the ViiA7 Real-Time PCR System (Applied
Biosystems). A list of primers used for the qRT-PCR can be found in
Table 1. Gene expression for different transcripts was calculated relative
to β-actin as a housekeeping gene.

http://creativecommons.org/licenses/bycd/4.0/
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Table 1
List of primers used to performquantitative RT-PCR for analyzing expression ofOxPhos re-
lated genes.

Gene name Forward primer Reverse primer

Idh2 GGACCTTATCAGGTTTGCAC CAGGTTGCTCTTAATGGTGTC
Atp5o TTCCACCATCATGAGTGTCCA GACGGGTCAGTCTTGATCTC
Sdhd CAGCATTTCTCCAGGACCAG CCTTGGAACCAGAGTGGTG
Cox4i1 ATGGGAGTGTTGTGAAGAGTG ATGCGGTACAACTGAACTTTCTC
Cox7b GGGTGAATTTGCACCAAGGC GCTTCGAACTTGGAGACGGC
Ndufc1 AAGTTCTATGTCCGGGAGCC TTGTGTGTTTGGATGAGATAAATCC
Ndufb6 GAACATGGTCTTTAAGGCGTACC GGGCTTCGAGCTAACAATGG
Gpx1 ACACCGAGATGAACGATCTGC TCTTCATTCTTGCCATTCTCCTGG
Cat ACAATGTCACTCAGGTGCGG GCAATGTTCTCACACAGGCG
Prdx1 TATCAGATCCCAAGCGCACC AAGGCCCCTGAAAGAGATACC
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2.5. Mitochondria and cellular ROS level measurement

For bothmitochondria andROS staining, freshly isolated adult BMand
E14.5 FL cells (2–3 × 106 cells/sample) were stained for 30 min at 4 °C
with an anti-lineage antibody cocktail containing CD4, CD11b, CD5,
CD8a, CD45R, Ter-119, Gr-1 (CD11b was excluded from FL samples),
anti-Sca-1, anti-c-kit, anti-CD150 and anti-CD48 (anti-CD48was included
in lineage cocktail). For LSK cells from BM and FL, we stained for anti-lin-
eage antibodies (cd11b was excluded from FL samples), anti-Sca-1 and
anti-ckit. All the antibodies were conjugated with different fluorophores
and were used in different color combination described in Table 1.

To measure mitochondrial mass, antibody labeled cells were incu-
bated at 37 °C for 30 min in medium (IMDMwith 10% FBS; Invitrogen)
containing 100 nM MitoTracker Green FM (Invitrogen), and then ana-
lyzed with flow cytometry.

Tomeasure cellular ROS levels, cells were cultured in IMDM supple-
mented with 10% FBS with or without Rotenone (15 μM, DMSO was
Table 2
List of antibodies used in combination with fluorescent dyes for mitochondrial and ROS conten

Dyes/experiment Fluorophores

MitoTracker Green FM/total mitochondrial content PE

PerCP-Cy5.5
PE-Cy7
APC

MitoSox Red/mitochondrial ROS AlexaFluor-488

FITC
APC
PE-Cy7
APC-H7

CM-H2DCFDA/total ROS PE

PerCP-Cy5.5
PE-cy7
APC
used as vehicle control) for 90 min followed by PBS wash. Cells were
then incubated with PBS containing 2 μM CM-H2DCFDA (Invitrogen)
and with or without Rotenone at 37 °C for 30 min after being stained
with the antibodies described in Table 2. ROS levels in the HSC gated
population were quantified using flow cytometry.

To measure mitochondrial ROS levels, cells were cultured in IMDM
supplemented with 10% FBS with or without Rotenone (15 μM; DMSO
was used vehicle control) for 90 min followed by PBS wash. Cells were
then incubated with PBS containing 5 μM MitoSox Red (Invitrogen)
with/without Rotenone at 37 °C for 15 min after being stained with the
antibodies described in Table 1. ROS levels in the HSC gated population
were quantified using flow cytometry. All the samples were analyzed
on a BD FACS Canto (BD Bioscience), except MitoSox Red staining,
whichwas analyzed on a BD FACS AriaIII (BD Bioscience). All flow cytom-
etry data were analyzed and quantified using the FlowJo software (Tree
Star, San Carlos, CA, USA).

2.6. ATP measurement

ATP levels were quantified in FL and BM LT-HSC using the CellTiter-
Glo Luminescent Cell Viability Assay Kit (Promega) according to
manufacturer's protocol. In brief, FL and BM LT-HSC were FACS sorted
(8000 cells per sample, n = 3) in IMDM basal medium (Invitrogen)
and transferred to a 96-well opaque plate. Cells were equilibrated at
room temperature (RT) for 30 min, subsequently substrate was added
to each well and incubated for 10 min at RT. After, incubation lumines-
cence was measured using the Victor3 plate reader (PerkinElmer, Inc.).

2.7. Oxygen consumption assay

The oxygen consumption rate (OCR) of LSK cells sorted from adult
BM and E14.5 FL was measured using the XFp Extracellular Flux
t analysis.

Antibodies Clone Company

Anti-TER-119 Ter-119 BD
Anti-Ly-6G/Ly-6C RB6-8C5 BD
Anti-CD4 GK1.5 ebioscience
Anti-CD45R/B220 RA3-6B2 ebioscience
Anti-CD8a 53-6.7 ebioscience
Anti-CD5 53-7.3 BD
Anti-CD48 HM48-1 BD
Anti-cd11b M1/70 ebioscience
Anti-Sca-1 D7 ebioscience
Anti-CD150 TC15-12F12.2 Biolegend
Anti-c-kit 2B8 ebioscience
Anti-TER-119 Ter-119 Biolegend
Anti-Ly-6G/Ly-6C RB6-8C5 Biolegend
Anti-CD4 GK1.5 Biolegend
Anti-CD45R/B220 RA3-6B2 Biolegend
Anti-CD8a 53-6.7 Biolegend
Anti-CD5 53-7.3 Biolegend
Anti-CD48 HM48-1 Biolegend
Anti-cd11b M1/70 ebioscience
Anti-Sca-1 D7 ebioscience
Anti-CD150 TC15-12F12.2 Biolegend
Anti-c-kit 2B8 BD
Anti-TER-119 Ter-119 BD
Anti-Ly-6G/Ly-6C RB6-8C5 BD
Anti-CD4 GK1.5 ebioscience
Anti-CD45R/B220 RA3-6B2 ebioscience
Anti-CD8a 53-6.7 ebioscience
Anti-CD5 53-7.3 BD
Anti-CD48 HM48-1 BD
Anti-cd11b M1/70 ebioscience
Anti-Sca-1 D7 ebioscience
Anti-CD150 TC15-12F12.2 Biolegend
Anti-c-kit 2B8 ebioscience
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Analyzer (Seahorse Bioscience). For the measurement of the OCR, LSK
cells (0.5–1 × 105) were FACS sorted from E14.5 FL and adult BM and
plated in wells of the XFp plate coated with Cell-Tak adhesive, in 50 μl
SFEM medium containing TPO (100 ng/ml) and SCF (50 ng/ml). The
plates were centrifuged for 2 min at 200 × g (without acceleration/de-
celeration) to immobilize HSCs and incubated for 25 min at 37 °C.
After the incubation period, additional 125 μl mediumwas added gently
and plates were further incubated for 30 min. Seven basal respiration
measurements were recorded followed by four measurements after
oligomycin (ATP synthase inhibitor) treatment.
2.8. Statistical analysis

The significance of differences was determined by two-tailed
Student's t-test. p b 0.05 was considered statistically significant (ns:
not significant; *p b 0.05).
Fig. 1. Genes regulating oxidativephosphorylation are enriched inE14.5 FLderivedLT-HSCs.
BM and E14.5 FL, were subjected to RNASeq analysis. GSEA and KEGG pathway analysis was p
enriched in E14.5 FL LT-HSCs as compared with BM LT-HSCs identified by KEGG pathway analy
oxidative phosphorylation and TCA cycle pathways were in red. C, D) Heat map showing re
(D) differentially regulated in FL versus BM derived LT-HSCs identified by KEGG pathway anal
TCA cycle up regulated in FL LT-HSCs. ATP synthase subunit O (Atp5o), cytochrome c oxidase
C1 (Ndufc1) and subunit B6 (Ndufb6), succinate dehydrogenase-D (Sdhd), isocitrate dehydro
HSC samples. For all samples ΔCt values for each gene were plotted. (n = 3–5, t test: *p b 0.05
3. Results and discussion

3.1. Enrichment of OxPhos, TCA and DNA repair gene sets in FL versus BM
derived LT-HSCs

For the RNA-seq study, we isolated LT-HSCs fromE14.5 FL (CD150+-
CD48−Lin−Sca-1+CD11b+) and adult BM (CD150+CD48−Lin−Sca-
1+c-kit+) (Fig. 1A and Fig. S1A) by fluorescence activated cell sorting
(FACS) and performed 90 bp pair-end RNA-seq. Raw sequencing reads
filtered into clean reads, were aligned to the reference genome using
the TopHat2 tool. On average, ≈88.0% of filtered reads per sample
were mapped to the mouse genome (Fig. S1). Hierarchical clustering
of E14.5 FL and BM LT-HSCs showed that both populations differ global-
ly in gene expression profile, while biological replicateswere highly cor-
related (Fig. S1C, D).

To determine which gene pathways are differentially expressed
between FL and BM LT-HSCs, we performed a gene-set analysis
A)Graphical presentation of themethods involved. PrimitiveHSCs FACS, sorted fromadult
erformed to assess pathway related gene clusters enriched in each sample. B) Pathways
sis. For the top 20 up-regulated pathways, log10 for p-values were plotted and highlighted
lative expression of the genes involved in oxidative phosphorylation (C) and TCA cycle
ysis. E) Increased expression of representative genes from oxidative phosphorylation and
subunit 4 isoform 1 (Cox4i1) and subunit 7B (Cox7b), NADH dehydrogenase 1 subunit
genase (Idh2) were confirmed using qRT-PCR on at least three additionally isolated LT-
).

Image of Fig. 1


719J.K. Manesia et al. / Stem Cell Research 15 (2015) 715–721
wherein functionally related gene-sets (designated pathways, here-
after) were grouped as network clusters (Fig. S1E). In total, 525 path-
ways (out of 8463) were significantly enriched in FL (480) and BM
(45) HSCs (BM HSCs as control; p-value b 0.001 and FDR b 0.05). In
addition, to identify differentially regulated pathways, we also per-
formed KEGG pathway analysis (Fig. 1B). Cell cycle and DNA replica-
tion related gene sets weremore highly expressed in FL LT-HSCs than
in BM LT-HSCs, in line with differences in proliferation between FL
and BM LT-HSCs. Extensive proliferation of adult BM LT-HSCs has
been linked to the loss of stemness and DNA damage, resulting in
premature aging (Mohrin et al. 2010). GSEA analysis showed higher
expression of DNA repair pathway related genes in FL HSCs
(Fig. S1E). Likewise, KEGG pathway analysis identified genes related
tomismatch repair, homologous recombination, nucleotide and base
excision repair pathways to be higher expressed in FL than BM LT-
HSCs (Fig. 1B). This finding is in accordance with a recent study dem-
onstrating that when brought into cell cycle, aged HSCs activate DNA
damage responses (Beerman et al. 2014).

Interestingly, both GSEA (Fig. S1E) and KEGG pathway analysis
(Fig. 1B) clearly showed that E14.5 FL LT-HSCs were enriched in gene-
sets related to oxidative metabolic pathways such as OxPhos (Fig. 1C)
Fig. 2. Elevated levels ofmitochondrial content and activity coupledwith increasedoxygen
FL (lower panel) were labeled with specific antibodies to identify primitive LT-HSCs (lower pa
well as total andmitochondrial ROS levels (plots are representative example of n=3biological
in primitive LT-HSCs from BM and FL (n = 3, t test: *p b 0.05). C) ROS levels in BM and FL der
chondrial ROS levels in BM and FL LT-HSCs was quantified using MitoSox Red dye (n= 5 , t tes
ange) and BM(Blue) using the Seahorse Xp, in nine biological replicates, without andwith addit
and E14.5 FL derived LSK cells (n=9, t test: *pb 0.05). G)Quantification of ATP levels in FL LT-HS
genes from antioxidant pathways. Glutathione peroxidase 1 (Gpx1), Catalase (Cat) and Peroxire
additionally isolated LT-HSC samples. For each geneΔCt values representing the level gene expr
and the TCA cycle (Fig. 1D). Increased expression of representative
OxPhos and TCA cycle genes in FL LT-HSCs was confirmed by qRT-PCR
(Fig. 1E). These findings are unexpected, as BM LT-HSCs, like many
other adult stem cells, depend on glycolysis for energy production
(Parmar et al. 2007), and inhibition of glycolytic pathways and activa-
tion of oxidative pathways correspond with lineage commitment of
HSCs (Takubo et al. 2013). These observations are in line with KEGG
pathway analysis of the transcriptome studies published by
McKinney-Freeman et al., wherein we identified oxidative phosphory-
lation to be the top significantly up-regulated pathway in E14.5 FL
HSC compared with BM LT-HSCs (McKinney-Freeman et al. 2012)
(Fig. S2A), an observation that was not addressed in that study.

We also compared the expression of OxPhos and TCA genes between
committed progenitors and LT-HSCs in either FL or BM. qRT-PCR dem-
onstrated that most of the OxPhos and TCA genes analyzed were signif-
icantly higher expressed in BM LSK cells (i.e. a combination of ST-HSCs
and multipotent progenitors (MPPs)), compared to BM LT-HSCs
(Fig. S2B), while differences between FL LSK cells and FL LT-HSCs were
less pronounced (Fig. S2C). These results are consistent with KEGG
pathway analysis of data published by Beerman et al., In that study,
higher levels of OxPhos and TCA pathway genes were also seen in
consumption in FL LT-HSCs.A)Mononuclear cells from adult BM (upper panel) and E14.5
nel) and were co-stained with fluorescent dyes to quantify total mitochondrial content as
replicates). B) Totalmitochondrial content usingMitoTrackerGreen FMdyewas quantified
ived LT-HSCs were quantified using CM-H2DCFDA dye (n = 3, t test: *p b 0.05). D) Mito-
t: *p b 0.05). E) Oxygen consumption rate was measured in LSK cells isolated from FL (Or-
ion of oligomycin (n=9, t test: *p b 0.05). F) Coupled respirationwas plotted for adult BM
C relative to BMLT-HSC (n=3, t test: *pb 0.05). H) Increased expression of representative
doxin-1 (Prdx-1) up regulated in FL LT-HSCs were confirmed by qRT-PCR on at least three
essionwere plotted for adult BM and E14.5 FL derived LT-HSCs (n=3–5, t test: *p b 0.05).

Image of Fig. 2


720 J.K. Manesia et al. / Stem Cell Research 15 (2015) 715–721
MPP Flk2− progenitors compared with LT-HSCs, and TCA cycle genes
were significantly higher expressed in MPP Flk2+ progenitors
(Fig. S2D–E) (Beerman et al. 2014). Moreover, granulocyte-
macrophage progenitors were significantly more enriched for genes in
the OxPhos, TCA cycle, and DNA damage response and repair pathways
compared with LT-HSCs, and common lymphoid progenitors signifi-
cantly enriched in OxPhos and DNA repair pathways (Fig. 2D–E). The
same conclusions could be made from the study by Cabezas-
Wallscheid et al., KEGG pathway analysis by pair-wise comparison of
LT-HSCs with MPP1, MPP2, MPP3, MPP4 (i.e. different classes of
multipotent progenitors) (Fig. S2D–E) demonstrated that MPPs are
enriched for pathways related to cell-cycle, DNA-replication, mismatch
repair, homologous recombination compared to HSC, and that, TCA
cycle pathway genes were enriched in MPP2 and MPP3 compared
with LT-HSCs (Fig. S2E) (Cabezas-Wallscheid et al. 2014).

Thus, compared with BM LT-HSCs, FL LT-HSCs express significantly
higher levels of OxPhos and TCA genes as well as DNA repair genes, sug-
gesting that FL LT-HSCsmay be using oxidative phosphorylation tomeet
energy and building block needs. Once differentiated to more commit-
ted short-term (ST-) HSCs andMPPs, which can be seen as the transient
amplifying pool of cells in hematopoiesis, expression of metabolic and
DNA repair gene sets was significantly different from BM LT-HSC. How-
ever, in FL to perform more in depth comparison more difficult, as FL
HSC sub-populations corresponding to the well-defined MMP, CMP
and CLP subclassification have not been defined.

3.2. Higher mitochondrial content and oxygen consumption in FL derived
LT-HSCs

Mitochondria are the sub-cellular sites of oxidative metabolic pro-
cesses. The mitochondrial mass and activity in adult BM HSCs that de-
pend upon glycolysis are low (Papa et al. 2012). By contrast,
committed hematopoietic progenitors, which display higher oxidative
phosphorylation and oxygen consumption levels, contain more and
more active mitochondria compared with adult BM LT-HSCs (Romero-
Moya et al. 2013). To demonstrate that the increased expression of
OxPhos genes in FL LT-HSCs translates in the use of oxidative metabolic
pathways, we first analyzedmitochondrial mass in primitive HSCs from
E14.5 and adult BM (Fig. 2A, B). Mononuclear cells (MNCs) from 8-
week-oldmurine BM and E14.5murine FLwere stainedwith antibodies
against CD150, CD48, lineage markers, Sca-1 and c-kit (Fig. 2A), com-
bined with mitochondrial dye. We used MitoTracker Green to examine
the totalmitochondrial content. Corroborating the increased expression
of OxPhos genes in FL HSCs, we observed significantly higher total
(Fig. 2B; Fig. S3A) mitochondrial content in FL than BM HSCs.

Mitochondrial staining also demonstrated that BM LSK cells had
moderate but significantly higher mitochondrial content relative to
BM LT-HSC (Fig. S3D–E). By contrast, the mitochondrial mass in FL LSK
cells was modestly but significantly lower than in LT-HSC (Fig. S3F–G).
Thus, compared to BM LT-HSC, BM LSK cells may have more active
OxPhos metabolism. By contrast, minor differences in mitochondrial
content were seen between FL-LSK cells and LT-HSC, suggesting that
both populations use OxPhos metabolism, and more so than BM
LT-HSC.

A number of studies demonstrated that production of reactive oxy-
gen species (ROS),mainly the result ofmitochondrial oxidation, induces
HSC differentiation and aging, ultimately abrogating engraftment po-
tential of adult BM HSCs (Ito et al. 2006). Hematopoietic stem and pro-
genitor (HSPC; Lin−CD45−) cells containing low levels of ROS (ROSlow)
were enriched in primitive HSC activity, while ROShi cells showed HSC
exhaustion when serially transplanted (Jang and Sharkis 2007). We
next analyzed total and mitochondrial ROS levels in FL and BM derived
HSCs to assess if the greater mitochondrial mass in FL HSCs was associ-
ated with increased ROS production (Fig. 2C, D; Fig. S3B, C). Total cellu-
lar ROS content was assessed by staining primitive BM/FL MNCs with
CM-H2DCFDA combined with HSC antibodies, while mitochondrial
ROS, was assessed by staining MNCs with the MitoSox Red (mitochon-
drial superoxide–sensitive fluorophore) dye combined with HSC anti-
bodies. We observed higher total (Fig. 2C; Fig. S3B) and mitochondrial
(Fig. 2D; Fig. S3C) ROS levels in FL compared with adult BM LT-HSCs.

Finally, we measured the oxygen consumption rate (OCR) in FL and
adult BM LT-HSCs. Due to the exceedingly low number of CD150+-
CD48−Lin−Sca-1+c-kit+ cell frequency in both adult BM and FL, we
first tested if similar differences in mitochondrial content and activity
observed in CD150+CD48−Lin−Sca-1+c-kit+ BM vs. FL cells were
also seen in the Lin−Sca-1+c-kit+ (LSK) cell fraction.We found that dif-
ferences in mitochondrial content between LSK cells from FL and BM
were similar to what we found in the primitive HSC population
(CD150+CD48−LSK cells) (data not shown). Therefore, we used LSK
cells isolated form FL and adult BM for OCR studies using the Seahorse
XFp analyzer. Basal respiration in FL LSK cells was significantly higher
compared to BM LSK cells (Fig. 2E). Treatment of both FL and adult
BM LSK cells with oligomycin, an inhibitor of the ATP synthase complex,
significantly decreased OCR, demonstrating that the increased oxygen
uptake in FL LT-HSCs was coupled with ATP generation via oxidative
phosphorylation. This also showed that level of coupled respiration
was significantly higher in E14.5 FL than in the adult BM LT-HSCs
(Fig. 2F). Consistent with this OCR measurement, FL LT-HSCs showed
significantly higher amount of cellular ATP levels relative to BM LT-
HSCs due to higher OxPhos activity (Fig. 2G).
4. Conclusion

Our studies thus clearly demonstrate that FL LT-HSCs use OxPhos
(aside from glycolysis), which we hypothesize is required to more effi-
ciently generate ATPs and other building blocks essential for the exten-
sive FL-HSC expansion. Unlike adult BM LT-HSCs, wherein OxPhos
results in ROS accumulation causing differentiation, DNA damage and
aging, LT-HSCs derived from FL that express higher levels of gene-sets
related to “cellular response to stress” as well as DNA repair pathways
may be able to cope with the increased ROS levels (Fig. 1B; Figs. S1E
and S2A). Expression levels of some anti-oxidant genes from these
gene-sets were examined in adult BM and E14.5 FL derived LT-HSCs
by qRT-PCR (Fig. 2H). We speculate that elevated levels of these genes
prevent DNA damage higher baseline ROS and oxygen consumption
rate (OCR) in FL LT-HSCs (Nijnik et al. 2007; Rossi et al. 2007).

Thus, we here demonstrate, for the first time, that in contrast to
adult BM LT-HSCs, FL LT-HSCs use OxPhos (aside from glycolysis),
which may be required to more efficiently generate ATP and other
building blocks essential for the extensive FL-HSC expansion. Proliferat-
ing FL LT-HSCs can prevent (geno)toxicity induced by ROS because they
also express significantly more anti-oxidant pathway and DNA repair
pathway genes. It is tempting to speculate that if mitochondrial biogen-
esis combinedwith strengthened antioxidant and DNA repair pathways
could be induced in adult BM LT-HSCs, BM LT-HSC expansionmight be-
come possible.
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