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Alfsen, Shultz, and Stormer have defined a class of normed Jordan algebras 
called ]B-algebras, which are closely related to Jordan algebras of self-adjoint 
operators. We show that the enveloping algebra of a J&algebra can be identified 
with its bidual. This is used to show that a JB-algebra is a dual space iff it is 

monotone complete and admits a separating set of normal states; in this case 
the predual is unique and consists of all normal linear functionals. Such JB- 
algebras (“JBW-algebras”) admit a unique decomposition into special and 
purely exceptional summands. The special part is isomorphic to a weakly closed 
Jordan algebra of self-adjoint operators. The purely exceptional part is iso- 
morphic to C(X, n/l,*) (the continuous functions from X into Mae). 

INTRODUCTION 

In [3] a J&algebra A is defined as a real Banach space A with product 0 such 
that (A, 0) is a Jordan algebra with identity satisfying the norm axioms I/ 2 )I = 
(1 a II2 and 11 a2 jl < \j a2 + b2 // for all a, b E A. (In [3] there is a third axiom, 
11 a 0 b 11 < jJ a (( j/ b 11, which can be shown to be redundant by modifying the 
proof of the analogous result for C*-algebras in [4].) 

The example which motivates this definition is the class of JC-algebras: 
norm closed linear spaces of self-adjoint operators on a Hilbert space closed 
under the Jordan product a 0 b = +(ab + ba). (In the sequel we will often refer 
to a JC-algebra with identity as a Jordan operator algebra). Clearly such an 
algebra is a J&algebra. 

Another example of a J&algebra is Ma *: the 3 x 3 hermitian matrices over 
the Cayley numbers. It is known that Ma* is not isomorphic to any Jordan 
operator algebra. The main results of [3] show that every J&algebra can be 
constructed from these two examples in the manner now to be described. The 
“J&factors” are either isomorphic to IMa8 or to a Jordan operator algebra. For 
every JB-algebra A there exists a unique Jordan ideal J such that A/J is (iso- 
metrically) isomorphic to a Jordan operator algebra and every factor representa- 
tion of A not annihilating J is onto Ma 8. Thus A will be isomorphic to a Jordan 
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operator algebra iff this ideal J is (0); this is equivalent to requiring that A satisfy 
a certain polynomial identity. 

One might hope that the ideal J would be a direct summand, so that A could 
be written as a sum of a Jordan operator algebra and a purely exceptional part. 
However, this is in general not true, as shown by an example in [3]. By analogy 
with associative operator algebras (C*-algebras), this is not surprising: in general 
a norm-closed algebra will not split apart with respect to a given property. 
However, such desirable behavior is common if instead one works with weakly 
closed algebras (von Neumann algebras). This it is natural to investigate the 
corresponding class of JB-algebras. 

Since a JB-algebra cannot in general be represented as an algebra of operators 
on a Hilbert space, the notion of “weakly closed JB-algebra” makes no sense. 
However, recall that non-spatial characterizations of von Neumann algebras are 
known. Kadison [15] showed that an abstract C*-algebra d admits a faithful 
representation as a weakly closed *-algebra of operators iff the self-adjoint part 
of & is monotone complete and there exists a separating set of normal states for 
G?. Another characterization is that of Sakai [19] who showed that a C*-algebra 
admits such a representation iff it is a Banach dual space. 

Both of these characterizations are possible candidates for the notion of a 
JB-algebra of “weakly closed” character. In $2 below it is shown that fortunately 
these conditions are equivalent for JB-algebras; a JB-algebra satisfying these 
equivalent conditions is called a JBW-algebra in the sequel. In the case of a 
Jordan operator algebra, these properties are equivalent to the existence of a 
faithful representation as a weakly closed Jordan operator algebra (a so-called 
“JW-algebra”). 

The main result of this paper can now be stated. Every JBW-algebra A 
admits a unique decomposition A = A,, @ A,, into special and “purely 
exceptional” parts. Here A,, will be isomorphic to a JW-algebra, and A,, will 
be isomorphic to C(X, Maa): the continuous functions from X into Ma, where 
X is hyperstonean. We remark that JW-algebras have been studied extensively 
by Topping [25, 261 and Stormer [23, 241. 

We now briefly will summarize the contents of this paper. In Section 1 the 
relationship of the enveloping algebra and bidual of a JB-algebra is investigated, 
and it is shown that the enveloping algebra (as defined in [3]) can be identified 
with the bidual. This result is used in 92 to show that a JB-algebra is a Banach 
dual space iff it is monotone complete and admits a separating set of normal 
states; in this case the predual is unique. In $3 the decomposition A = A,, @A,, 
is established for JBIV-algebras. The key result needed to prove this is that if 
v: A + Mz8 is a surjective homomorphism of a JBW-algebra A onto MS8 then A 
contains a copy of Mas as a subalgebra. As a corollary along the way, it is shown 
that matrix units can always be lifted from the quotient of a von Neumann 
algebra by a norm closed two-sided ideal. (If the quotient is finite dimensional, 
this follows from [17]). 
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1. THE ENVELOPING ALGEBRA AND BIDUAL OF A JB-ALGEBRA 

We will begin by showing that if -4 is a JB-algebra then A** is also a JB- 
algebra when equipped with the Arens [5] product. A special case of this is 
already known: if A is a JC-algebra then A** is isomorphic to a JC-algebra and 
thus is a JB-algebra [9]. 

LEMMA 1 .l. For each 01 in an index set I let M, be a copy of M2. 

Then CL n/r,>* * is a JB-algebra for the Awns product. 

Proof. By C M, we mean the Z”-direct sum of the spaces Ma , i.e., the space 
of bounded functions from I into Mss with supremum norm and pointwise 
operations. If X is the Stone-tech compactification of the discrete space I, then 
C M, will be isomorphic to the space C(X, MS*) of continuous functions from X 
into Ms8. 

To calculate the bidual of C(X, Ms8) we first represent this space as a tensor 
product. (See [21] for background. If Er and Es are Banach spaces, El @Es 
will denote their algebraic tensor product. The least cross norm whose dual 
norm is a cross norm will be denoted by h; the greatest cross norm by y. The 
completion of El @ E, for a norm a will be written El 0, Es .) 

Ifg = C:ji @ rnd E C(X) @ M3s, define g E C(X, Ms8) by g(x) = C fi(x) mi . 
Then since MS8 is finite dimensional, the map g -+ g is an algebraic and isometric 
isomorphism from C(X) @ Ms8 = C(X) @* MS8 onto C(X, Ma8) (see [22: 
p. 3551 and [12: p. 901). 

Since Mss is finite dimensional, by a result of Gil de Lamadrid [ll : Cor. 5.11, 

(C(X) Oh M2)* cz C(X)* 0, (Wt)* isometrically. Since the dual norm y* 
of y is X, again using finite dimensionality of Ma8 gives 

(C(X) Q Ml)** g C(X)** @,,* (Mss)** == C(X)** @,+ MS 

isometrically, and the last expression coincides with the algebraic tensor product 
C(X)** @ MS8. An easy calculation shows that the Arens product on C(X)** @ 
Ma8 is the tensor product of the Arens product on each factor, and thus we’ve 
established so far that 

z (C(X, MS8))** g (C(X) @A Mz)** s C(X)** @A MS8. 

Finally, it is folklore that the bidual of C(X) is a e lg b raically and isometrically 
isomorphic to C(Y) for some compact Hausdorff space Y. (One way to verify 
this is to note that C(X) is isomorphic to a JC-algebra, so C(X)** is a JB-algebra 
by [9]. Furthermore, since C(X) is associative then C(X)** is also associative 
[5: p. 8391, and an associative JB-algebra is isomorphic to some C(Y) [3: 
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Prop. 2.31. Alternatively, this could be derived from the relationship of a C*- 
algebra and its bidual, e.g., [2, pp. 98-991). Thus 

which completes the proof that (C M,)** is a JB-algebra. 

THEOREM 1.2. If A is a JB-algebra then A** is a JB-a&ebra for the Arms 
product. 

Proof. We first note that if the theorem holds for certain JB-algebras then it 
holds for their JB-subalgebras and (finite) direct sums. To verify the former, 
suppose the theorem holds for a J&algebra A and B is a JB-subalgebra of A 
(i.e., a norm closed subalgebra containing an identity). Let T: B+ A be the 
injection of B in A; then T**: B+*-+ A** is isometric and preserves the Arens 
product [7: Tbm. 6.11, so B** is isomorphic to a JB-subalgebra of A**. For 
direct sums, (A, @AZ)** z Al** @ A$* (algebraically and isometrically) 
which establishes the claim above. 

Now let A be any JB-algebra. By [3: Cor. 5.7, Thm. 8.61, A can be imbedded 
as a JB-subalgebra of 2 B,(H,) @ M, where B,(H,) is all self-adjoint operators 
on the Hilbert space H, and each M, is a copy of MS*. In turn C B,(H,) can be 
imbedded in BI((C H,), h h w ic is a JC-algebra. By [9], the theorem holds for 
B,(x H,), and by Lemma 1.1 it holds for C M, . By the remarks above, this 
proves the theorem holds for the arbitrary JB-algebra A. 1 

Recall from [3] that the strong topology on A** is the topology determined 
by the seminorms a +-+ (a2, p)l12 for 0 < p E A*. The next lemma shows that 
weak* and strongly continuous linear functionals on A** coincide; the argument 
is that in [20: Thm. 1.8.91 adapted to the present context. 

We first make some observations which will be useful in the proof of the 
lemma. Since the Arens product on A** is commutative (Theorem 1.2) then 
multiplication on A** is weak*-continuous in each variable separately [5]. Thus 
for each a E A** and p E A* there exists a functional in A* which we denote 
a 0 p such that (a o b, p) = (b, a o p) for all b E A**. Note in particular that the 
map a H a 0 p will be continuous for the respective weak topologies w(A**, A*) 
and w(A*, A**) and so {a 0 p ) a E A**, 1) a 11 < l} will be a w(A*, A**) compact 
convex circled subset of A* for each p E A*. 

LEMMA 1.3 A linear functional p on the bidual A** of a JB-algebra A is 
weak*-continuous zr it is strongly continuous. 

Proof. If p is weak*-continuous then p can be identified with an element of 
A*. Therefore, there will exist positive function& p1 and pz in A* such that 
p = p1 - pz (see, e.g., [l : Prop. II. 1 .I). Now by Schwartz’ inequality <a, pi)2 < 
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(a2, pi){ 1, pi) for i = 1, 2 so each pi and p = p1 - pz are strongly continuous. 
Now let p be any strongly continuous linear functional on A**. Let T denote 

the Mackey topology on A** for the duality of A** and A*. We claim p is 
T-continuous on bounded subsets of A**. Suppose I/ a, 11 < 1 and a, ---f 0 in the 
T-topology. Then for each w E A*, (a, 0 w} C{a 0 w I 11 a 11 < I} and so by 
definition of the r-topology, 

<aa2, w> = <a, , a, 0 W) ---f 0. 

Thus {aa} converges strongly to zero, showing that (a, , p) ---f 0 so p is T-con- 
tinuous on bounded subsets of A**. 

In particular, p-l(O) will meet the unit ball in a -r-closed (therefore weak*- 
closed) set, and so by the Krein-Smulian theorem p-l(O) is weak*-closed. Thus p 
is weak*-continuous. 1 

THEOREM 1.4. The enveloping algebra A” of a JB-algebra A coincides with 
the bidual A**. 

Proof. By construction (cf. [3]) A is a subspace of A** containing A, with 
the inherited Arens product. By the bipolar theorem, the unit ball of A is weak*- 
dense (for the natural imbedding) in the unit ball of A**, and so the same is true 
for the unit ball of A”3_ A. Furthermore, by [3, proof of Thm. 3.101 the unit ball 
of A is strongly complete, and thus in particular is strongly closed in A**. By 
Lemma 1.3 it will also be weak*-closed, and so by weak*-density will coincide 
with the unit ball of A**. This shows a = A**. 1 

2. JB-ALGEBRA WHICH ARE DUAL SPACES (JBW-ALGEBRAS) 

As discussed in the Introduction, our purpose in this section is to establish 
the equivalence for JB-algebras of two properties used by Kadison and Sakai 
to abstractly characterize von Neumann algebras. 

Below L, denotes the map b ti a 0 b and U, denotes the “triple product” 
map b tt (aba} = 2a 0 (u o b) - a2 0 b. Recall that in a Jordan algebra an ideal 
is a subspace invariant under all multiplication maps L, . 

LEMMA 2.1. If A is a JB-algebra then every weak*-closed ideal J of A** is of 
the form U,(A**) fop a central idempotent c E A**. 

Proof. By [3: Lemma 9.11 J will contain an increasing approximate identity 
&J, i.e., O<u,<l, a</3 implies u,<up, and jju,oa--all+0 for all 
a E J. Since A** = & A** is monotone complete; let c be the least upper 
bound of (Us} in A**. Then by [3: Thm. 3.101 u,-+ c strongly. It follows that c 
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is in J and c2 = c is an identity for J, and thus is also the greatest idempotent 
in J. Since J is an ideal, then 

U,(A**) C J = UC(J) C U,(A**), 

which shows J = Vc(A**). Furthermore, if s2 = 1, s E A**, then V,(c) is an 
idempotent in J and so U,(c) < c. Since U, s - I, then by positivity of the map - 
U, we have c = U;(c) < U,(c) < c so U,c = c. Since this holds for every 
symmetry s, by [3: Lemma 5.31 c is central. 1 

Recall that a J&algebra A is monotone-complete if whenever {a,} _C A is an 
increasing net bounded above then a = 1.u.b. {aa} exists in A. (We then write 
n, t a.) If A is a monotone complete J&algebra we say p E A* is normal if 
whenever a, t a then (a, p) = lim(u, , p). Note that the subspace of normal 
linear functionals in A* is norm closed. 

LEMMA 2.2. Let A be a monotone complete JB-algebra, and N the space of 
normal linear function&s in A*. Then for each a E A, L:(N) C N. 

Proof. By virtue of the easily verified identity L, = &(lJ,+, - U, - I) it 
suffices to show U:(N) C N for each a E A. Suppose {ba> _C A and 6, t 6; we 
must show that for each p EN (6, u;rP) = lim(b, , U$p). Clearly it suffices to 
show U,b, t U,b. 

If a is invertible then by [3: Prop. 2.5, Prop. 2.71 U, and Vi’ = U,+ are 
positive so U, is an order automorphism of A and the result follows. Now for 
arbitrary a E A choose A > 0 in Iw such that both Al + a and ;\l - a are inverti- 
ble; then 

U,u+abo! t U,,+,b, and UAl--aba t U,,-,b. r> 

Now. for each c E A from the definition of U,,,, it easily follows that UAz+C = 
h21 + 2& + UC . Using this identity and adding the expressions in (*) gives 

2X26, + 2U,b, t 2h2b + 2U,b. 

(Note that in general c, t c, d, f d implies (cm + d,) t (c + d).) Since by assump- 
tion 6, t 6, then U,b, t U,b follows, completing the proof. a 

THEOREM 2.3. Let A be a JB-algebra. Then A is isometrically isomorphic to a 
Bunach dual space a3 A is monotone complete and admits a separating set of normal 
states. I f  one of these equivalent conditions holds, then the preduul of A is unique and 
consists of the space N of normal linear function& in A* (for the natural pairing of 
A and N). 

Proof. (1) Assume first that A is a dual space with predual A, ; we will 
show A is monotone complete. observe first that the positive cone A+ is weak*- 
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closed. (By the Krein-Smulian theorem it suffices to show the order interval 
[O, l] = A+ n A, is weak*-closed; this follows from weak*-compactness of 
A, = [- 1, l] and the fact that a F+ s(u + 1) is a homomorphism of [- 1, 11 
onto [0, 11.) Now A . is an order unit space with weak*-closed positive cone, so by 
[lo: Thm. 81 A, is positively generated, i.e., A, = (A,)+ - (A,)+. 

Now suppose {a,} is a bounded increasing net in A. Then for 0 < p E A, , the 
net (a, , p) converges so (a,) is weak*-Cauchy. Assume without loss of generality 
that I/ a, 1) < 1 for all LY. Since A, is weak*-compact and thus complete, a, 
converges weak* to say a E A. Since A+ is weak*-closed, it follows that the 
order in A is determined by the functionals in (A,)+. Thus a = 1.u.b. {Us], and 
each functional in (A,)+ is normal. This shows A is monotone complete with a 
separating set of normal states. 

(2) Conversely, suppose A is monotone complete with a separating set of 
normal states; we will show A = N* for the natural pairing. By Lemma 2.2 
L,*(N) _C N for each a E A. Let J = No (the polar of N in A**); then L,( J) _C J 
for each a E A 6 A**. Now by separate weak*-continuity of multiplication on 
A**, weak*-density of A in A**, and the fact that J is weak*-closed, we can 
conclude that&(J) C J holds for all a E A**, so J is an ideal in A**. By Lemma 
2.1 there exists a central idempotent d E J such that J = U,(A**). Let c = 
1 - d; we will show that 17, is an isomorphism from A onto U,(A**), and that 
the latter can be identified with N*. 

The argument in the proof of [3: Prop. 5.61 shows that U, is a Jordan homo- 
morphism. Since c is central then U, + VI-, = I, so ker U, = im U,-, = J = 
N”. Since by assumption the normal states on A separate elements of A, then 
A n N” = {0}, so U, is one-to-one on A. By [3: Lemma 9.33 U, is an isometry of 
A into U,(A**). We will now show that U,(A) - U,(A**). 

We first show that the image U,(A) is monotone closed in A*%, i.e., if (6olf 6 
U,(A) and b, t b E A ** then b E U,(A). Since U, is an isometry, it suffices to 
show that if {a,] CA and a, t a (hub. in A) then U,u, 1 U,a in A**. Let b be 
the 1.u.b. of {U,U,} in A**. Let Uz denote the dual map of U, for the pairing 
of A** and A*. Then im Uz = (ker U,)” = N”” = N. Thus for each p E A*, 
we have Uzp E N and so 

<UC%, P> = <a,, CP> - (4 CP> = <U,a, P> 

which shows U,a,-+ U,u weak*. Now U,u, 1 b implies U,u, -+ b weak* [3: 
Thm. 3.101 which shows U,u, t U,u = 6, proving U,(A) is monotone closed 
in A**. 

It now follows that (b E A** ) U,b E U,(A)} is monotone closed in A**, and 
clearly contains A. Now as observed in [3, end of 931 the argument in [18: 
Lemma l] can be Jordanized to show that the monotone closure of A in A** 
is A(= A** by Theorem 1.4). Thus Uc(A**) = U,(A) as claimed. 
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Finally, the restriction map is an isometric isomorphism from U&4**) onto 
(qA*))* = N*, so a M U,a ++ U,a IN is an isometry of A onto N*. Further- 
more, for p EN, Qp = p’implies (U,a, p) = (a, Uzp) = (a, p), so A is the 
dual space of N for the natural pairing. 

(3) To complete the proof of the theorem, suppose A satisfies one of the 
equivalent conditions above. Let A, be any predual of A and let p be the natural 
imbedding of A, in (A,) ** = A*. The argument in (1) shows each functional 
in A, is normal so v(A,) C N. Tn (2) we showed that A = N*. Since q(A,) is 
norm closed in A*, by the Hahn-Banach theorem p(A.+.) = N follows. 1 

Remark. Note that (1) of the proof above shows that if a J&algebra A is 
a dual space (i.e., A is a JBW-algebra) then every normal linear functional in A* 
is the difference of normal positive linear functionals. 

COROLLARY 2.4. Let A be a JC-algebra; then the following are equivalent: 

(i) A is monotone complete and admits a separating set of normal states; 

(ii) A is a Banach dual space; 

(iii) A can be faithfully represented as a weakly closed Jordan algebra of 

self-aGoint operators (‘JW-algebra”). 

Proof. (i) implies (ii) follows from Theorem 2.3. (ii) implies (iii): By [9] 
there exists an isometric isomorphism of A** onto a weakly closed JC-algebra 
which is a homeomorphism for the weak* and weak operator topologies, respect- 
ively. Now in part (2) of the proof of Theorem 2.3, it was shown that there exists 
a central idempotent c in A** such that A= U,(A**). The latter is weak*- 
closed (thus weak operator closed in the representation mentioned above), and 
this shows (ii) implies (iii). 

Finally, (iii) implies (i) follows at once from the fact that B,(H) is monotone 
complete and admits a separating set of normal states. 1 

3. DECOMPOSITIONOFA JBW-ALGEBRA INTOSPECIAL 
ANDEXCEPTIONAL SUMMANDS 

We are going to show that every JB W-algebra A admits a unique decomposi- 
tion A = A,, @A,, into special and “purely exceptional” summands. We will 
also classify purely exceptional JBW-algebras. The key result used in proving 
these results is Proposition 3.8, which shows that every homomorphism from a 
JB W-algebra onto Ma8 splits. That is, if q~: A --+ M,B is a homomorphism from 
A onto MS8 then there is a subalgebra A, CA such that p restricted to A, is an 
isomorphism of A,, onto MS*. 

We will need to establish that Jordan matrix units can be lifted from any 
quotient of a JB W-algebra. We begin with several results on lifting symmetries. 
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Recall that an element s of a JB-algebra is a symmetry if s2 = 1. We say s is a 
partial symmetry ifs” is an idempotent; more specifically, ifs is a partial symmetry 
with s2 = e then we say s is an e-symmetry. Note that in this case s and ss = e 
are compatible (cf. [3: $41) d an so representing the norm closed associative 
subalgebra generated by s, e, 1 as C(X) [3: Prop. 2.3, Lemma 5.21 e 0 s = s 
follows, and so s will lie in the subalgebra {eAe}. Note also that if A is a JBW- 
algebra and e2 = e E A then by [3: Prop. 4.1 I] A, = {eAe} is a JB-algebra which 
is monotone complete and admits a separating set of normal states. Thus by 
Theorem 2.3, A, will be a JBW-algebra. 

We will say elements a, b in a JB-algebra are orthogonal when a 0 b = 0. 
Lemmas 3.1, 3.2, 3.3 give some elementary properties of this relation. 

LEMMA 3.1. Let s, t be symmetries in a JB-algebra A and let x E A. Then 

(i) s 0 x = 0 # U,x = -x iff a(1 - U,) x = x; 

(ii) s 0 x = 0 implies x2 and s are compatible; 

(iii) s 0 t = 0 implies lJ,U, = U,U, . 

Proof. For (i) and (ii) recall that the subalgebra generated by 1, s, x is special 
(by the theorem of Shirshov-Cohn [13: p. 481). Now (i) follows from the observa- 
tion that in an associative algebra if s2 = 1 then sx f xs = 0 is equivalent to 
sxs + x = 0. In the same associative context sx + xs = 0 implies that s and x 
anti-commute so s and x2 commute. Define an idempotent e by e = $(s + 1); 
then e and x2 commute so 

ex2e + (1 - e) x2(1 - e) = x1. 

By [3: Lemma 2.1 l] this implies e and x2 (thus s and x2) are compatible, which 
proves (ii). 

To prove (iii), let s o t = 0. Then using (i) and the identity 

([13: p. 52]), we get 

u,uJJ, = U(& = U-8 = ut, 

Since lJ,a = I, U,U, = U,U, follOws. i 

LEMMA 3.2. Let e and f be orthogonal idempotents in a JB-algebra and let s be 
an (e + f)-symmetry. Then (e - f) 0 s = 0 28 {ses> = f. 

Py00f. rf (e - f) 0 s = 0 then by Lemma 3.1, (s(e -f) s) = -(e -f). 
Since s is an (e + f)- s y mmetry then (s(e + f) s) = s2 = e + f. Adding gives 
(ses} = f. 
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Conversely, assume (ES} = f. Then subtracting {s(e + f) s} = e + f from 
2{ses) = 2fgives (s(e - f) s} = f - e which by Lemma 3.1 implies (e - f) 0 s = 

0. I 

We will say a partial symmetry s exchanges idempotents e and f if {ses} = f and 
{sfs} = e. Note that if s is a g-symmetry with g > e and g > f, then {ses} = f is 
equivalent to (sfs} = e (since Us2 = I on the subalgebra {gAg}). 

LEMMA 3.3. Let e and f  be orthogonal idempotents in a JB-algebra, and let s be 
an (e + f )-symmetry which exchanges e and f. Let e, < e be an idempotent and 

define fi = {seIs} and t = {(el + fi) s(e, + fJ}. Then fi is un idempotent with 
fi Z$ f and t is an (e, + fi)-symmetry which exchanges e, andfi . 

Proof. Straightforward calculation. 1 

The next lemmas concern lifting symmetries and idempotents from a quotient 
of a JBW-algebra. 

LEMMA 3.4. Let C+X A + B be a homomorphism from a JB W-algebra A onto a 

JB-algebra B. If x E B is an idempotat (or a symmetry) then there exists an 

idempotent (respectively, symmetry) e E A such that v(e) = x. 

Proof. Let x2 = x E B and choose a E A such that ~(a) = x. Choose bounded 
continuous functions f and g with f (0) = g(0) = 0, f (1) = g( 1) = 1, and such 
that 

(pointwise on R). Note thatf(x) = g(x) = x since the spectrum of x is (0, I}. Let 
e = X[,,,,,l(a), so that e2 = e. Then 

so v(e) = x as required. 
The corresponding result for symmetries follows from the fact that ~(1) = 1 

and the one-to-one correspondence of idempotents and symmetries given by the 
mapet-+2e- 1. l 

The following result is the key technical lemma. 

LEMMA 3.5. Let y: A-+ B be as above. Let u1 , u2 ,.,., un+l(n > 1) be ortho- 
gonal symmetries in B and s1 , s2 ,..., s, orthogonal symmetries in A such that 
q~(s~) = ui fog i < n. Then there exists an idempotent e E A and orthogonal e- 
symmetries t, , t, ,... , t,, such that 

(i) ~(e)=land~(t,)=u,fori<n+f; 

(ii) e is compatible with s, ,..., s, and ti = {eqe} for i < n. 

5W31/3-8 
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Proof. We begin by choosing an element b E A such that I = u,+r . We 
will modify b to fit our needs, keeping the same image u,+r at each stage. 

We first modify b so that it becomes orthogonal to sr ,..., s, . Define 

c = &(I - U,J &(I - U,J *.. Q(l - U,“)b. 

Observe that each map +(I - U,) is idempotent and commutes with each 
$(I - Usj); it follows that t(l - lJ,i) c = c for i < n; by Lemma 3.1 this 
implies si 0 c = 0 for i < 12. 

We next define e = r(8). (Recall from [3: Prop. 4.71 that for 0 < a E A, r(u) 
is the smallest idempotent p such that a < $I for some X E [w. Also r(a) = 
X(,,,)(a) so Y(U) is bicompatible with a (that is, compatible with each x compatible 
with a).) 

We now define 

ti = (esie} i < n; tn+l = ye(c+) - ye(c) 

where the subscript e denotes that Y(c*) is to be calculated in theJBW-subalgebra 
A, . (Note e = Xn\&c) so e 0 c = c; thus c E A, so that r,(c*) is defined.) 

We now verify that e, tl ,..., t,+l satisfy the requirements of the lemma. First 
observe that si 0 c = 0 implies that c2 and si are compatible for i < 12 by Lemma 
3.1. Therefore, e = y(c2) and si are compatible. Calculating in the associative 
algebra generated by e and a fixed si (cf. [3: Lemma 5.21) we find ti2 = {esie}2 = e 
so that each ti is an e-symmetry for i < n. For i = n + 1 we have (calculating 
in A,) 

t2,+, = (xbd - x(-4YYc) = x~\kdc) = XW(C~) = re(c2) = e 

showing that t,+l is also an e-symmetry. 
To verify that t, ,..., t, are orthogonal, note that by the identity (3.1) for 

i, j < n 

Since e and si are compatible, then by definition e and So operator commute (i.e., 
left multiplication by e and si commute) and so U, and UEi commute. Combining 
this fact with Ue2 = U, we have Ut,tj = U,USisj . By hypothesis si 0 Sj = 0, 
and so by Lemma 3.1 for i = j: 

CT& = u,u,,s, = -uesj = -tj . 

By Lemma 3.1 again we conclude ti 0 t j  = 0 for i # j, i, j < 7t. 
To show t,+l is orthogonal to tl ,..., t, , note first that ti(i Q n) and c are 

orthogonal since (using c 0 si = 0): 

utic = ueu*iuec = U,U,~C = -u,c = -c. 



NORMED JORDAN ALGEBRAS 371 

Since each ti is an e-symmetry then each map U,,(; < n) is an automorphism 
ofA,.Thusfori<n 

U&a+1 = Ut,h(c+) - y’,(O) = m4i(cfN - cwt~(c-N 

= r,(c-) - Ye(C+) = -t,+x . 

By Lemma 3.1 this proves t, 0 t,+r = 0 for i < tz. 
There remains only to show e, tr ,..., t,+r have the appropriate images in B. 

It is easily verified that q(c) = u,+~ . Since by [3: Lemma 4.618 < (( c2 (( r(c2) = 
11 c2 11 e then 

II c2 II p(e) 2 ~(4 = ut+, = 1. 

Since p)(e) is an idempotent, this implies q(e) = 1. Therefore, for i < n v(ti) = 

Me> &) 9441 = % - We will thus be finished if we show that rp(tn+l) = u,+r . 
Observe that tnfl = Y,(c+) - Y,(C) is compatible with c and satisfies 

0 1 c 1 = c. Since by [3: Lemma 5.21 c, 1 c I, t,+l generate an associative sub- 
$bra the same is true for their images in B, and so p(t,+J, ~(1 c I), and v(c) = 
~,+i are compatible. Also tn+l = e implies v(t,+l)2 = q(e)” = 1, so v(tn+l) is a 
symmetry in B. Now 

%+1 = P(C) = &?a+1 o I c I> = &+1) o 94 c I)- 

Since the elements lie in an associative subalgebra of B and v(t,+J2 = 1 then 

4 c I) = %+1 o P(tn+1)* 

The right side is the product of compatible symmetries, and so is itself a sym- 
metry. The left side has positive spectrum and so both sides must equal 1. This 
implies u,+i = q(t,+J which finishes the proof. 1 

The following result is not much more than a reformulation of Lemma 3.5. 

LEMMA 3.6. Let 9’: A-+ B be as above. Let x and y be orthogonal idempotents 
in B and x - y, u1 , u2 ,..., u, orthogonal (x + y)-symmetries. Let e, and f. be 
orthogonal idempotents in A with p(e,,) = x, q(fo) = y. Then there exist idempotents 
e < e, , f < f. and orthogonal (e + f)-symmetries e -f, t, ,..., t,, such that 

q(e) = x, p(f) = y, q(ti) = ui for i < n. 

Proof. We proceed by induction on the number n of symmetries. The result 
is trivial if n = 0. Now assume the lemma holds for a certain value of n 3 0; 
we will show it holds for n + 1. 

ThusIetx,y, ui ,..., u n+l , e,, , f. be given as above. By the induction hypothesis 
there will exist idempotents e’ < e,, , f’ <f. and orthogonal (e’ + f’)-symmetries 
e’ -f’, s1 ,..., s, such that v(e’) = x, I = y, v(si) = ui for i < n. 
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We now apply Lemma 3.5 to the JBW-algebra A, = ((e’ +f’) A(e’ +f’)} 
and the J&algebra B, = {(x + y) B(x + y)}. Note that e’ -f’, sr ,..., s, and 
x -Y, Ul ,.**> %a+1 are orthogonal symmetries in A, and B, , respectively. Thus 
there will exist an idempotent d E A, compatible with x - y, sr ,..., s, and 
orthogonal d-symmetries t, , t, ,..., t,+r such that t, = {d(e’ -f’) d}, ti = {dsid} 
for 1 < i < n, ~(t,,) = x - y, v(ti) = ui for 1 < i < n + 1, and v(d) = x + y. 

Now define e = {de’d), f = {df’d); note e + f = d. Since d E A,, = A,,+f, 

then d is compatible with e’ + f’ as well as with e’ - f  ‘, and so is compatible 
with e’ and f ‘. It follows that e and f are idempotents with e < e’ < e,, and 
f <f’ <f. . Note t, = e -f, so e - f, t, ,..., tnfl are the desired orthogonal 
(e + f)-symmetries. 1 

The following result will not be needed in the sequel but seems of interest in 
its own right. Recall that a set (e,,}T,+, of elements in a C*-algebra is a set of 
matrix units if ez = e,? and e. e ,j kl = Sjkeil for all i, j, k, 1. (We do not require 
C eii = 1.) The following corollary shows that matrix units can always be lifted 
from a quotient of a von Neumann algebra by a norm-closed two-sided ideal. 

COROLLARY 3.1. Let v: &-+ 99 be a *-homomorphism from a van Neumann 
algebra d onto a F-algebra ST. If (xij}i,j,l is a set of matrix units in 28 then there 

exists a set {e,j>,,+l of matrix units in ~2 such that F(eij) = xij for all i, j. 

Proof. Let A and B be the self-adjoint parts of d and 9Y, respectively. (Note 
that A is a JBW-algebra, B is a JB-algebra, and 9): A + B is a Jordan homo- 
morphism of A onto B.) Define uj = xu + xjI for 2 <j < n. Observe that 

Xl1 - xlj and uj are orthogonal (xrr + xjj)-symmetries for each j. 
Our immediate goal to to find orthogonal idempotents err ,.. ., enn and 

(err + ejj)-symmetries sj which exchange err and eji and such that v(ejj) = xjj , 
cp(si) = uj for all j. We will do this in three steps. 

Step 1. Choose orthogonal idempotents fr ,..., fn mapping onto xrr ,..., x,, 
respectively. (To do this, begin by using Lemma 3.4 to choose an idempotent 
fi mapping onto xrr . Having chosen fi ,..., fk choose an idempotent fk,.l in 
(1 - .f, - ... - fk) A( 1 - fi - .. - fk) which maps onto ~~+r,~+r E (1 - xrr - 
. . . _ xm) 4 - ~11 - .‘. - x,,); then fk+l is orthogonal to fi ,..., fk and thus 
inductively we can find fi ,..., f,J. 

Step 2. For each j > 2 note that since xrr - xij and uj are (xl1 + xjj)- 
symmetries and are orthogonal, by Lemma 3.6 we can choose idempotents 
gj <fr , hi < fj and a (gj + hi)-symmetry tj orthogonal to gj - hj with y(gj) = 
I = xrr , p(hj) = y(fi) = xij , v(tj) = ui . By making these choices in 
succession we can also arrange that g, > g, > ... > g, . 

Step 3. We now define en = g, , ejj = (tje,,tj} for j > 2, and Sj = 
{(err + ejj) $(e,, + ejj)}. By Lemma 3.3, err ,..., enn and sg ,..., s, satisfy the 
conditions described above. 
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. . 
We define m addrtion sr = e,, . Then for all j 2 1, sj is a partial symmetry 

which exchanges e,, and eij . 
Finally, for i # j we define 

t?ij = e~$iellsjt?jj E d. 

Note that the same equation holds when i = j. It is now easily verified that 
{eii} is a set of matrix units which v maps onto {Xij}. 1 

The following is the main result needed to achieve the decomposition we are 
after. 

PROPOSITION 3.8. Let A be a JBW-algebra and ‘p a homomorphism from A 
onto M38. Then there exists a subalgebra A’ of A such that p IAt is an isomorphism 
of A’ onto M,8. 

Proof. Recall that Ma8 is the self-adjoint part of the matrix algebra M,(O), 
where 0 = Cayley numbers. Let (Eij}i,j=l be the usual matrix units of M,(O). 

Now choose orthogonal idempotents fi and f3 in A and an (fa + f&symmetry 
t exchanging.fa and f3 such that rp(f2) = E,, , p(fJ = ES and p)(t) = Ez3 + ES2 . 
(For details see steps 1 and 2 of the proof of Corollary 3.7.) Define fi = 1 - fi - 
f3 so that fi is an idempotent orthogonal to fi and f3 and satisfies tp(f,) = E,, . 

Now let 1, a, ,..., a, be a basis of 8 such that Z~ = -ai , $(aiaj + aia,) = 
--Sij , for 1 < i,j < 7 (cf. [16]). Define ui ,..., ua E Ma8 by ur = E12 + E,, , 

%+l = a,E,, - aiEzl for 1 <i < 7. Observe that E,, - E,, , u1 ,.,., us are 
orthogonal (E,, + E.&-symmetries. 

Now by Lemma 3.6 we choose idempotents e, < fi , e2 < fi and orthogonal 
(e, + e,)-symmetries e, - e2 , s1 ,..., sa such that V(Q) = EII , v(ez) = E,, , 
q(sJ = ui for 1 < i ,< 8. Define e, = {test} and sz3 = {(ea + ea) t(e, + eJ}. By 
Lemma 3.3 ea is an idempotent < f3 and saa is an (ea + e,)-symmetry which 
exchanges e2 and ea . Note also that v(e,) = ES3 , p(s& = Ez3 + ES2 . 

Let e = e, + ea + ea and A, = {eAe). Then e, , e2 , ea are strongly connected 
idempotents with sum e. Thus by [13: Thm. 5, p. 1331 there exists an alternative 
algebra J&’ with involution 01-+ G such that A, is isomorphic with the self-adjoint 
part of M,(d). If {Fij}i,j=r are the standard matrix units in M,(d) then this 
isomorphism can be chosen so that e, , ea , ea correspond to F,, , F,, , Fz3 , 
respectively, and s, , saa correspond to F,, + F,, and Fz3 + FSz , respectively. We 
will now identify A, and MS(d). 

Each si(i = 2,..., 8) can then be expressed in the form si = oriF,, + &F,, + 
&F,, + yiFzz . Using the fact that each si is an (F,, + F&-symmetry, orthogonal 
to F,, -F,, and to s, for i #j, calculation gives 01~ = yi = 0, /$ = -/$ , 
&(pipj + /3&) = -&j for i, j = 2 ,..., 8. 

Now let d0 be the subalgebra of SZ? generated by & ,..., /Ia. Since the /3i)s 
anticommute and have squares equal to - 1, .& will be the linear span of 1 and 
all products of distinct pi’s; in particular d0 will be finite dimensional. 
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Now let A,, be the self-adjoint part of Ms(&0). Then A,, is a finite dimensional 
subalgebra of A, , and contains s, ,..., ss , e, , es , es , s2s . Thus v(A,) will contain 

41, Et2 7 4s 3 4, + 4,) 43 + Es2 3 and ui = a,E,, + 4Ei, . It is straight- 
forward to verify that these elements generate all of Mss and thus y(A,) = Mss. 

Since A, is finite dimensional by Lemma 2.1 the ideal ker(p, j AO) will be of the 
form Aoz for some central idempotent z of A,, . Defining A’ = A,(e - z) then 
A’ is a subalgebra of A and v 1 A’ is an isomorphism of A’ onto Mss, completing 
the proof. [ 

We will say a @-algebra A is purely exceptional if every factor representation 
of A is onto MsE. (Recall from [3] that a factor representation of A is a homo- 
morphism v: A-t M where M is a J&factor and v(A) is strongly dense in &I.) 
Recall also that a compact Hausdorff space X is hyperstonean iff C(X) is a dual 
space [8]. 

THEOREM 3.9. Every JBW-algebra A admits a unique decomposition A = 
A,, @ A,, where A,, is special (and therefore isomorphic to a JW-algebra) and 
A,, is purely exceptional. A,, is isomorphic to C(X, MSa) where X is hyperstonean, 
and conversely C(X, MSs) (for X hyperstoneun) is a purely exceptional JBW- 
algebra. 

Proof. We first prove uniqueness. Suppose .zr and zs are central idempotents 
such that A = Axi @ A(1 - xi) is a decomposition as described above for 
i = 1,2. Then every factor representation of AZ, n A(1 - zs) = Az,( 1 - zs) 
must be into a factor which is both special and exceptional. This implies 
x1( 1 - xs) = 0 so z1 = zrzs and similarly zs = zrxs , which proves uniqueness. 

We next establish the existence of such a decomposition. Let {z~) be a maximal 
orthogonal set of central idempotents such that AZ, s C(X, , MS*) for some 
compact Hausdorf? space X, . Define z,, = C x, and xsp = 1 - x,, . We will 
show A = Az,~ @ AZ,, is the desired decomposition. 

We first verify that AZ,, is special. Suppose not; then by [3: Thm. 9.51 there 
will exist a factor representation of AzSZ, onto MS*. By Proposition 3.8, AZ,, 
will contain a subalgebra isomorphic to Mss. By a result of Jacobson [14: 
Thm. 41 there will exist a decomposition Ax,,, = A, @ A, where A, s MS8 @ 2 
where 2 is the center of A, . Thus we can choose a central idempotent z0 # 0 
such that A, = AZ, with z, < z,, . Then AzO~M,*~Z~M3*@C(Y)~ 
C(Y, MS*) where 2s C(Y). (The existence of Y follows from [3: Prop. 2.31.) 
But now z,, will be orthogonal to x,, = 1 - x,, , contrary to the construction of 
z,, , and this contradiction shows that AZ,, is special. (Thus by [3: Lemma 9.41 
and Cor. 2.4, AxSD will be isometrically isomorphic to a JW-algebra.) 

We next show that AZ,, is isomorphic to C(X, Ma*). First observe that AZ,, 
is the I”-direct sum of the algebras AZ, z C(X, , MS”). Now let X0 be the 
topological direct sum of the spaces X, (cf. Bourbaki [6: 1.2.4]). Then if 
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C,(X, , Ma*) denotes the bounded continuous functions from X0 into Mas then 

Finally, let X = flX,, be the Stone-Tech compactification of X,, . Since the unit 
ball of Mss is compact, then C,(X,, , Mas) is isomorphic to C(X, M2) and SO 
we’ve shown AZ,, g C(X, MS*). 

Note that the center of C(X, k&s) will be the scalar functions, and so can be 
identified with C(X). The center of the JBW-algebra AZ,, will be monotone 
complete with a separating set of normal states and so C(X) will be a dual space 
and X will be hyperstonean. 

We next show AZ,, is purely exceptional. Note that the constant functions in 
C(X, Maa) are a subalgebra isomorphic to Ma*. Thus if ‘p: Ax,,--+ M is any 
factor representation of M, since k&s is simple and v( 1) # 0 then ~(Az,,) C M 
will contain a subalgebra isomorphic to M as. Since every JB-factor except Ma8 
is special [3: Th m. 8.61 then M = MS* and so v(A.zez) = MS*, proving that 
AZ,, is purely exceptional. 

Finally, let X be hyperstonean and let B be the predual of C(X). Then as 
shown in the proof of Lemma I. 1, 

(B 0, M:)* g B’ @A M: = C(X) @A M; g C(X, M:) 

so C(X, Ma8) is a dual space and therefore is a JBW-algebra which (as shown 
above) is purely exceptional. 1 
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