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We describe “quasi-canonical modules” for modular invariant
rings R of finite group actions on factorial Gorenstein domains.
From this we derive a general “quasi-Gorenstein criterion” in terms
of certain 1-cocycles. This generalizes a recent result of A. Braun
for linear group actions on polynomial rings, which itself gen-
eralizes a classical result of Watanabe for non-modular invariant
rings.
We use an explicit classification of all reflexive rank one R-mod-
ules, which is given in terms of the class group of R , or in terms
of R-semi-invariants. This result is implicitly contained in a paper
of Nakajima (1982) [15].
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1. Introduction

Let k be a field, V a finite dimensional k-vector space of dimension n, G ⊆ GL(V ) a finite group
and A := Sym(V ∗) ∼= k[x1, . . . , xn], the symmetric algebra over the dual space V ∗ with its canonical
G-action and ring of invariants R := AG := {a ∈ A | ga = a, ∀g ∈ G}.

A classical result of K. Watanabe states that if p = char(k) does not divide |G|, then AG is Goren-
stein if G ⊆ SL(V ). If moreover G contains no pseudo-reflection, then the converse holds, i.e. if AG is
Gorenstein, then G ⊆ SL(V ) [18,19]. In the recent paper [4], A. Braun proved an analogue of this result
for the modular case, where the characteristic of k is allowed to divide the group order. Consider the
following
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Hypothesis (NR). The group G ⊆ GL(V ) contains no pseudo-reflection (neither diagonalizable nor
transvection).

Then Braun proved the following result:

Theorem 1.1. (See [4].) Let k be an arbitrary field and suppose the Hypothesis (N R) holds. Then the following
are equivalent:

(i) G ⊆ SL(V );
(ii) AG ∼= HomC (AG , C) for any polynomial ring C ⊆ AG with AG a finitely generated C-module and the

homogeneous generators of C of degrees divisible by |G|.

From this he deduces that if G satisfies Hypothesis (N R), then the Cohen–Macaulay and Goren-
stein loci of AG coincide and if AG is Cohen–Macaulay it is also Gorenstein. He also obtains a modular
version of the converse: If G satisfies Hypothesis (N R) and AG is Gorenstein, then G is contained
in SL(V ).

In this paper we generalize Braun’s results in two ways: firstly we avoid Hypothesis (N R) al-
together. Secondly we neither assume A to be a polynomial ring nor that the parameter algebra C
is chosen in any particular way. Instead, our main result applies, whenever A is a (not necessarily
graded) k-algebra, which is also a factorial domain with unit group U (A) = U (k). To formulate our
main result we need the following definitions and notation:

Let A be a finitely generated (affine) k-algebra, which is also a factorial domain with unit group
U (A) = U (k) and let G ⊆ Aut(A) be a finite group of ring automorphisms of A. We do not assume
that G acts trivially on k, so k′ := kG can be a proper subfield of k.

Definition 1. Let λ ∈ Z 1(G, U (A)) be a 1-cocycle, i.e. λ : G → U (A) with

λ(gh) = λ(g) · g
(
λ(h)

)
, ∀g,h ∈ G.

Then we define Aλ := {a ∈ A | g(a) := λ(g)a}, the R-module of relative λ-invariants, or λ-semi-invariants
in A.

Definition 2. Let P ⊆ B be an extension of affine k-domains such that the P -module P B is finitely
generated and assume that P is a Gorenstein ring. Then we call the B-module HomP (B, P ) a quasi-
canonical module of B and we call B quasi-Gorenstein (w.r.t. P ), if HomP (B, P ) ∼= B as B-modules (in
other words, if B is a pre-symmetric P -algebra).

Remark 1. If in addition B is a graded connected k-algebra and P a polynomial k-algebra, generated
by a homogeneous system of parameters, then B is a Cohen–Macaulay ring, if and only if P B is free.
If B is Cohen–Macaulay, then it is well known that ωB := HomP (B, P ) is a canonical module of B
and B is Gorenstein, if and only if B ∼= ωB .

Let W := W (G) � G be the normal subgroup generated by generalized reflections (see Defini-
tion 5) and let F be any parameter k′-subalgebra F ⊆ R := AG ⊆ S := AW ⊆ A, i.e. F = k′[ f1, . . . , fd]
is a polynomial ring such that F R and therefore also F A are finitely generated F -modules. Although
not explicitly stated in [15], the following facts are implicit in the proofs of that paper:

(i) The class group C R of R is isomorphic to the subgroup H̃ of H1(G, U (A)), defined by H̃ := {ρ ∈
H1(G, U (A)) | resIQ(ρ) = 1 in H1(IQ, U (AQ)), ∀Q ∈ Spec1(A)}. (See Theorem 3.4).

(ii) There are explicit bijections between the following sets:
– the divisor class group C R ;
– the set of iso types of finitely generated reflexive R-modules of rank one;
– the set of iso types of R-modules of semi-invariants Aχ with χ ∈ Z 1(G, U (A)).

(iii) If χ ∈ Z 1(G/W , U (A)), then Aχ
∼= R ⇐⇒ [χ ] = 1 ∈ H1(G/W , U (A)).
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We can now state the main result of this paper:

Theorem 1.2. Let A be an affine k-domain which is also a UFD and let F ⊆ R ⊆ S ⊆ A be as described above.
Then the following hold:

The rings S and A are quasi-Gorenstein F -algebras with natural F G-modules

HomF (S, F ) = S · θS ∼= S, HomF (A, F ) = A · θA ∼= A and D−1
A,S

∼= HomS(A, S) = A · θA,S .

Here D A,R = D A,S is the Dedekind-different, which is a G-invariant principal ideal in A (see Definition 7).
Let χS ∈ Z 1(G/W , U (k)) and χA,χA,S ∈ Z 1(G, U (k)) be the “eigen-characters” of θS , θA and θA,S , re-

spectively and view Z 1(G/W , U (k)) as a subset of Z 1(G, U (k)) in a natural way. Then χS = χA · χ−1
A,S and

HomF (R, F ) is isomorphic to the R-module of semi-invariants Sχ−1
S

= Aχ−1
S

. In particular the following hold:

(i) The quasi-canonical R-module HomF (R, F ) is isomorphic to a divisorial ideal I � R, with ch(cl(I)) =
[χS ] = [χA/χA,S ], where ch : C R → H1(G/W , U (k)) is the isomorphism of Lemma 3.11.

(ii) The following are equivalent:
(a) The ring R is quasi-Gorenstein;
(b) [χS ] = 1 ∈ H1(G/W , U (k));
(c) [χA,S ] = [χA] ∈ H1(G, U (k)).

Remark 2.

(i) In [12] Hinic obtained an analogous result to the equivalence of (ii) (a). Furthermore (b) was
obtained for (A,m) a noetherian local Gorenstein ring and under some technical hypotheses on
the group action. The most significant one is that the inertia group H := {g ∈ G | gk(m) = idk(m)}
has order coprime to the characteristic of the residue class field k(m).

(ii) In the special case, where A is a polynomial ring with k-linear G-action, the equivalence of (ii) (a)
and (c) also appears in a paper by A. Broer [5].

Corollary 1.3. If [χS ] = 1 ∈ H1(G/W , U (k)), then the Cohen–Macaulay and Gorenstein loci of R coincide.

If char(k) = p > 0, set W̃ := 〈W , P g | g ∈ G〉 with P a Sylow p-subgroup of G . In other words,
W̃ � G is the normal subgroup generated by all reflections on A and all elements of order a power
of p. We obtain:

Corollary 1.4. If G acts trivially on k, then H1(G/W , U (k)) = Hom(G/W , U (k)) = Hom(G/W̃ , U (k)) and

Theorem 1.2 also holds with W and S replaced by W̃ and S̃ := AW̃ , respectively. The ring S̃ is a factorial
domain and quasi-Gorenstein; the subring R is quasi-Gorenstein if and only if χ S̃ = 1.

Assume for the moment that Hypothesis (N R) holds, then W = 1 and A = S with [χA,S ] = 1.
Hence in this case R is quasi-Gorenstein, if and only if [χA] = 1. If moreover A = Sym(V ∗) with
G ⊆ GLk(V ), then [χA] = χA = det−1 (see Remark 9) and we recover Braun’s result (and Watanabe’s
for char(k) � |G|). More generally:

Corollary 1.5. Assume that A = Sym(V ∗) and S := AW is Gorenstein (e.g. a polynomial ring). Assume more-
over that χS = 1 (note that χS ∈ Hom(G, U (k)) here). Then R = AG is Gorenstein, if it is Cohen–Macaulay.

It is known by a result of Serre [2] that if Sym(V ∗)H is a polynomial ring for finite H ⊆ GLk(V ),
then H = W (H). Since the converse is false, the hypothesis of the above corollary is not automatic. If
however it is satisfied, then the character χS can be explicitly described in terms of the G/W -action
on the homogeneous generators of AW (see Section 6).

It is remarkable that Braun’s original proof, as well as the one of our generalization, uses tech-
niques from the theory of non-commutative Frobenius and symmetric algebras. A slightly more special
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version of Theorem 1.2, in which F is chosen such that the field extension L � Quot(F ) is separable
(such an F can always be found by [11, Corollary 16.18, p. 403]), can however be obtained wholly
within the “world of commutative algebra”, by combining Braun’s ideas with methods from algebraic
number theory and information hidden in the proofs contained in a classical paper by Nakajima [15].
We will add a sketch of this argument to our proof of Theorem 1.2 in Section 5.

We will use standard notation and will denote with A-Mod the category of (left) A-modules and
with A-mod the full subcategory of finitely generated A-modules.

2. The divisor class group and reflexive modules of rank one

In this section we collect some definitions and results from [15], including some information which
is implicitly contained via arguments and proofs, but not explicitly stated there. In such a case we in-
clude short proofs. Throughout this paper, A will be an affine normal k-domain, which will be further
specialized in later sections. We define L := Quot(A) and set Spec1(A) := {P ∈ Spec(A) | ht(P) = 1}.
Then for every P ∈ Spec1(A), the localization AP is a discrete valuation ring with the well-known
property that:

(i) A = ⋂
P∈Spec1(A) AP;

(ii) for every 0 
= � ∈ L the set {P ∈ Spec1(A) | νP(�) 
= 0} is finite.

Let D A denote the divisor group of A, i.e. the free abelian group with basis Spec1(A):

D A :=
⊕

P∈Spec1(A)

Z div(P).

Let 0 
= J � A be an ideal with 0 
= j ∈ J . Then νP( J ) ∈ Z is defined by J AP = PνP( J ) AP, hence νP( j) :=
νP( j AP) � νP( J ) � 0, and it follows that νQ( J ) = 0 for all but finitely many Q ∈ Spec1(A). If I ⊆ L
is a fractional ideal, then �I � A for some � ∈ A, hence again νQ(I) = 0 for almost all Q ∈ Spec1(A)

and one defines div(I) := d(I) := ∑
P∈Spec1(A) νP(I)div(P). With H A we denote the group of principal

fractional ideals in A, then the map div embeds H A into D A as a subgroup with quotient group
C A := D A/H A , the divisor class group of A.

Definition 3. Let R ⊆ A be a subring. For ideals I � R or J � A we denote with I and J the correspond-
ing divisorial closures, i.e. I = ⋂

q∈Quot(R), I⊆Rq Rq, and J = ⋂
a∈L, J⊆Aa Aa.

Remark 3. If A is a normal noetherian domain and also a UFD, then I = ⋂
a∈A, I⊆aA aA.

The following results are standard, so we omit proofs:

Lemma 2.1. Assume that A is a UFD and R ⊆ A a subring with Quot(R)∩ A = R. Let I � R and J � A be ideals,
then:

1. I A ∩ R = I .
2. J = d J A with d J := gcd( J ) in A.
3. I A = dI A with dI := gcd(I) := gcd{r ∈ I} (taken inside A).
4. For a ∈ A: a J = J · a.
5. For a ∈ A and divisorial ideal J � A, a J � A is divisorial.

6. For any ideals J , K � A: J · K = J · K .

Let B be an arbitrary commutative ring and N ∈ B-mod a finitely generated B-module. Then N
is torsion free of rank one ⇐⇒ there is an ideal I � B containing a non-zero-divisor, such that
N ∼= I � B are isomorphic as B-modules.
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For every finitely generated module M ∈ A-mod the following hold:

(i) M∗ := HomA(M, A) ∼= ⋂
p∈Spec1(A) M∗

p ⊆ L ⊗A M∗ .
(ii) If M is torsion free, then the canonical map c : M → M∗∗ induces an isomorphism

M∗∗ ∼=
⋂

p∈Spec1(A)

Mp.

(iii) The fractional ideal I ∈ F (A) is divisorial if and only if I is a reflexive A-module.
(iv) ker(c) = Tor(M), the torsion submodule of M , and M∗ is reflexive.
(v) For M, N ∈ A-mod one has

(
HomA(M, N)

)∗∗ ∼= HomA
(
M∗∗, N∗∗).

Proposition 2.2. Let A be a normal noetherian domain, then there is a bijection between the divisor class
group C A and the set of isomorphism classes of finitely generated reflexive A-modules of rank one.

Proof. If M, N ∈ A-mod are f.g. reflexive A-modules of rank one, then M ∼= I and N ∼= J with divi-
sorial ideals I, J � A, so we can assume that M = I , N = J are divisorial ideals. Let θ : I → J be an
isomorphism, then for any i, i′ ∈ I , θ(ii′) = iθ(i′) = i′θ(i), so � := θ(i)/i ∈ L with � · I ⊆ J . By symmetry
we have �−1 = i/θ(i) = θ−1(θ(i))/θ(i) = θ−1( j)/ j for every j ∈ J , hence j = θ−1( j)� and J ⊆ �I , so
J = � · I . It follows that the classes cl( J ) := [div( J )] and cl(I) ∈ C A coincide.

Now assume cl( J ) = cl(I) ∈ C A , then div(I) = div( J ) + div(�A) for some � = a/b ∈ L, hence

div(Ib) = div(I) + div(b A) = div( J ) + div(aA) = div( Ja),

and replacing I by Ib ∼= I and J by Ja ∼= J , we can assume that div(I) = div( J ). Hence IP = JP for all
P ∈ Spec1(A), so I ∼= J , since these are reflexive A-modules. �
3. Relative invariants

Now let G ⊆ Aut(A) be a finite group of ring automorphisms with corresponding ring of invariants
R := AG and quotient field K = LG . The Galois group G = Gal(L : LG) acts as permutation group
on Spec1(A) and on the divisor group D A and there is an inclusion homomorphism ρ : D AG → D A

satisfying

d(q) �→ eq ·
( ∑

Q∈Spec1(A): Q∩AG =q

d(Q )

)
∈ (D A)G ,

because the ramification index eq,A := eq := e(Q | q) is constant for all Q ∈ Spec1(A) over q. The group
of invariants (D A)G is a free abelian group with basis consisting of orbit sums

d(Q )+ :=
∑

g∈G/G{Q}
d(gQ ), Q ∈ Spec1(A).

Here G{Q} := StabG(Q ) is the stabilizer (i.e. the decomposition group) of Q . Let C denote a fixed set
of representatives for the G-orbits on Spec1(A), i.e.

C ∼= Spec1(A)/G ∼= Spec1
(

AG)
.
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Then we have a short exact sequence of abelian groups:

0 → D AG
ρ−→ (D A)G →

⊕
Q∈C

Z/eqZ → 0. (3.1)

If aA ∈ (H A)G , then g(a) = cga with cg ∈ U (A) and gh(a) = cgha = g(cha) = g(ch)cga, hence cgh =
cg · g(ch), so λ := c(·) ∈ Z 1(G, U (A)) and a ∈ Aλ .

Lemma 3.1. Let χ ∈ Z 1(G, U (A)), then 0 
= Aχ is a reflexive R-module of rank one and is isomorphic to
a divisorial ideal of R. The following hold:

(i) For every 0 
= a ∈ Aχ−1 , aAχ A ∩ R = Aχa = aAχ � R is divisorial.

(ii) Let λ ∈ B(G, U (A)), i.e. λ(g) = u−1 g(u) with u ∈ U (A), and μ := χ · λ. Then u · Aχ = Aμ and Aμ A =
Aχ A, which only depends on the class [χ ] ∈ H1(G, U (A)).

(iii) Assume A to be a normal domain. Then for every Q ∈ Spec1(A), νQ(Aχ A) < e(Q | q).

Proof. See [15, Lemmas 2.1/2.2]. �
Let Z 1

A(G, U (A)) := {λ ∈ Z 1(G, U (A)) | Aλ � Q , ∀Q ∈ Spec1(A)}. If λ,μ ∈ Z 1(G, U (A)) and Q ∈
Spec1(A), then Aλ·μ ⊆ Q implies Aλ · Aμ ⊆ Aλ·μ ⊆ Q , hence Aλ ⊆ Q , or Aμ ⊆ Q . In other words,
Z 1

A(G, U (A)) is a subgroup of Z 1(G, U (A)), containing B(G, U (A)) (since Aλ A = A for λ ∈ B(G, U (A))).
Therefore one can define

Definition 4. H1
A(G, U (A)) := Z 1

A(G, U (A))/B(G, U (A)).

Lemma 3.2. The sequence

0 → H1
A

(
G, U (A)

) → H1(G, U (A)
)

Ψ−→
⊕
Q∈C

Z/eqZ

with Ψ : [χ ] �→ (vQ(Aχ A))Q∈C is an exact sequence of abelian groups.

Proof. See [15, Lemma 2.3]. �
The map

C AG → (D A)G/(H A)G ↪→ (D A/H A)G = (C A)G

is essentially the natural map φ : C AG → C A and we obtain

Corollary 3.3. The kernel ker(φ) is naturally isomorphic to H1
A(G, U (A)) ∼= ker(Ψ ). Moreover, φ is injective

if and only if the Aχ are free R-modules for all χ ∈ Z 1
A(G, U (A)).

Proof. See [15, Lemma 2.4]. �
3.1. From now on we assume that A is also a factorial domain

Definition 5.

(i) Let IQ := Gk(Q ) = {g ∈ G | ga − a ∈ Q , ∀a ∈ A}, the inertia group of Q ∈ Spec1(A).
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(ii) An element g ∈ G is called a reflection on A, if g ∈ IQ for some Q ∈ Spec1(A). The group

W := W A := W A(G) := 〈
IQ

∣∣ Q ∈ Spec1(A)
〉

is a normal subgroup (since G acts on Spec1(A)) and is called the subgroup of (generalized) reflec-
tions on A.

Theorem 3.4. Let A and G be as above and assume that A is a factorial domain. Then

C AG ∼= H1
A

(
G, U (A)

) ∼= H̃ := {
ρ ∈ H1(G, U (A)

) ∣∣ resIQ(ρ) = 1 in H1(IQ, U (AQ )
)
, ∀Q ∈ Spec1(A)

}
.

In explicit form: Let I be a divisorial ideal of AG , then I A = aA with semi-invariant a ∈ A. If θa ∈ Z 1(A, U (A))

is the corresponding cocycle, i.e. g(a) = θa(g)a for every g ∈ G, the class [I] ∈ C AG corresponds to the element
[θa] ∈ H̃ .

Proof. See [15, Lemma 2.4]. The explicit form can be seen by following up the isomorphism described
there. �
Proposition 3.5. For χ ∈ Z 1(G, U (A)) the following hold:

(i) Aχ A = dχ A, dχ := gcd(Aχ ) ∈ Aμχ with μχ ∈ Z 1(G, U (A)) and a uniquely defined element [μχ ] ∈
H1(G, U (A)).

(ii) Aχ defines a unique class cl(Aχ ) ∈ C R , which satisfies cl(Aχ ) = [χ−1μχ ] ∈ H̃ (see Theorem 3.4).
(iii) Aχ is a free R-module if and only if [χ ] = [μχ ] ∈ H1(G, U (A)).

Proof. (i): This follows from Lemma 2.1.
(ii): For every a ∈ Aχ−1 the ideal aAχ � R is divisorial and we get from Lemma 2.1: aAχ A = adχ A

with adχ ∈ Aχ−1μχ
. Hence cl(Aχ ) = [χ−1μχ ] ∈ H̃ by Theorem 3.4.

(iii): This follows immediately from the above. �
Lemma 3.6. For [χ ] ∈ H1(G, U (A)) the following are equivalent:

(i) [χ ] ∈ H̃ = H1
A(G, U (A));

(ii) dχ ∈ U (A);
(iii) [χ−1] = cl(Aχ ) ∈ C R ∼= H̃ ;
(iv) Aχ A = A.

Proof. “(i) ⇐⇒ (ii)”: Let [χ ] ∈ H̃ , then there is a divisorial ideal J � R with cl( J ) = [χ−1], i.e.
J A = f A with f ∈ Aχ−1 . The divisorial ideal I := f Aχ � R satisfies

f Aχ A = I A = f · Aχ A = f dχ A.

Hence J = J A ∩ R = f A ∩ R = f Aχ = I , so f dχ A = I A = J A = f A and dχ ∈ U (A). On the other hand,
if dχ ∈ U (A), then [μχ ] = 1 ∈ H1(G, U (A)) and [χ−1] = [χ−1][μχ ] ∈ H̃ .

“(i) ⇐⇒ (iii)” and “(ii) ⇐⇒ (iv)” follow from Proposition 3.5. �
Corollary 3.7. For χ ∈ Z 1(G, U (A)) we have Aχ = dχ · Aχμ−1

χ
. Assume Aχ = a · S with S ⊆ A and a ∈ A.

Then a | dχ and the following hold:

(i) a ∼ dχ ⇐⇒ S = Aλ with [λ] = [χμ−1
χ ] ∈ H̃ (i.e. Aλ

∼= A1 = R in R-mod).
(ii) 1A ∈ S ⇐⇒ S = R ⇐⇒ dχ ∼ a ∈ Aχ .
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Proof. Since dχ = gcd(Aχ ), Aχd−1
χ ⊂ Aχμ−1

χ
, hence dχ · Aχμ−1

χ
⊆ Aχ ⊆ dχ · Aχμ−1

χ
, so

Aχ = dχ · Aχμ−1
χ

.

(i): If Aχ = aS with S ⊆ A � a, then clearly a | dχ . If a = udχ with u ∈ U (A), then dχ · Aχμ−1
χ

=
Aχ = udχ S , hence S = u−1 Aχμ−1

χ
= Aλ with [λ] = [χμ−1

χ ].
Assume S = Aλ

∼= R , then dχ A = Aχ A = aAλ A = aAλ A = aA by Lemma 3.6; hence a ∼ dχ .
(ii): If 1A ∈ S , then a ∈ Aχ , therefore dχ | a and S = 1/aAχ ⊆ R . Hence Aχ ⊆ aR ⊆ Aχ and R =

1/aAχ = S . If S = R , then Aχ = aR , so gcd(Aχ ) � a ∈ Aχ . If dχ ∼ a ∈ Aχ , aR ⊆ Aχ , hence 1A ∈ R ⊆
1/aAχ = S . �
Corollary 3.8. Let [λ] ∈ H1(G, U (A)) such that Aλ = dR. Then for every [σ ] ∈ H̃ we have d =
gcd(Aλσ ) ∼ dλσ , i.e. d and dλσ are associated. In particular d = dλ · u with u ∈ U (R) and Aλ = Adλ.

Proof. We have

dA = dAσ A = dR Aσ A = Aλ Aσ A ⊆ Aλσ A = dλσ A = dλσ Aσ−1 A = dλσ Aσ−1 A

= dλσ A Aσ−1 A = Aλσ A Aσ−1 A = Aλσ A Aσ−1 A ⊆ Aλ A = dA.

It follows that dλ = u · d with u ∈ U (A) ∩ R = U (R). �
Theorem 3.9. Let PG,A := {[λ] ∈ H1(G, U (A)) | Aλ = dλR}. Then

PG,A = {[λ] ∈ H1(G, U (A)
) ∣∣ cl(Aλ) = 1

}
,

PG,A ∩ H̃ = 1 and H1(G, U (A)
) =

⊎
[λ]∈PG,A

H̃ · [λ].

So PG,A ⊆ H1(G, U (A)) is a transversal of the cosets of the subgroup H̃ ⊆ H1(G, U (A)).
For every [χ ] ∈ H1(G, U (A)) let [μχ ] ∈ H1(G, U (A)) be the character of dχ := gcd(Aχ ), i.e. dχ ∈ Aμχ .

Then the following hold:

(i) cl(Aχ ) = [χ−1][μχ ] with {[μχ ]} = PG,A ∩ H̃ · [χ ].
(ii) The map

μ : H1(G, U (A)
) → PG,A, [χ ] �→ [μχ ]

satisfies μ ◦ μ = μ and it is a projection operator onto the distinguished transversal PG,A .

Proof. The equation PG,A ∩ H̃ = 1 follows from Lemma 3.6 (iv).
Let [λ], [δ] ∈ PG,A with [σ ] := [λ]−1[δ] ∈ H̃ , then [δ] = [λ][σ ], hence by Corollary 3.8, dδ ∼ dλ and

[λ] = [δ]. This shows that every H̃ coset contains at most one element in PG,A .
Let [χ ] ∈ H1(G, U (A)), then

Aχ A = dχ A ⊆ A
μ

(1)
χ

A ⊆ A
μ

(1)
χ

A = d
μ

(1)
χ

A ⊆ A
μ

(2)
χ

A = d
μ

(2)
χ

A ⊆ A
μ

(3)
χ

A = · · ·

with

[χ ] ≡ [
μ

(1)
χ

] ≡ [
μ

(2)
χ

] ≡ · · · mod H̃ .
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It is clear that this ascending chain of divisorial ideals must be stationary, hence we will eventually
have

d
μ

(i)
χ

A = d
μ

(i+1)
χ

A = d
μ

(∞)
χ

, and therefore
[
μ

(i)
χ

] = [
μ

(i+1)
χ

] = [
μ

(∞)
χ

] =: [λ]

with

Aλ A = dλ A ⊆ Aλ A ⊆ Aλ A and [χ ] ≡ [μχ ] ≡ · · · ≡ [
μ

(∞)
χ

] = [λ] mod H̃ .

It follows that dλ = gcd(Aλ) ∈ Aλ , hence Aλ = dλR , so [λ] ∈ PG,A ∩ H̃ · χ.

It now follows from Corollary 3.8 that

dλ ∼ d
μ

(i)
χ

∼ d
μ

(i−1)
χ

∼ d
μ

(i−2)
χ

∼ · · · ∼ d
μ

(1)
χ

∼ dχ .

So [μχ ] := [μ(1)
χ ] ∈ PG,A ∩ H̃ · [χ ]. By construction we have dμχ ∼ dχ , hence μ ◦ μ([χ ]) = μ([χ ]),

which finishes the proof. �
Corollary 3.10. For every [λ] ∈ PG,A we have C R = {cl(Aχ ) | χ ∈ H̃ · [λ]}, i.e. if χ ranges through the full

coset H̃ · [λ], then the Aχ form a transversal of all isomorphism types of rank one reflexive R-modules.
Alternatively the set {Aχμ−1

χ
| χ ∈ Z 1(G, U (A))} is also a full set of representatives of reflexive rank one

R-modules.

Proof. Every rank one reflexive R-module is isomorphic to a divisorial ideal of R , the isomorphism
type of which is uniquely determined by its ideal class. From Theorem 3.9 we see that [μσλ] =
eigen character of (dσλ) = eigen character of (dλ) = [λ], hence we get

cl(Aσλ) = [σ ]−1[λ]−1[μσλ] = [σ ]−1[λ]−1[λ] = [σ ]−1.

The last statement follows from Corollary 3.7, since Aχ = dχ · Aχμ−1
χ

∼= Aχμ−1
χ

in R-mod. �
3.2. A factorial domain, U (A) = U (k)

From now on we assume that the affine k-algebra A is also a factorial domain with U (A) = U (k)

with k ⊆ A, a field of characteristic p � 0.
Let P = aP A ∈ Spec1(A) and σ ∈ I := IP. Then for u ∈ k, (σ − 1)(u) ∈ k ∩ P = 0, so σ(u) = u and

W ⊆ Autk(A). Clearly P is I-stable, so σ(aP) = δP(g)aP and the map

δP : IP → U (k), σ �→ δP(g) = a−1
P σ(aP)

is an element in Z 1(I, U (k)) = Hom(I, U (k)).

Lemma 3.11. For P ∈ Spec1(A), I := IP and e := e(P | P ∩ R) we have Hom(I, U (k)) = Hom(I, U (AP)) =
〈δP〉 ∼= Z/eZ. There is a short exact sequence

0 → C AG → H1(G, U (k)
) →

⊕
Q∈C

Hom
(

IQ, U (k)
) → 0.

In particular C AG ∼= H1(G/W , U (k)).
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Proof. See [15, Lemma 2.6]. In addition to this, we only need to show that H̃ = H1(G/W , U (k)).

Let [χ ] ∈ H̃ with χ ∈ Z 1(G, U (k)), then for g,h ∈ W , χ(gh) = χ(g)g(χ(h)) = χ(g)χ(h), since W
acts trivially on k. Moreover g and h are products of elements on which χ is 1, hence χ|W = 1.
We view Z 1(G/W , U (k)) as a subset of Z 1(G, U (k)) in a natural way. Then, again since W acts triv-
ially on k we have B1(G, U (k)) ⊆ Z 1(G/W , U (k)), hence B1(G, U (k)) = B1(G/W , U (k)), so C AG = H̃ ∼=
Z 1(G/W , U (k))/B1(G/W , U (k)) = H1(G/W , U (k)). �
Remark 4. It follows from Lemma 3.11 that AW is factorial, a result originally obtained by Dress for
polynomial rings [10], inspiring the generalization by Nakajima in [15].

3.3. A factorial domain, U (A) = U (k) with trivial G-action

Then H1(G, U (A)) = G∗ := Hom(G, U (k)), the group of linear k-characters of G . If N � G is a nor-
mal subgroup, then the restriction map yields a short exact sequence

1 → (G/N)∗ → G∗ → N∗ → 1.

Corollary 3.12. There is an isomorphism ch : C AG ∼= G
∗ = ker(res|W ), where G := G/W and res|W :

G∗ → W ∗ is the restriction map on characters.

4. Pre-Frobenius algebras

In this section we develop some tools from the theory of non-commutative Frobenius-extensions
and symmetric algebras, which will be used to prove the Main Theorem 1.2 in the general case.
Although that proof only needs the results in the case of commutative rings, there is little gain in re-
stricting to commutative algebras from the outset, as the methods themselves are “non-commutative”
in nature. Let C denote an arbitrary commutative ring with 1, B a possibly non-commutative
C-algebra such that C B is a finitely generated module, and D an arbitrary ring. With B ModD we
denote the category of B–D-bimodules. For any object M ∈ B ModD the set M∗ := HomC (M, C) is
an object in D ModB by the rule: (dαb)(m) := α(bmd) for α ∈ M∗ , d ∈ D , b ∈ B . Notice that dαb
is in M∗ since C is central. Similarly the set M∨ := HomB(M, B) is an object in D ModB by the
rule df b(m) := f (md)b. For any bimodule homomorphism x ∈ HomB(N, M)D the map x∗ : M∗ → N∗ ,
α �→ α ◦ x is in HomD(M∗, N∗)B and x∨ : M∨ → N∨ , α �→ α ◦ x is in HomD(M∨, N∨)B . Thus we have
contravariant functors:

()∗ : B ModD → D ModB , M �→ M∗ and

()∨ : B ModD → D ModB , M �→ M∨.

Definition 6. The (finite) C-algebra B will be called (left) pre-Frobenius, if there is some θ ∈
HomC (B, C) such that HomC (B, C) = Bθ ∼= B B as a left B-module. If Bθ = θ B ∼= B B B as B-bimodules,
then B is called a pre-symmetric algebra over C . A pre-Frobenius (pre-symmetric) algebra C B is called
a (left) Frobenius (or symmetric) C-algebra, if C B is finitely generated projective.

Some of the following results on pre-Frobenius algebras are well known in the context of artinian
Frobenius-algebras (see e.g. [9, p. 413 ff.], or [14, p. 407 ff]), but we need them in a non-artinian
situation. We also do not want to impose the condition that C B is projective from the very begin-
ning, as it is done in the existing literature, including the original source [16]. Therefore we will add
proofs, whenever we couldn’t find exact quotes in the literature for the result in question. For the
convenience of reading, some of the more technical proofs have been deferred to an extra section
(Appendix A).

Let B be a pre-Frobenius algebra; then the left annihilator L − annB(θ) := {b ∈ B | bθ = 0} is zero.
Moreover, the fact that B∗ is a B-bimodule implies, that for every b ∈ B there is a unique νθ (b) ∈ B
such that θ · b = νθ (b) · θ . From
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νθ (ab) · θ = θ · (ab) = (θ · a)b = (
νθ (a) · θ)

b = νθ (a)νθ (b) · θ,

we see that νθ is multiplicative. If z ∈ Z := Z(B), the center of B , then θ · z = θ(z · ()) = θ(() · z) = z · θ ,
hence νθ (z) = z and it follows that νθ ∈ EndZ (B). If B∗ = Bλ, then λ = u · θ for some unit u ∈ B , and
we get νθ (b) = u−1νλ(b)u for all b ∈ B .

Lemma + Definition 1. Let C B be a (left) pre-Frobenius algebra with B∗ = Bθ and center Z = Z(B).
Then the following are equivalent:

(i) νθ ∈ AutZ (B).
(ii) Bθ = θ B and R − annB(θ) := {b ∈ B | θb = 0} = 0 is zero.

(iii) The map B B → B B∗ , b �→ b · θ = θ(()b) is an isomorphism of left modules and the map B B → B∗
B ,

b �→ θ · b = θ(b()) is an isomorphism of right modules.

If any of these equivalent conditions is satisfied, we call C B a balanced pre-Frobenius algebra. In the
context of artinian Frobenius-algebras, νθ is called the Nakayama-automorphism.

Proof. (i) ⇒ (ii): If νθ ∈ AutC (B) and b ∈ B , then bθ = νθ (b′)θ = θb′ for some b′ ∈ B , hence B∗ = Bθ ⊆
θ · B ⊆ B∗ . It follows from the definition of νθ , that R − annB(θ) ⊆ ker(νθ ) = 0.

(ii) ⇒ (iii): The fact that C B is left pre-Frobenius is equivalent to the statement that the map
b �→ b · θ is an isomorphism of left modules. The hypotheses in (ii) imply that the map b �→ θ · b is
injective and surjective, hence an isomorphism of right modules.

(iii) ⇒ (i): The first isomorphism is just a restatement of the left pre-Frobenius condition and
therefore induces the map νθ . The second isomorphism clearly implies that νθ is injective. It also
implies that for every b ∈ B there is b′ ∈ B with bθ = θb′ = νθ (b′)θ , hence νθ is surjective. �
Remark 5.

(i) A balanced pre-Frobenius algebra C B with B∗ = Bθ is pre-symmetric, if and only if νθ = idA .
Indeed: B∗ = Bλ = λB ∼= B B B ⇐⇒ bb′1B = b1Bb′ = 1Bbb′ �→ bb′λ = bλb′ = λbb′ ⇐⇒ λ(()bb′) =
λ(b′()b) = λ(bb′()) ⇐⇒ νλ = id ⇐⇒ νθ = u−1νλu = id for some unit u ∈ B .

(ii) If C B is a commutative (left) pre-Frobenius algebra, then B is automatically balanced and indeed
pre-symmetric.

(iii) If B is an affine commutative graded connected algebra over a field and C � B is a polyno-
mial ring generated by a homogeneous system of parameters (a parameter subalgebra), then
HomC (B, C) is a quasi-canonical module ωB in the sense of Definition 2. In this case C B is pre-
symmetric ⇐⇒ ωB ∼= B B ⇐⇒ B is quasi-Gorenstein.
If moreover B is Cohen–Macaulay, then B is Gorenstein ⇐⇒ C B is pre-symmetric.

Let C , B , A be rings such that B is a C- and A is a B-bimodule. Then C A ∼= C B ⊗B A and hence by
the adjointness of tensor and Hom-functors, we get an isomorphism Ψ of abelian groups:

HomC (C A, C) = HomC (C B ⊗B A, C) ∼= HomB
(

B A,HomC (C B, C)
);

Ψ :φ �→ (
a �→ (

b �→ φ(b · a)
)); Ψ −1 :γ �→ (

a �→ γ (a)(1)
)
.

Both abelian groups are also A–C-bimodules and Ψ is an isomorphism of bimodules. Indeed:

Ψ
(
a′φc

)
(a)(b) = a′φc(ba) = φ

(
baa′) · c = (

Ψ (φ)
(
aa′)(b)

) · c

= ((
Ψ (φ)

(
aa′))c

)
(b) = (

a′Ψ (φ)c
)
(a)(b).
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Lemma 4.1. Let A and B be pre-symmetric C-algebras with A∗ = A · θA and B∗ = B · θB . Assume that A is a
B-bimodule. Then HomB(A, B) = A · λ, with λ ∈ HomB(A, B) defined by the equation

λ(a) · θB = (aθA)|B = θA(·a)|B .

The map λ is a homomorphism of B-bimodules, and the map

φ(A,B) : A AB → HomB(A, B), a �→ a · λ

is an isomorphism of A–B-bimodules.
In other words, (A, B) is a (possibly non-commutative) “pre-Frobenius pair”.

Proof. See Appendix A. �
We now assume that C B is a balanced pre-Frobenius algebra and we fix θ ∈ B∗ = Bθ , together with

ν := νθ ∈ AutC (B). For M ∈ B ModD we define ν M to be the same C-module as M but with twisted
B-action given by ν(a) · (ν)m := (ν)(am), or

a · (ν)m := ν−1(a)m.

Since (a · (ν)m)d = (ν−1(a)m)d = ν−1(a)(md) = a · (ν)(md), it follows that ν M ∈ B ModD .

Theorem 4.2. Let B be a balanced pre-Frobenius algebra over the commutative ring C with B∗ = B · θ and
corresponding νθ ∈ AutC (B). Then for any ring D the function θ induces an isomorphism of functors ()∨ ,
()∗ ◦ ν() : B ModD → D ModB :

θ∗ : HomB(M, B) → HomC
(
ν M, C

)
, β �→ θ ◦ β.

Proof. See Appendix A. �
Proposition 4.3. Let B, θ and ν be as in Theorem 4.2, M ∈ B ModD , such that M∗∗ ∼= M, i.e. M is a finitely
generated reflexive C-module. Let E := EndB(M), then there is a homomorphism of D-bimodules

η : E ∗ → HomB
(
M, ν M

)
,

which is an isomorphism if B M is projective.

Remark 6. In the case when C B is symmetric (⇐⇒ ν = id), taking D = E shows that for f.g. B-projec-
tive M , E = EndB(M) is also a symmetric C-algebra (well known).

Proof of Proposition 4.3. See Appendix A. �
Proposition 4.4. Let C be a commutative ring, S a finite (not necessarily commutative) C-algebra, i.e. such
that the left C-module C S is finitely generated, and let G � AutC (S) be a finite group. Set B := S ∗ G to be the
twisted group algebra with sgs′g′ = sg(s′)gg′ for s, s′ ∈ S and g, g′ ∈ G. Then the following are equivalent:

(i) S∗ = HomC (S, C) = S · θ , i.e. C S is left (balanced) pre-Frobenius.
(ii) B∗ = HomC (B, C) = B · θ̂ is left (balanced) pre-Frobenius with θ̂ (Sg) = 0 for all g 
= 1.

Proof. See Appendix A. �



122 P. Fleischmann, C. Woodcock / Journal of Algebra 348 (2011) 110–134
Theorem 4.5. Let C S be a finite commutative C-algebra and assume it is pre-Frobenius with S∗ =
HomC (S, C) = S · θ . Let G � AutC (S) be a finite group and B := S ∗ G the twisted group ring with center
Z := Z(B) and R := SG . Then the following hold:

(i) C B is balanced pre-Frobenius with B∗ = B · θ̂ and corresponding automorphism ν := ν
θ̂

∈ AutZ (B),
satisfying ν(s) = s for all s ∈ S.

(ii) The left action of G on S induces a natural right action on S∗ given by (λ, g) �→ λ◦ g.1 For s ∈ S, (sλ)◦ g =
g−1(s)(λ ◦ g), so G acts by R-module automorphisms.

(iii) Corresponding to θ ∈ S∗ is the cocycle χ := χθ ∈ Z 1(G, U (S)) defined by the formula θ ◦ g−1 = g · θ :=
χθ (g) · θ and satisfying ν(g) = χ−1

θ (g) · g.
(iv) One has for θ ′ ∈ S∗:

S · θ = S · θ ′ ⇐⇒ θ ′ = uθ with u ∈ U (S) and χθ ′ = χθ · ∂u,

where ∂u(g) := g(u)u−1 ∈ B1(G, U (S)). In other words, [χθ ] = [χθ ′ ] ∈ H1(G, U (S)).
(v) There is an identity of R-modules

Sν−1G := {
s ∈ S

∣∣ ν−1(g)(s) = s, ∀g ∈ G
} = Sχ−1 ,

where Sχ−1 denotes the module of relative χ−1-invariants.

Proof. See Appendix A. �
We will later use the theory of Galois ring extensions as developed in [7], from where we take the

following result:

Theorem 4.6. Let S be a commutative ring, G � Aut(S) a finite group of ring automorphisms and R := SG .
Then the following are equivalent:

(i) S is a finitely generated projective R-module and j : B := S ∗ G → EndR(S) is an isomorphism.
(ii) For every 1 
= σ ∈ G and maximal ideal P of S there is s(P, σ ) ∈ S with s − σ(s) /∈ P.

If either of these conditions is satisfied, then B S is projective in B-mod and R ↪→ S is called a Galois ring
extension with Galois group G.

Proof. The equivalence of (i) and (ii) has been shown in [7] and the fact that they imply that B S
is finitely generated projective follows for example from [13, Theorem 2.5]. It also follows from the
fact that, if R ↪→ S is Galois, then the bimodule R S B is invertible and induces a Morita-equivalence
between R-mod and B-mod. �

We summarize:

Proposition 4.7. Let C S be a finite commutative C-algebra, G � AutC (S) a finite group, with R := SG and
twisted group ring B = S ∗G. Assume C S is a pre-Frobenius algebra with HomC (B, C) = B θ̂ ∼= B B and ν := νθ

as in Theorem 4.5. Then there is a homomorphism

η : R∗ := HomC (R, C) → HomB
(

S, ν S
) ∼= Sν−1G := {

s ∈ S
∣∣ ν−1(g)(s) = s, ∀g ∈ G

}
.

If moreover R � S is a Galois-extension, then the following hold:

1 The corresponding left action is as usual defined by gλ := λ ◦ g−1.
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(i) B S and R S are f.g. projective generators in B-mod and R-mod respectively.
(ii) B S R and R S B induce Morita-equivalences between R-Mod and B-Mod.

(iii) The map η is an isomorphism.

Proof. Since S∗ ∼= C S , S is C-reflexive with R = EndB(S) and by Theorem 4.5 C B is balanced
C-Frobenius. Hence Proposition 4.3 yields the map η. Moreover we have HomB(S, ν S) = (HomS(S,
ν S))G = (ν S)G = Sν−1G . The rest follows from the results above. �

To apply this result in the case of noetherian normal domains we need the following technical
result (see [3, Proposition 19, p. 537]):

Proposition 4.8. Let A ⊆ B be a finite extension of commutative noetherian normal domains. Then for N ∈
B-mod, N is reflexive ⇐⇒ A N ∈ A-mod is reflexive.

Corollary 4.9. If C � S is a finite extension of (commutative) noetherian normal domains and S is a UFD, then
C S is pre-symmetric.

Proof. The C-module S∗ = HomC (S, C) is reflexive with rankC (S∗) = [Quot(S) : Quot(C)] = rankC (S),
hence by Proposition 4.8 S∗ is S-reflexive with rankS (S∗) = rankC (S∗)/rankC (S) = 1. So S∗ is iso-
morphic to a divisorial ideal and since S is a UFD it is free of rank one (see Proposition 2.2). Hence
S∗ ∼= S S and C S is pre-Frobenius. Since S is commutative, C S is pre-symmetric. �
Lemma 4.10. Let T be a noetherian normal domain, M, N ∈ T -mod finitely generated reflexive modules and
φ ∈ HomT (M, N) such that φp : Mp → Np is an isomorphism for every prime p ∈ Spec(T ) of height one. Then
φ is an isomorphism.

Proof. Let K := Quot(T ); since X ∈ {M, N} is reflexive, it is torsion free with X = ⋂
p∈Spec1(T ) Xp �

K ⊗T X . By assumption every φp : Mp → Np is an isomorphism, hence so is

φ : M =
⋂

p∈Spec1(T )

Mp →
⋂

p∈Spec1(T )

Np = N. �

Proposition 4.11. Let C S be a finite extension of noetherian normal domains, G � AutC (S) a finite group
with ring of invariants R := SG and twisted group ring B = S ∗ G. Assume that C S is pre-Frobenius with
HomC (S, C) = Sθ ∼= S S and let χ ∈ Z 1(G, U (S)) be defined by the formula θ ◦ g−1 = χ(g) · θ (see The-
orem 4.5). Assume that B S is “projective in height one”, i.e. for every p ∈ Spec1(R) (or p ∈ Spec1(C)), the
localization Bp Sp is projective.

Then there is an isomorphism of R-modules η : R∗ := HomC (R, C) → Sχ−1 .

Remark 7.

(i) The assumption on C S is satisfied if S is a UFD.
(ii) The assumption on B S is satisfied if the extension R ↪→ S is unramified in height one.

Proof. Define θ̂ and ν := ν
θ̂

as in Theorem 4.5, then R = EndB(S) and by Proposition 4.7 and The-
orem 4.5, HomB(S, ν S) = Sχ , which is a reflexive R-module by Lemma 3.1. Also R∗ is a reflexive
C-module, hence by Proposition 4.8, both are reflexive C- and R-modules. Under the hypothesis, it
follows from Proposition 4.3 that ηp : R∗

p → (HomB(S, ν S))p is an isomorphism for every p ∈ Spec1(R)

(or p ∈ Spec1(C)2), hence, by Lemma 4.10, η is an isomorphism globally.

2 Using “going up” and “going down”.
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The first remark follows from Corollary 4.9.
Now assume that R ↪→ S is unramified in height one. Then for every p ∈ Spec1(R) the extension

Rp ↪→ Sp is Galois by Theorem 4.6, hence Bp Sp is projective. �
5. Quasi-Gorenstein rings of invariants

Now let k be a field and A a finitely generated normal k-domain with U (A) = U (k), such that the
quotient field L := Quot(A) is separable over k. Let G ⊆ Aut(A) be a finite group of ring automor-
phisms with ring of invariants R := AG . Then k is a separable algebraic extension of k′ := kG ⊆ K :=
Quot(R) and L as well as K are separable over k′ . By Noether-normalization there is a k′-polynomial
ring F ⊆ R := AG such that F R and F A are finitely generated modules, i.e. F = k′[ f1, . . . , fd], with
( f1, . . . , fd) a system of parameters of R as k′-algebra. It follows from [11, Corollary 16.18], that F
can be chosen such that L and K are separable over Quot(F ). If F is chosen in that way we will
mark this by using the notation Fsep instead of F .

Definition 7. For a normal subring B ⊆ A such that B ↪→ A is finite and Quot(A) is separable over
Quot(B) let D A,B � A denote the corresponding Dedekind-different.

It is well known that D A,B and its inverse D−1
A,B are divisorial (fractional) ideals of A such there is

an isomorphism of A-modules

θ : D−1
A,B := {

x ∈ Quot(A)
∣∣ trA,B(xA) ⊂ B

} → HomB(A, B), x �→ trA,B(x·).
More relevant details about the Dedekind-different can be found in [1, Chapter 3].

Lemma 5.1. Let G � Aut(A) be a finite group and B = AN with N � G or B � AG . Then there are natural
G-actions on the sets D−1

A,B and HomB(A, B) and the map θ is a G-equivariant isomorphism.

Proof. Let B = AN , then for any g ∈ G , α ∈ HomB(A, B), a ∈ A and b ∈ B we have g(b) ∈ B , hence

gα(ba) := g
(
α(g−1(ba))

) = g
(
α

(
g−1(b)g−1(a)

)) = g
(

g−1(b)α
(

g−1(a)
))

= b · gα
(

g−1(a)
) = bgα(a),

hence G acts on HomB(A, B) by conjugation. For y ∈ Quot(A),

trA,B(y) =
∑
n∈N

n · y =
∑
n∈N

ng · y = g−1
(∑

n∈N

n(g · y)

)
= g−1 trA,B(gy).

For x ∈ D−1
A,B and a ∈ A we have (gθ(x))(a) = g ·θ(x)(g−1a) = g trA,B(x ·(g−1a)) = g trA,B(g−1(gx ·a)) =

trA,B((gx) · a) = θ(gx)(a), hence G acts on D−1
A,B and θ is G-equivariant.

Now let B � AG ; again G acts on HomB(A, B) by conjugation, with trivial G-action on B . For g ∈ G
and any y ∈ Quot(A) we have trA,R(gy) = ∑

h∈G hg(y) = ∑
h∈G h(y) = trA,R(y). Now the transitivity

of traces yields: trA,B(gy) = trR,B ◦ trA,R(gy) = trR,B ◦ trA,R(y) = trA,B(y). It follows that for a ∈ A
and x ∈ D−1

A,B : θ(gx)(a) = trA,B((gx)a) = trA,B(g(x.g−1a)) = trA,B(x.g−1a) = θ(x)(g−1a) = g(θ(x))(a),

so θ(gx) = gθ(x). Again we conclude that G acts on the inverse different and θ is G-equivariant. �
The following is an immediate consequence of Lemma 4.1:

Proposition 5.2. Let F � S � A with normal domain S. If F S and F A are pre-symmetric with A∗ :=
HomF (A, F ) = A · θA and S∗ = HomF (S, F ) = S · θS , then
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D−1
A,S

∼= HomS(A, S) = A · θA,S ,

with θA,S defined by the equation θA,S (a) · θS = (aθA)|S . If S = AN for N � G, then G acts on D−1
A,S and there

are characters χA , χS and χA,S ∈ Z 1(G, U (k)) defined by the equations

θA ◦ g−1 = χA(g) · θA, θS ◦ g−1 = χS(g) · θS and g ◦ θA,S ◦ g−1 = χA,S(g) · θA,S .

These characters satisfy

χA = χS · χA,S .

Proof. The first claim follows from Lemma 4.1, which also gives θA = θS ◦ θA,S . For g ∈ G we
have χA(g)θA = θA ◦ g−1 = θS ◦ θA,S ◦ g−1 = χA,S(g) · θS ◦ g−1 ◦ θA,S = χA,S(g) · χS (g)θS ◦ θA,S =
χA,S (g) · χS(g)θA . �

Now we assume in addition that A is a factorial domain (see Section 3.2).
Let S := AW , then by Lemma 3.11 S is also factorial. The following lemma is well known (at least

in the context of Dedekind domains appearing in number theory):

Lemma 5.3. For any W ⊆ H ⊆ G the following hold:

(i) D A,AG = D A,AH .

(ii) D AH ,AG = (1) = AH .

In particular the extension AG ↪→ AW is unramified in height one.

Proof. (i): For Q ∈ Spec1(A) let Gk(Q ) := {g ∈ G | (g − 1)A ⊆ Q } denote the inertia group of Q and
Hk(Q ) := H ∩ Gk(Q ) . It is well known (e.g. from [17, I. No. 7, Proposition 21]) that the ring extensions
AGk(Q ) � AG and AHk(Q ) � AH are unramified at the prime ideals Q∩ AGk(Q ) and Q∩ AHk(Q ) , respectively.
A local calculation of the Dedekind-different gives

νQ(D A,AG ) = νQ(D
A,AGk(Q ) ) = νQ(D

A,AHk(Q ) ) = νQ(D A,AH ).

Now the claim follows from the fact that the Dedekind-different is a divisorial ideal.
(ii): Let q ∈ Spec1(AH ); then there exists Q ∈ Spec1(A) with q = Q ∩ AH . From the Dedekind-tower

theorem and (i) we obtain

d(D A,AG ) = d(D A,AH ) + d(A · D AH ,AG ) = d(D A,AH ),

hence d(A · D AH ,AG ) = 0, or equivalently, A = A · D AH ,AG . It follows that

0 = νQ(A · D AH ,AG ) = e(Q ,q) · νq(D AH ,AG ),

hence νq(D AH ,AG ) = 0. Since D AH ,AG � AH is divisorial, we conclude that D AH ,AG = AH .

The last statement follows from [17, III. No. 5, Theorem 1]. �
Using the fact that R S is unramified in height one we can apply Proposition 4.11 to prove the main

result:

Proof of Theorem 1.2. Recall that F is a parameter subalgebra of R := AG � S := AW � A. Since S
and A are UFD’s, they are symmetric F -algebras with S∗ = HomF (S, F ) = S ·θS , A∗ = HomF (A, F ) =
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S · θA and the Dedekind-different D A,R = D A,S is a principal ideal with D−1
A,S

∼= HomS (A, S) = A · θA,S .

The fact that R∗ = HomF (R, F ) ∼= Sχ−1
S

= Aχ−1
S

follows from Proposition 4.11 and χS = χA · χ−1
A,S fol-

lows from Proposition 5.2. Notice that, using notation from Proposition 3.5, χS ∈ H̃ , hence [μχS ] = 1.
It follows that Aχ−1

S
represents a divisorial ideal of class given by [χS ], from which the remaining

statements follow. �
A slightly more special version of Theorem 1.2, with F replaced by Fsep , i.e. which requires to

choose the parameter algebra F in such a way that L � Quot(F ) is separable, can be proved in a
way which does not depend on the results of Section 4:

Proof of Theorem 1.2, special case with Fsep. In this case R∗ ∼= D−1
R,F and D S,F = Sd, a principal

ideal, since S is a factorial domain. It follows from Lemma 5.1 that S∗ = HomF (S, F ) ∼= D−1
S,F is an

isomorphism of S ∗ G-modules. Hence S∗ = SθS , where θS ∈ S∗ can be identified with an element
in Quot(S). Since the fractional ideal D−1

S,F is G/W -stable θS is a relative invariant with character

χS ∈ H̃ . By the Dedekind-tower theorem, D S,F = D S,R D R,F � S , which implies (first locally at height
one primes, then globally):

S∗ = SθS ∼= D−1
S,F = D−1

S,R

(
S D−1

R,F
) = S D−1

R,F ⊆ Quot(S).

There is a suitable element r ∈ R with r SθS ⊆ S and therefore r SθS = r S D−1
R,F ⊆ S. Hence we get

r S D−1
R,F ∩ R = rD−1

R,F = r SθS ∩ R , so R∗ ∼= D−1
R,F = SθS ∩ Quot(R) ∼= SχS

−1 = AχS
−1 , where the isomor-

phism is one of R-modules. Since χS ∈ H̃ we have [μχS ] = 1, so ch(cl(AχS
−1 )) = [χS ]. The equation

χS = χA · χ−1
A,S follows immediately from

D A,R D R,F = D A,S D S,F

and D A,S = D A,R . The remaining statements follow immediately. �
Proof of Corollary 1.4. Since W̃ /W is generated by p-elements, it follows that C S̃ = Hom(W̃ /W ,

U (k)) = 1, hence Hom(G/W , U (k)) = Hom(G/W̃ , U (k)) and S̃ is a factorial domain, hence quasi-
Gorenstein. Using Lemma 5.3 the remaining arguments are exactly as above with W replaced by W̃
and S by S̃ . �

For the proof of Corollary 1.3 we need the following proposition:

Proposition 5.4. Let P ⊆ B be as in Definition 2 and assume that P B is quasi-Gorenstein. Then for every
Q ∈ Spec(B), the localization BQ is Cohen–Macaulay if and only if BQ is Gorenstein. In other words, the Cohen–
Macaulay and Gorenstein loci of B coincide.

Proof. Let Q ∈ Spec(B) be such that BQ is Cohen–Macaulay. Set q = Q ∩ P ∈ Spec(P ) and let

Q := Q1, . . . ,Qk be the primes of B lying over q. Since HomP (B, P ) ∼= B and B̂q ∼=×k
i=1 B̂Q i , we get

B̂q ∼= ̂(HomP (B, P ))q ∼= HomP (B, P ) ⊗P P̂q ∼= HomP̂q
(B̂q, P̂q) ∼=×k

i=1 HomP̂q
(B̂Q i , P̂q) ∼=×k

i=1 B̂Q i .

Let 1B̂q
= ∑k

i=1 ei with eie j = δi j , then B̂Q i = ei B̂q ∼= ei HomP̂q
(B̂q, P̂q) ∼= HomP̂q

(ei B̂q, P̂q) ∼=
HomP̂q

(B̂Q i , P̂q). Since BQ1 is Cohen–Macaulay, so is B̂Q1 and it is finite over P̂q. It follows

that HomP̂ (B̂Q i , P̂q) is the unique canonical module ωB̂ (up to isomorphism) of B̂Q i . Therefore

q Q i
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ωB̂Q i

∼= B̂Q i . It is generally true, that for a finitely generated BQ-module M , the completion M ⊗BQ B̂Q

is canonical for B̂Q, if and only if M is canonical for BQ, so we conclude that ωBQ
∼= BQ and BQ is

Gorenstein. �
Proof of Corollary 1.3. This follows immediately from Theorem 1.2 and Proposition 5.4. �
6. The graded connected case

The application of Theorem 1.2 depends on the determination of [χS ] or, equivalently [χA] and
[χA,S ]. If G acts trivially on k, then these are linear characters in Hom(G/W , U (k)) or Hom(G, U (k)),
respectively. In this section we investigate these characters in the case where A is a graded connected
Cohen–Macaulay ring.

In the case where k has positive characteristic we will make use of the concept of Brauer-
characters, as defined in modular representation theory of finite groups. In this case, k will be part
of a p-modular system (K , R,k), where R is a discrete valuation ring with quotient field K of char-
acteristic 0 and k = R/Rad(R) of characteristic p > 0. In this case one can define for every linear
representation of G on the finite dimensional k-vector space V a K -valued class function χV in such
a way that for every g ∈ G , χV (g) ∈ R and χV (g) ∈ k coincides with the trace trace(g|V ). The class
function χV is called the Brauer-character of V . For more details we refer to [8, p. 402 ff]. Through-
out this section A = ∑

i�0 Ai is an N0 graded connected noetherian normal k-algebra, i.e. A0 = k
with U (A) = U (k) and G ⊆ Autk(A) a finite group of graded k-algebra automorphisms. We will also
assume that A is a Cohen–Macaulay domain, i.e. A is a free module over some (and then every)
parameter algebra F ⊆ A. We keep the previous notation, so R = AG ↪→ A is a finite extension of
noetherian normal domains. Let y1, y2, . . . , yd ∈ R be a homogeneous system of parameters (hsop)
with di := deg(yi), d = Dim(R) = Dim(A), and set F := k[y1, . . . , yd].

Definition 8. Let V := ⊕
n�0 Vn be an N0 graded k-vector space and G a finite group acting on V by

graded k-linear automorphisms. We define the (Brauer-) character series

H (Br)
V ,g(t) :=

∞∑
n=0

χVn (g)tn,

where χVn is the (Brauer-) character afforded by the action of G on Vn . Note that H V ,g(t) ∈ k[[t]],
whereas HBr

V ,g(t) ∈ Q(ε)[[t]], where ε is a primitive order(g)-th root of unity in C.

Note that

H A(t) := HBr
A,id(t) =

∑
i�0

dimk(Ai)t
i ∈ Q(t)

is the ordinary Hilbert-series of A. Let U := A := A/F + A, where F + := (y1, . . . , yd) � F is the
unique maximal homogeneous ideal of F . Then F ⊗k U is the projective cover of F A in F -mod,
hence, as F A is free, we have F ⊗k U ∼= A as F -modules. Moreover U = ⊕β

i=0 Ui = ⊕�
i=1 kξi,

where we choose a homogeneous k-basis {ξi | i = 1, . . . , �} with deg(ξi) =: βi � βi+1, β := β� and
� := dimk(U ). We also will choose an F -basis B := {si | i = 1, . . . , �} of A, such that si + F + A = si = ξi
for i = 1, . . . , �.

Note that G acts on A and U and if g(ξi) = ∑�
j=1 g jiξ j with (g ji) ∈ k�×� , then

g(si) =
�∑

j=1

g ji s j + X
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with X ∈ F + A. For each j let Ã j := 〈B〉k ∩ A j , then Ai = ⊕
m+n=i Fm ⊗k Ãn and it is easily seen that

χAi (g) =
∑

m+n=i

dimk(Fm) · χUn (g) = coeffi
(

HBr
F (t) · HBr

U ,g(t)
)
.

Hence HBr
A,g(t) = H F (t) · HBr

U ,g(t). Since H F (t) = 1∏�
i=1(1−tdi )

and HBr
U ,g(t) ∈ Q(ε)[t], we get

Lemma 6.1. The Brauer-character series of A are rational, i.e. HBr
A,g(t) ∈ Q(ε)(t).

Now we assume in addition that A is Gorenstein. It is then well known that

H A(t) = (−1)dta(A)H A(1/t),

where a(A) = deg(H A(t)) is the degree of H A(t). This symmetry is induced by the duality of the
corresponding artinian Gorenstein algebra U = A := A/F + A, where F + := (y1, . . . , yd) � F is the
unique maximal homogeneous ideal of F . For later use we recall the details:

There is a graded embedding U/U+[−β] ↪→ k[−β] ⊆ U Uβ , k = ((U/U+)[−β])β � λ �→ λξ�. It fol-
lows from [6] that U U is injective with Soc(U ) ∼= k (up to shift), hence

k[−β] ∼= U/U+[−β] ∼= Soc(U U ).

It is well known that ∗E(k) ∼= U∗ := Homk(U ,k), where ∗E(k) denotes the graded ∗injective hull
of k = U0 (see [6] for the definition of ∗injectivity). Note that U = ⊕β

i=0 Ui ; choosing a homoge-
neous dual k-basis {ξ∗

i | i = 1, . . . , �} (such that ξ∗
i (ξ j) = δi, j and deg(ξ∗

i ) = −deg(ξi)), we see that

U∗ = ⊕β

i=0(U∗)−i with k ∼= Soc(U∗) ∼= U∗
0 and dimk(U∗)−i = dimkUi . Since U U is injective and inde-

composable we conclude

U U ∼= ∗E
(
Soc(U U )

) ∼= ∗E
(
k[−β]) ∼= ∗E(k)[−β] ∼= U∗[−β].

It follows that dimk(Ui) = dimk(U∗[−β]i) = dimk((U∗)i−β) = dimk(Uβ−i), hence HU (t) = tβ HU (1/t) =
H∗

U (t). Since Rad(U∗) = Soc(U )⊥ = 〈ξ∗
1 , . . . , ξ∗

�−1〉 we have U U∗ = U · ξ∗
� as well as a non-degenerate

associative bilinear form

κ( , ) : U × U → k, κ
(
ξ, ξ ′) = ξ∗

�

(
ξ · ξ ′).

It follows from Soc(U ) = k · ξ� , that for g ∈ G , g(ξ�) = λ(g)ξ� , with some linear character λ ∈
Hom(G, U (k)). Since the G-action preserves degrees, we have g(ξ j) ∈ ∑

n<β Un , hence g−1ξ∗
� (ξ j) =

ξ∗
� (g(ξ j)) = 0 for every j < � and g−1ξ∗

� (ξ�) = ξ∗
� (g(ξ�)) = λ(g) · 1; hence gξ∗

� = λ(g)−1ξ∗
� for every

g ∈ G . It follows that κ(g(ξi), g(ξ j)) = λ(g) · κ(ξi, ξ j).

Proposition 6.2. Let A be a graded connected Gorenstein algebra, then the Brauer-character series of A and U
satisfy the following identities:

(i) HBr
U ,g(t) = λ̂(g) · tβ HBr

U ,g−1 (1/t);

(ii)
HBr

A,g (t)

HBr
A,g−1 (1/t)

= (−1)dta(A)λ̂(g) with a(A) = β − ∑
i di = deg(HBr

A,1(t)).

In particular

λ̂(g) = (−1)d · lim
t→1

HBr
A,g(t)

HBr
A,g−1(1/t)

.
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Remark 8. It follows from (i) that the character λ only depends on A and not on the choice of F .
Therefore we denote it by λA and we will denote the corresponding Brauer-character by λ̂A .

Proof of Proposition 6.2. (i): Let A := {a1, . . . ,am} and B := {b1, . . . ,bm} be k-bases of Ui and Uβ−i ,
respectively, then κ(g(ai), g(b j)) = λ(g) · κ(ai,b j). On the other hand, this is equal to MA(g)tr ◦
Q ◦ MB(g), where Q = (κ(ai,b j)) ∈ km×m . For every 0 � ν � β with ν 
= β − i we have

Uν ⊆ U⊥
i := {

a ∈ U
∣∣ κ(a, Ui) = 0

}
.

Hence the map Ui × Uβ−i → k, (a,b) �→ κ(a,b) is a perfect pairing, in particular Q is a non-singular
matrix. Therefore MA(g)tr = λ(g) · Q ◦ MB(g)−1 ◦ Q −1 and trace(g|Ui ) = λ(g) trace(g−1

|Uβ−i
), from

which (i) follows immediately.
(ii): Using (i), the LHS is equal to

HBr
U ,g(t)

HBr
U ,g−1(1/t)

·
∏

i(1 − tdi )−1∏
i(1 − t−di )−1

= λ̂(g) · tβ−∑
i di (−1)d. �

Remark 9. Let g ∈ GL(V ) semisimple, A := Sym(V ∗) ∼= k[x1, . . . , xn] with x1, . . . , xn a basis of V ∗ . We
can assume that g(xi) = λi xi with eigenvalues λi ∈ U (k), so with slight abuse of notation we obtain

HBr
A,g(t) = ̂trace(g|A) =

n∏
i=1

(
1 + λ̂it + λ̂i

2
t2 + · · ·) =

n∏
i=1

1

1 − λ̂it
= 1

̂det(1 − tg)
.

It follows that

HBr
A,g−1(1/t) = 1

̂det(1 − g−11/t)
= tn

̂det(t − g−1)
= tn d̂et(g)

̂det(gt − 1)

= (−1)ntn d̂et(g) · 1

̂det(1 − gt)
= (−1)ntn d̂et(g) · HBr

A,g(t).

Hence λ̂A(g) = d̂et(g)−1.

Proposition 6.3. Let A be a graded connected Gorenstein domain and also a factorial domain. Then
HomF (A, F ) ∼= AθA with χ−1

A = λA as defined in Remark 8. Moreover HomF (R, F ) ∼= Aλ , where

(i) λ := λA if char(k) does not divide |G|;
(ii) λ := λS ∈ Hom(G/W , U (k)), if S = AW is Cohen–Macaulay (and therefore Gorenstein).

In each of those cases R = AG is quasi-Gorenstein if and only if λ = 1.

Proof. It follows from Theorem 1.2 that there exists some function θ := θA with HomF (A, F ) ∼= A · θ.

From [6, Proposition 3.3.3 (a)] we get

A · θ = HomF (A, F ) ⊗ F /F + ∼= HomU (U ,k) = U · ξ∗
� ,

hence θ = c · ξ∗
� with some non-zero scalar c ∈ k. Setting λ := λA , it follows that gθ = g(θ) = λ(g)−1θ ,

so g(θ) − λ(g)−1 · θ ∈ F + HomF (A, F ). On the other hand G maps θ onto another module generator
and therefore g(θ) = sg · θ with a unit sg ∈ k = A0. It follows that g(θ)− λ(g)−1 · θ ∈ k · θ ∩ F + Aθ = 0
and we conclude g(θ) = λ(g)−1 · θ . This shows χA = λ−1

A .
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Since S is a factorial domain, it is Gorenstein if Cohen–Macaulay, so the same argument as above
gives χS = λ−1

S . The statement about HomF (R, F ) follows from Theorem 1.2.
For the rest of the proof we can assume that char(k) does not divide |G|. We consider the re-

striction map res : HomF (A, F ) → HomF (R, F ), Ψ �→ Ψ|R . Since t : A → R , s �→ |G|−1 ∑
g∈G g(s) is an

epimorphism of F -modules and F R is free, we have F A = F R ⊕ F X for some complement F X ⊆ A,
hence res is surjective. Let φ ∈ HomF (R, F ), then there is s ∈ A with φ = s · θ(|R) = θ(s · ()). For any
r ∈ R we get

φ(r) = 1

|G|
∑
g∈G

φ(gr) = 1

|G|
∑
g∈G

θ(sgr) = 1

|G|
∑
g∈G

θ
(

g
(

g−1(s)r
))

= 1

|G|
∑
g∈G

λ(g)θ
(

g−1(s)r
) = θ

(
tλ(s)r

)
,

where tλ := 1
|G|

∑
g∈G λ(g)g−1 : A → Aλ is the projection operator in HomF (A, Aλ). Thus we have

HomF (R, F ) ⊆ res(Aλ · θ). Again it follows from F A = F R ⊕ F X , that HomF (X, F )G = 0, hence

HomF (A, F )G ∼= resR
(
HomF (A, F )G) = HomF

(
AG , F

)
.

Clearly Aλ · θ ∈ HomF (A, F )G , so HomF (R, F ) = res(Aλ · θ) ∼= R Aλ. If λ = 1, then HomF (R, F ) =
R · res(θ) is a cyclic R-module, so ωR ∼= HomF (R, F ) ∼= R R and R is Gorenstein. �
Remark 10. In the special case where A = Sym(V ∗) with linear G-action the result above for the
non-modular case also appears in [15, Corollary 3.2]. The proof indicated there depends on the results
of [18,19]. In contrast to this our proof above is elementary and independent of Watanabe’s results as
well as of our Theorem 1.2.

One can apply the results above for example in the situation where A := Sym(V ∗) for finite di-
mensional kG-module V , and S = AW or S = AW̃ , with G := G/W or G/W̃ acting on S . However,
even if S = k[x1, . . . , xn] is a polynomial ring (with deg(xi) =: di � 1), then action of G will in general
be non-linear and the k-space 〈x1, . . . , xn〉k will be not G-stable. Nevertheless we can use Remark 9
to determine λS = χ−1

S .
Let M be a finite dimensional kG-module with kG-submodule N ⊆ M . As a vector space we have

M = N ⊕ U , with U ∼= M/N as a kG-module. Even though M and N ⊕ U are in general not isomorphic
as kG-modules, one has χM = χN +χM/N . It follows that Sym(M) ∼= Sym(N)⊗k Sym(U ) as a k-algebra,
but in general not as kG-module. Nevertheless we have HBr

Sym(M),g(t) = HBr
Sym(N),g(t) · HBr

Sym(M/N),g(t).
Even more generally, the following lemma includes the case of a graded, but non-linear G-action on
the algebra generators:

Lemma 6.4. Let G act on A by graded algebra automorphisms and B � A a G-stable graded subalgebra.
Assume that A ∼= B ⊗k A/B+ A as a k-algebra (not necessarily as kG-module). Then

HBr
A,g(t) = HBr

B,g(t) · HBr
A/B+ A,g(t).

Proof. Let A/B+ A =: C and identify the k-algebras B ⊗k C ∼= A, via b ⊗ c = bc. Let x1, . . . , xμ be a
k-basis of Bm and y1, . . . , yν a k-basis of Cn . Then g(y j) = ∑

t gC;t j yt + BC with BC ∈ ∑n
r=1 Br Cn−r

and the matrix (gC;t j) describing the representation of g on the kG-module C j ∼= (A/B+ A) j . Hence

g(xi y j) = g(xi)g(y j) =
∑

s

(gB;si xs)
∑

t

(gC;t j yt + BC)

= gB;ii · gC; j j · xi y j +
∑

(s,t) 
=(i, j)

gB;si gC;t jxs yt + X ,
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with X ∈ ∑n
r=1 Bm+r Cn−r ⊆ B+ A. It follows that χAm+n,g = χBm,g · χCn,g and therefore HBr

A,g(t) =
HBr

B,g(t) · HBr
C,g(t). �

Proposition 6.5. Let A = k[x11, . . . , x1 j1 , x21, . . . , x2 j2 , . . . , x�1, . . . , x� j� ] be a polynomial ring with gener-
ators of degrees 1 � d1 < d2 < · · · < d�. For i := 1, . . . , � let Ui denote the kG-module Adi /A+ A+ ∩ Adi ∈
kG-mod and deti : G → k, g �→ det(g|Ui ). Then for every g ∈ G:

HBr
A,g(t) =

�∏
i=1

HBr
Sym(Ui),g(t) =

�∏
i=1

1

̂det(1 − tdi g)
and λ̂A(g) =

�∏
i=1

d̂eti(g)−1.

Proof. The subalgebra B := k[x11, . . . , x1 j1 ] = Sym(U1) ⊆ A is G-stable and we have A = B ⊗k A/B+ A
with polynomial ring A/B+ A ∼= k[x21, . . . , x2 j2 , . . . , x�1, . . . , x� j� ]. Now the first equality follows from
Lemma 6.4 and an obvious induction. The rest follows in a way similar to Remark 9. �

If char(k) = p > 0, then by definition p does not divide [G : W̃ ], hence if AW̃ is Cohen–Macaulay,
so is AG . With regard to the Gorenstein property we obtain the following:

Corollary 6.6. Let A := Sym(V ∗) with finite dimensional kG-module V and assume that AW̃ ∼= k[x11, . . . ,

x1 j1 , x21, . . . , x2 j2 , . . . , x�1, . . . , x� j� ] is a polynomial ring with generators of degrees 1 � d1 < d2 < · · · < d�.

Then AG is Cohen–Macaulay and AG is Gorenstein if and only if
∏�

i=1 d̂eti(g)−1 = 1 for all g ∈ G.
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Appendix A. Proofs of results of Section 4

Proof of Lemma 4.1. It is clear that HomB(A, B) is a natural A–B-bimodule. For each a ∈ A, the
map a · θA = θA((·) · a)|B is in B∗ . Hence for each a there is a unique element λ(a) ∈ B , such that
λ(a) · θB = (aθA)|B . Denote φ(A,C) : A → A∗ , a �→ a · θA and φ(B,C) : B → B∗ , b �→ b · θB , then we have
the bijection:

φ(A,B) := ((
φ(B,C)

)−1)
∗ ◦ Ψ ◦ φ(A,C) : AB → HomB(B A, B),

which maps a ∈ A to the function

((
φ(B,C)

)−1)
∗
(
a′ �→ (

b �→ (
a · θA

(
ba′)))) = a′ �→ (

φ(B,C)
)−1(

θA
(
(·)a′a

)∣∣
B

)
hence a �→ a · λ. The fact, that λ ∈ HomB(B A, B) can also be seen directly:

indeed, (bλ(a))θB(b′) = λ(a) ·θB(b′b) which is, by definition θA(b′ba), but this again is by definition
λ(ba)θB(b′).

Obviously φ(A,B) is an isomorphism of left A-modules. The fact that φ(A,B) is a bimodule homo-
morphism follows, if λ is a B-bimodule homomorphism, so we verify this:

λ(ab) = λ(a) · b.
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By the assumptions we have

λ(a) · b · θB
(
b′) = θB

(
b′λ(a)b

) = θB
(
bb′λ(a)

) = θA
(
bb′a

) = θA
(
b′ab

) = λ(ab)θB
(
b′).

This finishes the proof. �
Proof of Theorem 4.2. For β ∈ HomB(M, B), d ∈ D and b ∈ B we have

θ∗(dβb)(m) = θ
(
β(md)b

) = θ
(
ν−1(b)β(md)

) = θ
(
β
(
ν−1(b)md

))
.

On the other hand,(
dθ∗(β)b

)
(m) = θ∗(β)(b · md) = θ

(
β(b · md)

) = θ
(
β
(
ν−1(b)md

))
,

hence θ∗ is a morphism of D–B-bimodules.
For x ∈ HomB(M, N)D we get x∗(θ∗(β)) = θ∗(β) ◦ x = θ ◦β ◦ x = θ∗(x∨(β)). Hence θ∗ is a morphism

of functors.
We have to exhibit an inverse of θ∗: For any m ∈ M and α ∈ M∗ the map α̂,m : b �→ α(bm) ∈ C is

an element in HomC (B, C), hence α̂,m = bα,m · θ for a unique bα,m ∈ B . Consider the map

χ(M) :
(
ν M

)∗ → M∨, α �→ (m �→ bα,m ∈ B).

Since θ(b′′bα,b′m) = α(b′′b′m) = θ(b′′b′bα,m), we have bα,b′m = b′bα,m . Hence χ(M)(α) ∈ HomB(M, B).
For β ∈ HomB(M, B) and m ∈ M we get

χ ◦ θ∗(β)(m) = bθ◦β,m

with θ(bbθ◦β,m) = θ(β(bm)) = θ(bβ(m)) hence bθ◦β,m = β(m). For α ∈ (ν M)∗: θ∗ ◦ χ(α)(m) =
θ(χ(α)(m)) = θ(bα,m) = α(m). So, indeed, χ is the two-sided inverse of θ∗ . Naturality, as well as
the fact that χ consists of bimodule isomorphisms follow automatically from this. �
Proof of Proposition 4.3. Note that for any rings X , Y , Z and U ∈ X ModY , V ∈ X ModZ the set
HomX (U , V ) ∈ Z ModY by the rule zαy(u) := α(uy) · z. Hence the right D-action on M makes
E = HomB(M, M), HomB(M, ν M) and E ∗ into D-bimodules. Similarly M∨ = HomB(M, B) ∈ D ModB ,
hence M∨ ⊗B M is a D-bimodule. Let t denote the canonical homomorphism

t : M∨ ⊗B M → HomB(M, M), α ⊗ m �→ (
m′ �→ α

(
m′)m

)
.

Then t(dα ⊗ md′)(m′) = dα(m′)md′ = α(m′d)md′ = (α(m′d)m)d′ = (α ⊗ m)(m′d)d′ = d(t(α ⊗ m))d′(m′),
hence t is a homomorphism of D-bimodules. Consider the homomorphism of C-modules:

E ∗ = HomC
(
HomB(M, M), C

) →t∗ HomC
(
M∨ ⊗B M, C

)
∼= HomB

(
M,HomC

(
M∨, C

)) →(χ∗)∗ HomB
(
M,HomC

((
ν M

)∗
, C

))
= HomB

(
M,

(
ν M

)∗∗) = HomB
(
M, ν M

)
.

The middle map Ψ : HomC (M∨ ⊗B M, C) → HomB(M,HomC (M∨, C)) satisfies Ψ (γ )(m)(β) =
γ (β ⊗ m). Both sides are D-bimodules and we get Ψ (dγ d′)(m)(β) = dγ d′(β ⊗ m) = γ (d′β ⊗ md) =
Ψ (γ )(md)(d′β) = [Ψ (γ )(md)d′](β) = [dΨ (γ )d′](m)(β), hence Ψ is an isomorphism of D-bimodules.
The canonical map M → M∗∗ with m∗∗(θ) = θ(m) satisfies (md)∗∗(θ) = θ(md) = dθ(m) = m∗∗(dθ) =
m∗∗d(θ), so it is a D-module homomorphism. It follows that the intermediate maps from E ∗ to
HomB(M, ν M) are morphisms of D-bimodules. All of them are also isomorphisms, except possibly t∗ .
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It is well known that if B M is f.g. projective, then t and therefore t∗ are isomorphisms as well. (Since
C M is finitely generated, so is B M .) �
Proof of Proposition 4.4. For μ ∈ B∗ and b ∈ B we have b · μ = μ(()b) = (() · b)∗μ, hence g · μ =
(()g)∗(μ). Therefore the commutative diagram of C-modules with obvious projections and inclusions

S

()g

i1
B

π1

()g

S

()g

Sg
ig

B
πg

Sg

induces the dual diagram

S∗ π∗
1

B∗ i∗1
S∗

(Sg)∗

g·

π∗
g

B∗

g·

i∗g
(Sg)∗.

g·

For s ∈ S: π1 ◦ ()s = ()s ◦ π1, i.e. for b = ∑
h∈G shh ∈ B we have π1(bs) = π1(

∑
h∈G shh(s)h) =

s1s = π1(b) · s. Hence for μ ∈ S∗ , π∗
1 (sμ)(b) = (sμ)(π1(b)) = μ(π1(b)s) = μ(π1(bs)) = π∗

1 (μ)(bs) =
(sπ∗

1 (μ))(b), so π∗
1 ∈ HomS(S∗, B∗). For ν ∈ B∗ and s, s′ ∈ S we have i∗1(sν)(s′) = (sν)(s′) = ν(s′s) =

(s · i∗1(ν))(s′), so i∗1 ∈ HomS(B∗, S∗).
(i) ⇒ (ii): Assume that C S is left pre-Frobenius. For every λg ∈ Sg∗ = HomC (Sg, C), there is

�(g) ∈ S with gλg = �(g)θ . Hence g · π∗
g (λg) = π∗

1 (�(g)θ) = �(g) · π∗
1 (θ). So π∗

g (λg) = g−1�(g) ·
π∗

1 (θ) ∈ B · π∗
1 (θ). It follows that

B∗ =
⊕
g∈G

π∗
g

(
Sg∗) ⊆ B · π∗

1 (θ) ⊆ B∗.

Let θ̂ := π∗
1 (θ) and b = ∑

g sg g ∈ B with θ̂ (bB) = 0, then for every h ∈ G , 0 = ∑
g θ̂ (sg g Sh−1) =

θ(sh S), so sh = 0 and b = 0. It follows that C B is left pre-Frobenius.
Now assume that C S is balanced pre-Frobenius. Then θ̂ (Bb) = 0 implies 0 = θ̂ (h−1 S

∑
g sg g) =∑

g θ̂ (Sh−1(sg)h−1 g) = θ(Sh−1(sh)), so h−1(sh) = 0 and sh = 0 for every h ∈ G . In a similar way as

before we see that B∗ = θ̂ · B , so C B is balanced pre-Frobenius in the way as described.
(ii) ⇒ (i): Assume first that C B is left pre-Frobenius as described. Since i∗1(gθ̂ )(s) = θ̂ (sg) = 0 for

all g 
= 1, we have S∗ = i∗1(B∗) = i∗1(B · θ̂ ) = i∗1(S θ̂ ) = Si∗1(θ̂). If s ∈ S with si∗1(θ̂ ) = 0, then θ̂ (Ss) = 0,
hence θ̂ (Bs) ⊆ ∑

g θ̂ (Sgs) ⊆ ∑
g θ̂ (Sg(s)g) = θ̂ (Ss) = 0, so s = 0. It follows that S is left pre-Frobenius.

If C B is balanced pre-Frobenius, it follows in a similar way that C S is balanced with θ := i∗1(θ̂ ). �
Proof of Theorem 4.5. We use the notation of Proposition 4.4.

(i): Since C S is (balanced) pre-Frobenius it follows that C B is balanced pre-Frobenius with
B∗ = B θ̂ and θ̂ = π∗

1 (θ). Since θ · s(s′) = θ(ss′) = θ(s′s) = sθ(s′) we get θ̂ s(s′ g) = θ̂ (ss′ g) = θ̂ (s′sg) =
θ̂ (s′ g(s)g) = θ(s′ gs) = sθ̂ (s′ g). It follows that ν(s) = s.

(ii)–(iv): For s ∈ S ,

(sλ) ◦ g
(
s′) = (sλ)

(
gs′) = λ

(
g
(
s′)s

) = λ
(

g
(
s′ g−1(s)

)) = λ ◦ g
(
s′ g−1(s)

) = g−1(s)(λ ◦ g)
(
s′),
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so (sλ) ◦ g = g−1(s)(λ ◦ g). Let λ ∈ S∗ , then λ ◦ g−1 = t · θ for some t ∈ S . Set s := g−1(t), then
λ ◦ g−1 = g(s)θ , so λ = (g(s) · θ) ◦ g = s · (θ ◦ g) ∈ S(θ ◦ g). It follows S∗ = S · θ = S · (θ ◦ g), hence
θ ◦ g = sgθ with sg ∈ U (S).

For g ∈ G let ν(g) = ∑
h′∈G νh′ (g)h′ with νh′ (g) ∈ S; then for s′ ∈ S and h ∈ G we have θ̂ · g(s′h) =

θ̂ (gs′h) = θ(g(s′))δgh,1 = ν(g) · θ̂ (s′h) = θ̂ (s′hν(g)) = ∑
h′∈G θ̂ (s′h(νh′ (g))hh′) = θ(s′h(νh−1 (g))). For

h 
= g−1 we get θ(s′h(νh−1 (g))) = 0 for all s′ , hence νh−1 (g) = 0 and for h = g−1 we get
θ(s′ g−1(νg(g))) = θ ◦ g(s′), so θ ◦ g = g−1(νg(g)) · θ . Define χ(g) by χ(g)θ = g · θ = θ ◦ g−1, then
χ(g) = g(νg−1 (g−1)) and ν(g) = g(χ(g−1))g . It is straightforward to see that χ ∈ Z 1(G, U (S)), hence

1 = χ(gg−1) = χ(g)g(χ(g−1)) and g(χ(g−1)) = χ(g)−1 = χ−1(g).
Clearly Sθ = Sθ ′ ⇐⇒ θ ′ = uθ with unit u ∈ U (S). Set χ ′ := χθ ′ , then it follows θ ′ ◦ g−1 = χ ′(g)θ ′ =

χ ′(g)uθ = (uθ) ◦ g−1 = g(u)(θ ◦ g−1) = g(u)χ(g)θ . Hence χ ′(g) = χ(g)g(u)u−1.
(v): Let ν−1(g) = ∑

h shh with sh ∈ S , then g = ∑
h ν(sh)ν(h) = ∑

h shχ
−1(h)h, so sh = 0 for all

h 
= g and sg = χ−1(g)−1 ∈ S . It follows that s ∈ Sν−1G ⇐⇒ ν−1(g)(s) = s ⇐⇒ χ(g)g(s) = s ⇐⇒
s ∈ Sχ−1 . �
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