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Letter to the Editor

When Translocation Dynamics Becomes Anomalous

Recent single molecule experiments probing the passage

process of a short single-stranded DNA (ssDNA) through

a membrane channel (translocation) allow us to measure the

passage time distribution. Building on a recent modeling

approach, (Lubensky and Nelson, 1999), which has been

demonstrated to be valid for chains of up to ’300

nucleotides and therefore well applies to the system we

have in mind, we discuss the consequences if the associated

dynamics is not of Markov origin, but if strong memory

effects prevail during the translocation. Motivation is drawn

from recent results indicating that the distribution of

translocation times is broader than predicted by simple

Markovian models based on Brownian motion.

The translocation of biomolecules through membrane

pores (channels) is one of the most vital processes within or

across biological cells, serving both delivery and signaling

purposes (Alberts et al., 1994). In (bio)chemistry, forced

translocation is used in selection/purification of larger

molecules, and in medicine, it plays an important role in

drug delivery. Whereas the translocation of short, inflexible

molecules is primarily determined by the properties of the

pore (energy-driven transport, sticking events within the

pore, etc.) and the difference of the chemical potential

between the cis and trans sides of the pore, semiflexible and

flexible molecules, in addition, have to cross an entropy

barrier while being (partially) confined within the channel

(Lubensky and Nelson, 1999; Muthukumar, 2001, 1999;

Slonkina and Kolomeisky, 2003; Sung and Park, 1996). In

the presence of a high external bias and for the rather short

chains used in typical experiments, the entropic slowdown as

well as the other interactions between chain and channel wall

become negligible, the passage being dominated by the

applied drift (Lubensky and Nelson, 1999). In what follows,

we develop a scenario according to which the translocation

dynamics is governed by slowly decaying memory effects,

leading to a different behavior in the distribution of passage

times which we believe can be measured experimentally.

Experimentally, the translocation of ssDNA can be ob-

served on a single molecular level, both voltage driven

(Akeson et al., 1999; Kasianowicz et al., 1996; Meller et al.,

2001) and in the absence of an external electric field (Bates

et al., 2003). In such single-molecule translocation assays,

fairly short chains are used, with some 60 bases correspond-

ing to ;12 persistence lengths, or six Kuhn lengths (Frank-

Kamenetskii, 1997). The width (’50 Å) of the membrane

amounts to about one persistence length (’40 Å) of the

ssDNA. A good measure for the translocation process is the

distribution of passage times, i.e., the statistics of time spans

the chain needs to cross from the entry (cis) side to the exit

(trans) side of the pore. In the results, one observes two (or

three) different timescales: the shortest corresponds to chains

that retract from the pore back to the cis side, before

completing the passage through the pore; the other (one or

two) correspond(s) to real passage times (if there are two

peaks, this can be explained by different orientations of the

chain in respect to the passage direction (Lubensky and

Nelson, 1999)).

In a recent experiment (Bates et al., 2003), it was noted

that the first passage time distribution contains nonnegligible

contributions over a large time range even in the presence of

a low driving voltage, a case in which a Markovian model

would predict exponentially fast decay. This may well

indicate that additional mechanisms, so far neglected, play

a role in the translocation dynamics, which might effect

long-tailed first passage time distributions, and therefore

imply a possible modeling by assuming a non-Markovian

behavior of the system. In this note, we construct a frame-

work in the limit of strong non-Markovian effects, taking

into account anomalous translocation dynamics through

long-tailed memory effects. Given the accuracy of the newly

reported experiments in Bates et al. (2003), it might well be

possible to resolve such effects in log-log analyses of the

presently available, or future data. We collect a number of

possible sources for such anomalous dynamics.

In the presence of a bias field and for chains withK300

nucleotides, the translocation dynamics in the Markov limit

has been shown to follow the Smoluchowski-type equation

(Lubensky and Nelson, 1999)
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where P(x, t) is the probability density function (pdf ) to find

the chain at position x at time t, and v and K are the associated

drift and diffusion constants, which may be determined from

more microscopic models (Lubensky and Nelson, 1999).

The translocation process without retraction from the pore

can thus be described by the first passage time distribution

F(t) from the point x ¼ L to x ¼ 0. In the presence of the

external drift, this leads to the result (see, for instance,

Redner (2001))

F1ðtÞ ¼ Lffiffiffiffiffiffiffiffiffiffiffiffi
4pKt
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Note the sharp exponential decay for longer passage times.

In this picture of Markov advection-diffusion, the mean first

passage time from the origin to an absorbing boundary a

distance L away is given by T1 [
R ‘
0
tF1ðtÞdt ¼ L=v, i.e., the

statistical mean corresponds exactly to a classical linear
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motion with the drift velocity v. Thus, the influence of the

diffusivity in this average becomes negligible and the motion

can be characterized by the mean hxi ¼ vt.
This picture dramatically changes in the presence of long-

tailed memory, effected by a waiting time distribution

cðtÞ; t
a

t
11a ; ð0\a\1Þ; (3)

according to which interruption times of the transport

process in a multiple trapping model are distributed (Metzler

and Klafter, 2000a), i.e., the transport process is being

stalled successively, and the sticking intervals follow Eq. 3.

In this situation, the relation for the mean gets modified to

hxi ¼ vat
a, where va is an appropriately generalized ve-

locity, and the corresponding generalization of Eq. 1 is the

fractional Fokker-Planck-Smoluchowski equation (Metzler

and Klafter, 2000a)
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with Ka ¼ Kva/v, and the fractional Riemann-Liouville

operator
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The waiting time in the expression Eq. 3 is scaled to the

internal timescale t (Metzler and Klafter, 2000). A typical

feature in this anomalous case is that the maximum of the pdf

due to the strong persistence of the initial condition (i.e., the

probability
R t

0
cðtÞdt of not moving), remains at the initial

location x ¼ 0, and the mean first passage time diverges:

Ta ¼ R ‘
0
FaðtÞt dt ! ‘. The associated first passage time

distribution in the presence of Eq. 3 can be determined from

the classical result Eq. 2. Recalling the scaling relation for

the pdf P(x, u) in Laplace space (Pðx; uÞ[ R ‘
0
Pðx; tÞ

expð�utÞdt) between the solutions of Eqs. 1 and 4 (Metzler

and Klafter, 2000), the following scaling holds between the

Markov survival probability S1ðtÞ[
R t

0
FðtÞdt and its non-

Markov analog,

SaðuÞ ¼ u
a�1

S1ðuaÞ; (5)

in rescaled variables. This scaling relation can be rewritten in

terms of the generalized Laplace transformation

SaðtÞ ¼
ð‘

0

ESðs; tÞS1ðsÞds; (6)

where the Laplace transform of the kernel ES(s, u) is given by
the modified one-sided Lévy distribution ESðs; uÞ ¼
ua�1 expð�suaÞ, and therefore (Metzler and Klafter, 2000)
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In particular, for a ¼ 1/2, one obtains ESðs; tÞ ¼ ðptÞ�1=2

expð�s2=ð4tÞÞ. The pronounced difference between the

Markov result and its non-Markov analog in the presence of

the long-tailed distribution Eq. 3 for the experimentally

measured quantity 1� S(t), i.e., the translocation probability,
is displayed in Fig. 1.

It is straightforward to show that there exists a similar

scaling relation for the first passage time density:

FaðuÞ ¼ F1ðuaÞ: (8)

From this relation, and the small-u expansion F1ðuÞ;
expð�Lu=½2v�Þ, one can by Tauberian theorems (Feller,

1968) deduce the longtime behavior of the first passage time

density (Scher and Montroll, 1975; Scher et al., 2002;

Barkai, 2001),

FaðtÞ ; t
�1�a

: (9)

Thus, in contrast to the Markov case, in the presence of

long-tailed waiting times, the density Fa itself exhibits a long

tail, and the mean first passage time diverges. In this case, in

analogy to Eqs. 5 and 6, the transformation from F1 to Fa,

FaðuÞ ¼
R ‘
0
expð�uatÞF1ðtÞdt, can be rewritten as FaðtÞ ¼R ‘

0
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For a ¼ 1/2, one infers EFðs; tÞ ¼ sð4pt3Þ�1=2
expð�s2=

ð4tÞÞ. Note that in the case discussed here no turnover

between two power laws, from ta�1 to t�a�1 results, in con-

trast to the properties of the cases discussed in Scher and

Montroll (1975) and Scher et al. (2002). In Fig. 2, we depict

the functional behavior of the first passage time distribution

for an external bias, in comparison to the Markov case,

revealing the distinct inverse power-law tails in the presence

of Eq. 3.

FIGURE 1 Translocation probability 1 � S(t) for long-tailed waiting time

with index a ¼ 1/2 (solid line), in comparison to the Markov counterpart

(dashed line) on a log-lin plot. In the inset (lin-lin plot), the much slower

increase of 1 � S(t) in the non-Markovian result is even more distinct. In the

plot, the dimensionless quantities, L ¼ 5, and v ¼ 1 were chosen.
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Conversely, in the absence of a drift, the reflecting bound-

ary at x¼ 0 cannot be a priori neglected (the retraction of the

chain toward the cis side is no longer suppressed by the bias;
compare Lubensky and Nelson, (1999)), and the correspond-

ing first passage time distribution follows from the eigen-

value problem, such that the survival probability in the

anomalous case is given by a sum overMittag-Leffler decays:

SðtÞ ¼ 2
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ð�1Þm
2m1 1

Ea �ð2m1 1Þ2p2

4L
2 t

a

� �
;

which in the Markov limit a ¼ 1 reduce to the exponential

function, and therefore a considerably faster decay (Metzler

and Klafter, 2000b)). The Mittag-Leffler function EaðzÞ ¼
+‘

0
zn=Gð11anÞ is the ‘‘natural generalization’’ of the ex-

ponential function ez [ E1(z). Ea(�cta) interpolates between
an initial stretched exponential and a final inverse power

law ;t�a (Metzler and Klafter, 2000).

In particular, the longtime behavior of the first passage

distribution F(t) ; t�1�a ensues, i.e., the asymptotic be-

havior is analogous to the one derived from the case with

drift (in contrast to the drift-free case without the reflecting

barrier, in which F(t) ; t�a/2�1) (Metzler and Klafter, 2000,

2000b; Barkai, 2001).

In both cases with and without drift, the first passage time

distributions in the generalized case with long-tailed memory

based on the waiting time form (Eq. 3), the corresponding

F(t) exhibits a distinct maximum, its functional form being

rather similar to the corresponding Markov limit, when

viewed on a linear scale. On a double-logarithmic scale, the

power law F(t) ; t�1�a differs from the much faster,

exponential decay in the Markov limit. In particular, for both

cases drift-free and with drift, the same power-law behavior

is expected, an additional consistency check in experiments.

The latter statement, however, only holds if the mechanism

affecting the broad form (Eq. 3), and the value of a in

particular, is not affected by the magnitude of the external

field. There are indications from the recent studies (Bates

et al., 2003) that this may actually be the case: if the external

drift is increased, the stalling events become less pro-

nounced. This can influence a, but it could also introduce

a cutoff at some time tc in the waiting time distribution c(t),
and therefore cause a system response that is closer to the

Markov case than in the absence of the drift. We stress that in

the presence of long-tailed first passage time distributions,

the most probable passage time corresponding to the value at

which F(t) peaks, becomes a rather meaningless quantity, as

the mean first passage time diverges. We also note that the fit

in reference Bates et al. (2003) of the passage time dis-

tribution by two exponentials with significantly different

timescales in our approach becomes replaced by a continuum

distribution of relaxation times.

Let us now list a number of potential sources for the

waiting time distribution c(t):

i. During the passage, sticking events caused by pore-

chain interactions may occur. As these events would be

expected to be correlated with the cooperative motion of

the pore molecules, and possibly the translocating chain

itself, a good guess would be that this causes power laws

of the form Eq. 3, e.g., as observed in ligand rebinding

in proteins (Glöckle and Nonnenmacher, 1995).

ii. It is known from patch clamp measurements on single

fast chloride channels (Blatz and Magleby, 1986), that

ion channels open and close repeatedly. For the distri-

bution g(t) of duration times of such channel gating

events, it was typically found that it follows a modulated

power-law trend, g(t) ¼ A(t)t�b, b [ 0, where the

modulation factor A can follow logarithmic oscillations

before eventually being cut off by an exponential (Non-

nenmacher and Nonnenmacher, 1989), or be constant

(Millhauser et al., 1988). Within a finite time window,

both are indistinguishable. It is therefore fair to say that

gating events in a given time window in single ion

channels follow power-law statistics, and typical values

for b are ;1.6. The distribution g translates into our

waiting time distribution c(t) from Eq. 3 with a¼ b� 1.

iii. For longer chains, Chuang et al. (2001) argued that the

diffusion of the chain becomes anomalous. Naively

viewing the translocation as a waiting time process

during which the monomers in the pore channel have to

wait until they are given way by the vicinal monomers,

and so on, creating a non-Markov process which, on

some coarse-grained level, may well be described by

Eq. 3; compare also Douglas (2000).

This list of scenarios is not meant to be complete.

However, one might suspect that the sticking scenario (i) is

most liable to be affected by the strength of the external bias,

producing an effect similar to the recent experiments reported

by Bates et al. (2003), in which the dynamics exhibits the

abovementioned turnover from broad to Brownian motion-

type statistics on increase of the external bias field.

FIGURE 2 First passage time density Fa(t) for a¼ 1/2 (solid line: v ¼ 10

(upper curve) and v ¼ 5) and Markov case (dashed line: v ¼ 10). Note the

higher peak in the Markov case, indicating that the tail falls off faster than in

the case with long-tailed waiting times. The inset shows the double-

logarithmic plot with the�3/2 power-law asymptotics, for v¼ 10, 5, and 2.5.
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In some translocation experiments, apart from the sharp

initial peak in the first passage time density stemming from

immediately retracting chains back to the cis side, there occurs
another hump similar to the one of the translocated chains

discussed above. It has been argued that this is due to the

existence of second characteristic passage time, depending on

the orientation of the chain to the membrane channel in

respect to the cis-trans direction (‘‘head or tail first’’)

(Lubensky and Nelson, 1999). The same effect is expected

in the case with long-tailed statistics following Eq. 3.

However, it might well be that the associated power-law

exponent a is different for the two orientations, as the nature

of the effective interactions giving rise to the long-tailed

waiting times may depend on this head-tail difference.

One might speculate about the biological relevance of

anomalous translocation dynamics. On the one hand, it

might be the outcome of a tradeoff between lack of

specificity, if the passage is too free and a large variety of

molecules could pass the membrane, and too high suppres-

sion, which would require active transport through the pore,

implying a fairly large energy cost for long molecules. On

the other hand, it might be advantageous to have a large

variation in the arrival times of translocated molecules on the

trans side (and thereby very efficient retention of untrans-

located molecules on the cis side).
We have discussed possible changes arising in the

distribution of first passage times in biopolymer trans-

location through a membrane channel, and listed a number of

reasons that might give rise to such anomalous behavior. It

should be possible to determine the quantity F(t) from

experiments to sufficient accuracy, to be able to distinguish

the normal (Brownian) dynamics result from its anomalous

counterpart in both the presence and absence of an external

drift. The large qualitative difference between exponential

and power-law forms should be easily discernible on a

double-logarithmic scale. It should, however, be stressed that

the onset of the power-law trend depends on the strength of

the drift, and might occur for fairly large times if the drift is

weak. We finally mention that the proposed long-tailed

effects may also pertain in other systems, like during the

ejection of the DNA of bacteriophages from the capsid

through a long pipe-like channel into the host cell (Alberts

et al., 1994; Muthukumar, 2001).
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