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1. INTRODUCTION 

Let 
A,(t) 24’ + A&) u = B(t) u (1.1) 

be a system of a matrix differential equation on the real line, R, where u is an 
n-dimensional column vector function of t, ’ = d/dt and X belongs to the 
set C of complex numbers. We assume that A, , A, , B are II x 1z continuous 
complex-valued matrix function of 1 E R and satisfies the following condi- 
tions: (i) A, is a continuously differentiable function of t with each A,(t) 
being nonsingular, and B(t) + 0; (ii) The system (1.1) is self-adjoint in that 
A,* = -A,, (A,*)’ = ---A, + Ao*, B = B*; (iii) The system is definite, 
i.e., B is nonnegative definite. 

We remark here that instead of taking the system (1.1) satisfying (i)-(iii), 
we may as well take a system (1.1) which is symmetrizable under a nonsingular 
transformation u(t) = C(t) v(t). However, in this case the system is equiv- 
alent to a self-adjoint system [15, p. 4441. 

In Section 2 we shall find a lower bound for the number of linearly inde- 
pendent “integrable square” solutions of (1.1) and a relationship among the 
maximum numbers of “integrable square” solutions of (1.1) corresponding to 
the real line, the left-half line, and the right-half line (Theorem 2.1). The 
problem of finding lower bounds for the number of integrable square solu- 
tions of self-adjoint nth order differential operators has been considered by 
Glazman [6], Everitt [5], Kimura and Takahasi [lo], and many others. The 
similar problem for the self-adjoint system (1.1) in the case when A, is a 
constant matrix has been considered by Atkinson [l]. He uses the technique 
of matrix theories. Here we use the technique of algebraic geometry developed 
by Kadaira [ Ill. 
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attention to this subject, and Professor R. R. D. Kemp of Queen’s University for his 
valuable criticism and encouragement. 
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In Section 3 we assume an additional condition, a normality condition. This 
section is based on a short communication by author [12]. In this section we 
develop basic operators and find explicitly all possible generalized resolvents 
for the operators. These resolvents correspond to all possible self-adjoint 
extensions of the operators in larger Hilbert spaces. Here we do not assume 
that the operators have equal deficiency indices. The second part of Theorem 
2.1 is reproved using another simple method, 

Two-point boundary value problems on finite intervals have been con- 
sidered by Reid [ 151. Singular boundary value problems have been considered 
by Atkinson [l] in the case when A, is a constant matrix, by Brauer [3] in the 
case when the associated differential operators have equal deficiency indices, 
by Berman [2] in the case when B is the identity matrix, and by Kim [9] 
in the case when the order of matrices are an even integer. 

2. INTEGRABLE SQUARE SOLUTIONS 

A solution u(t, h) of (1.1) is said to be “integrable square” if 
sTW u*(t, X) B(t) u(t, h) dt < co. Let c be an arbitrary, but a fixed point in [w 
throughout in this paper, and U(t, X) the fundamental matrix solution of 
(1.1) with U(c, A) = I,,, where Ik denote the k x k identity matrix. Then any 
solution (1.1) has the form U(t, h) f f or some 71 X 1 column vect0r.f. Suppose 
ui(t, &) is a solution of (1.1) for X = hi . Then 

@I - L) lab u,*(t, h) B(t) ul(t, 4) dt 

= %*(h A,) 44 u,(h 4) - %*@, h) 44 %(a, A,) 
(2-l) 

for every a, b with ---co < a < b < co. Indeed, defining (U 1 ZJ) = J’L o*Bu dt, 

and 
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For 0 # f E @” we define 

T(fi t, A) = f *U*(t, 4 4(t) qt, h)f /(A - 4 (2.2) 

for Im X # 0. Then in view of (2.1) 

-qf; a, A) + T(f; b, A) = Jbf*U*(t, A) B(t) U(t, h)f dt (2.3) 
n 

for a < b. Since A,(t) is skew-hermitian for each t, A,(t)(h - ;\) is hermitian. 
Thus r(f; t, A) is a hermitian form off E P. Since A,(t)/i is a nonsingular 
hermitian matrix which is continuous in t, the maximum number d of 
positive eigenvalues of A,(t)/ i is invariant for each t. Hence the nonsingularity 
of A,(t)/i yields that 12 - d is the maximum number of negative eigenvalues 
of A,(t)/i. Thus, using properties of hermitian matrices [13, p. 841 we have 

LEMMA 2.1. There exists a n x n complex matrix function M(t) of t such 
that 

M*(t) 4(t) M(t) = i (; -fne,, (2.4) 

for every t E R. 

For an integer k let ‘$V denote the K-dimensional complex projective space 
of equivalence classes ( f) with f E P. Following Kodaira [I I], for Im A # 0, 
we define: 

‘illI-, = I(f) E $P-l: j-’ f *U*(t, A) B(t) U(t, A)fdt < a~! , 
--m 

%&Z,(h) = l(f) E ip? Irnf *U*(t, A) B(t) U(t, X)fdt < w/ , 
c 

!@3+(t, A) = {(f) E VW qf; t, h) > O} 

y-(t, A) = {(f) E cp+ qfi t, A) < 0): 

yyt, A) = {(f) E y-1: qf; t, A) = O}, 

f-4~) = n Is-e, 4, fee@) = n Y+(t, A). 
t t 

For a subset G of vn--l, the closure of 6 in the strong topology will be denoted 
by [G]. We say that 6 C Cp’+l is a linear subspace of dimension r if there 
exists r + 1 linearly independent vectors fi ,...,f,.+r in @n such that 6 is the 
set of the form (2:” olifi) where the c~i are complex numbers not all zero. 
By the (-1)-dimensional linear subspace of ‘$P-* we shall mean the empty 
set, 0. First we have 
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LEMMA 2.2. Let Im X > 0. Then for each t E IF!, @+(t, A)], [‘$-(t, A)] 
contain (d - 1)-dimensional linear subspaces of Cpn-l. On the other hand, 
[!$I-(t, A] and ‘@+(t, A) contain (n - d - 1)-d imensional linear subspaces of ‘$V-l. 

Proof. We shall prove the result for [v+(t, A)] and [!J-(t, A)] only as the 
proof for the rest of the lemma is similar. Let Im X > 0 and let x be any 
point. Let Y,(t, A) be the fundamental matrix of (1.1) with the initial condition 
at t = x given by YE(x, A) = M( x w ) h ere M(x) satisfies (2.4) for t = x. Then, 
since Y,(t, A) = U(t, A) Yz(c, A), we have 

r(fi x, A) = (f I b, I* - f I b, lz)/2 Im A 
1 d-Cl 

(2.5) 

where the b, is the kth row of the n x 1 column vector Y;‘(c, A) f. The 
equation (2.5) shows that ‘$3+(x, A) (resp. !#-(x, A)) contains d (resp. n - d) 
linearly independent elements. However, it is easily seen that [‘$+(t, A)] = 
V+(t, 4 u V”(t, A), [‘W, @I = 33-(t, 4 u ‘PO@, A). Thus [)P+(x, 41 and 
[T-(x, A)] contain (d - l)- and (n - d - 1)-d imensional linear subspaces 
of !jP-l, respectively. 

LEMMA 2.3. Let Im h > 0. Then I-,(X) and f,(h) contain (d - l)- 
dimensional linear subspaces of ‘@n-1. The sets f-,(h) and f,JX) contain 
(n - d - l)-dimensional linear subspaces of $V-l. 

Proof. We shall prove our assertion for f-,(X) and f,(h) as the proof for 
the rest is similar. We shall consider the following three cases: 

Case 1. d=Oorn. 

Case 2. d= 1. 

Case 3. 2<d<n-1. 

Case 1. If d = 0, then, in view of (2.5), [‘$3+(x, A)] = [‘p-(x, A)] = 4, and 
[‘p+(x, A)] = [V-(x, q = P-l f or each x E R. Since it is easily seen that 

for I EC with Im 1 # 0, we have f,(h) = I-,(X) = 4 and f-,(h) = 
f4(X) = qn-l. Similarly, when d = n, r-,(X) = f,(h) = (pm--l, f-,(A) = 
fug) = 4. 

Case 2. In this case, by Lemma 2.2, [‘@+(t, A)] and [p-(t, A)] are not 
void. Since [p+(t, A)] and [v-(t, A)] are closed subsets of Cpm-l which is 
compact in the strong topology, they are also compact subsets of ‘$+l. 
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But, in view of (2.3), {[y+(t, X)]: t E W} and {[‘$-(t, A)]: t E R} are nested 
families and hence they have nonempty intersections, i.e., f-,(A) # 4, 
f&q f +. 

Case 3. Let ‘!N(d - 1) denote the set of (d - I)-dimensional linear 
subspaces of ‘$P-l, and let %(d - 1; t, 1) be the set of ME ‘%(d - 1) such 
that MC [‘p-(t, A)]. Then {NE ‘%(d - 1): NC f+(x)} = ntW(d- 1; t, A). 
Let N = (i) and define a map l7z %(d - 1) + ‘$Y’-r by letting n(N) be the 
Grassmann coordinate of Jy: It is known that n is one-to-one and the range 
set n(%(d - 1) is a projective variety (or Grassmann variety) in VP”-’ [8, 
Chap. VII, Sects. 6-71. Hence 17(‘%(d - 1)) is a compact subset of vN-l in 
the natural topology [18, Chap. VII, Sects. 3-41. Since ‘%(d - 1; t, A) is a 
closed subset of %(d - 1) in the natural topology, it is a compact subset 
(cf. [ll, p. 5091). Since 1 < d - 1 by assumption, each %(d - 1; t, 1) is not 
empty. We now consider %(d - 1) as a topological space with the topology 
being induced by n. Hence %(d - 1) is a compact space and ‘iTZ(d - 1, t, A) 
is a nonempty compact subset of %(d - 1). Since [‘$I-(t, A)] decreases as t 
increases, so does %(d - 1; t, A) as t decreases. Therefore {W(d - 1; t, A): 
t E R} is a nested family of nonempty compact subsets of %(d - I), and 
hence it has a nonempty intersection. Hence f-,& contains a (d - I)- 
dimensional linear subspace of Cp+l. Similarly we can show that f+,(h) 
contains a (d - I)-dimensional linear subspace of Cp’+r. Combining Cases 
1-3, we see that f-,JX) and f+,(h) contain (d - I)-dimensional linear 
subspaces of pn-1. This completes the proof. 

Let us denote by a(/\) the maximum number of linearly independent 
solutions U(X, X) of (1.1) such that sTm U*BU dt < co. Let us denote by p(h) 
the maximum number of linearly independent solutions u(t, h) of (1.1) such 
that sz u*Bu dt < co. Finally y(h) will denote the maximum number of 
linearly independent solutions u(t, h) of (1 .l) such that j--“m u*Bu dt < CO. 
Then, since f-,(h) C ‘%X+,(h), f,(h) C!K,(A), and f+,(h) n f,(X) = 4, 
Lemma 2.3 yields the following. 

THEOREM 2.1. Let Im h > 0. Then 

(I) a(h) 3 4 B@) > 4 4x) 3 n - 4 B(4 2 n - d. 

(II) 4) + B(4 = r(4 + n. 

The last equality is also true when h is replaced by A. 

Remark 2.1. Theorem 2.1 remains true if --CD or co is replaced by a 
regular point. The second part of the theorem will be proved again in Section 
3 using a different method. Atkinson [l] proved (I), using a matrix technique, 
in the special case when A, is a constant matrix (see [l, Sect. 9.1 I]). The 
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relation (II) is also true when the differential operator under consideration is a 
formally self-adjoint nth order differential operator with complex coefficients. 
This has been proved by Kimura and Takahasi [lo] using the similar tech- 
nique used in this section. (I) of Theorem 2.1 has been proved by Everitt [5] 
in the case when the differential operators under consideration are formally 
self-adjoint nth order differential operators with complex coefficients. 

3. GENERALIZED RESOLVENTS 

In this section we assume the normality condition, i.e., if A,u’ $ A,u = 0 
and Bzl = 0 on a subinterval of R, then u becomes identically zero on that 
interval. Let %,,l(R) d enote the set of continuously differentiable n x 1 
column vector functions with compact support on R. For u(t), z(t) ~%,,l(lR) 
we set (u / w) = JzW u*(t) B(t) u(t) dt. Then %,,(R) is an inner product space 
and its Hilbert space completion, sj, is the set of all n x 1 column vector 
functions u(t) which are measurable and s-“m u*(t) B(t) u(t) dt < cc [3, 
p. 191. Let us denote by D* the set of ZJ ~4j such that u is locally absolutely 
continuous on R, and there exists a v E!?J such that 

A,(t) u’ + A,(t) 24 = B(t) w (3.1) 

for almost all t E R. It is shown that such o exists uniquely [3]. It is easy to 
see that D* is a vector subspace of 5. Let T* be the operator in !$ with a 
domain D*, and T*u = v for u E D* where v satisfies (3.1). For u, v E D* 
we set (u 1 V) = (T*u ) V) - (u ( T*v), which again can be written 

(u ) v) = (?l*A,u) (00) - (v*A,u) (-00) (3.2) 

using a method similar to the one used to derive (2.1). Let D denote the 
set of UE D* such that (u 1 w) = 0 for every v E D*. Then, since 
Vel(R) C D C D*, T C T*. The following lemma is a direct consequence of 
the basic solvability theorem for two-point boundary problems on a compact 
interval (cf. [16, Theorem 6.2, p. 1351): 

LEMMA 3.1. Let--co<a<b<coandh~@,v~$j.LetA,u’+A,u= 
XBu + Bv, u(a) = 0. Then u(b) = 0 if and only if jz w*Bv dt = 0 for every 
w with A,w’ + A,w = hBw, a < t < b. 

Using Lemma 3.1 and the exact same method as in [6, Sect. 41 we have 

THEOREM 3.1. The operator T is symmetric, closed and T* is its adj,int. 
Moreover T = T**. 
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We shall call T(T*) the minimal symmetric (maximal) operator, respect- 
ively, on the interval (---co, 00). The following theorem has been proved in 
Section 2. However we shall give an elementary proof. 

THEOREM 3.2. Let Im h # 0. Then 

Proof. Let T- and T+ be the minimal symmetric operators on the interval 
(-co, c] and [c, co), respectively. D( T,) denotes the set of u 4 D with 
u E D( TJ, v E D( T+) where 

(u i v) (t) = u(t) for ---co < t < c, 

= v(t) forc<t<cO, 

= w + 7-JWY2 for t = c. 

Then, since c is a regular point for T- and T+ , we see that u E D(T,) iff 
u E D and U(C) = 0. Let T, be an operator in 5 with domain D(T,), and 
T,(u -j- v) = T-u 4 T+v. It is easily seen that T, is a closed symmetric 
operator in $ with deficiency indices {ar(Z) + /3(Z), a(Z) + p(Z)} (Im I > 0), 
and T, C T. Since {r(Z), y(Z)} (Im Z > 0) are the deficiency indices of T, 
there exists a nonnegative integer P such that y(Z) + P = or(Z) + /3(Z) and 
dim D/D(T,) = p for every Z with Im Z # 0 (cf. [14, p. 351). To complete the 
proof, we must show that p = 71. Let uj(t, A) (1 <j < n) be the jth column 
vector of U(t, A) where U(t, A) is defined in Section 2. Let --co < a < c < 
b < co. Let Gi(t) (1 ,< j < n) be a vector function in D with compact support 
on R such that i&(t) = uj(t, A) for a < t < b. We shall show that the n 
cosets Ej + D( T,) form a basis for D/D( T,). Suppose crz1, + **. + c& E D( T,) 
for some complex numbers cj . Then cru”r(c) + *a. + c,&(c) = ciui(c, A) + 
. . . + c,u,(c, A) = 0, so that the cj are zero since U(c, A) = I,, , proving that 
4, + D(T,),..., a, + D(T,) are linearly independent. Take any vector u E D. 
Then u(c) - b,(c) &(c) - .*. - b,(c) ii,(c) = u(c) - b,(c) UI(C, A) - *.. - 
b,(c) u,(c, A) = 0 where the b,(c) is thejth row of u(c). Hence u - (6,(c) ii, + 
*es + b,(c) tJ E D(T,). Therefore the Eij + D(T,) span D/D(T,). Con- 
sequently D/D(T,) = n. 

The Theorem 3.1 will play an important role to compute all possible 
generalized resolvents of T. Let 2l = {A(A): Im X > 0) be a family of con- 
traction operator A(h) in !?J taking (5-i) into Q!(i) such that A(h) is analytic 
for Im X < 0 where 65-i) is the eigenspace of T* corresponding to --i and 
e(i) is the one corresponding to +i. 

For A(h) E aI, set 

D(h) = D + (I - A(h)) C.E(--i) 
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where I denote the identity operator on 6(-i). Define an operator TAIA) in fi 
with domain D(X) by T,(,)u = T*u for u E D(X). According to Straus [17], 
the operator R: 

W) = VA(A) - 4-l forImX > 0, 

= Pm* for Im h < 0, 
(3.3) 

is a generalized resolvent of T, and every generalized resolvent for T arises 
in this way from ‘$1. We note that AR(h) = D(TA(I;,)* for Im h < 0, and 
AR(h) = D(T,(,)) for Im X > 0, where for an operator IV, D(w) and d(W) 
denote the domain and the range of W, respectively. By definition dim t%(h) 
equals r(h) for Im h # 0. Let z+(t, i) ,..., ~~o)(t, i) be an orthonormal vector 
functions for 6(i), and let ~~(t, -i),..., qei)(t, i) be one for (5(-i). For 
Im X # 0, define y(h) vector functions vi(t, h) (1 < j < y(X)) in $5 by 
vj(t, A) = uj(t, i) - A(X) uj(t, i) f or Im h > 0, and vj(t, h) = uj(t, -i) - 
A(X) uj(t, -i) for Im h < 0, where, for Im h < 0, A(h) denotes (A(X))*. First 
we have 

THEOREM 3.3. Let R be an arbitrary generalized resolvent of T de$ned in 
(3.3). Then 

AR(X) = {u E D*: (u ) v,(A)) = 0, 1 <j < y(h)} 

for Im h # 0. 

The proof of this theorem can be carried out in the exact same way as in 
[4]. Thus we omit the proof. 

The following lemma is an immediate consequence of basic properties of 
linearly independent sets of elements in a linear space and Theorem 3.1 
(cf. [14, p. 911): 

LEMMA 3.2. Let Im X # 0. We can choose a fundamental matrix Y(t, A) 
of (1 .I) such that its jth column ‘uj(t, A) (1 < j < n) satisfies: 

s m ?P,*Bul, dt < 03 for 1 <j<y(4; 
-03 

I 
’ Yj”BYj dt < 00 for y(h) c j < 4% --m 

I m Ys*BYj dt < 03 for a(h) < j < n. 
e 

Remark. If one of --00 and co is replaced by a regular point, then above 
lemma is a direct consequence of basic properties of linearly independent 
solutions. However, in our case we need Theorem 3.1 to conclude our 
assertion. 
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Throughout this paper Y(u(t, A) (Im h # 0) will denote a fundamental 
matrix of (1.1) h w ose column vectors Yj(t, A) (I <j < n) satisfy the condi- 
tion in Lemma 3.2, and let R(h) be an arbitrary, but fixed generalized resolvent 
of T defined in (3.3). We shall compute R(h) (Im X # 0). Let u be an arbitrary 
vector function in 9 with compact support on (-03, co). Then, since 
(T* - A) R(A) u = u, we see that A,(R(A) u)’ + A,(R(h) U) = hB(R(h) U) + 
B(R(A) u). Hence, using the method of variation of parameters (cf. also [7, 
P. 4811, 

where the aj are complex constants depending on u and &(t, A) is the n x 1 
column vector function such that the ith row of $i(t, A) det Y(t, A) is the 
cofactor of the (i, j)-element of det Y(t, A). Since R(X) u E 6, using the defini- 
tion for a(A), /3(h), y(A) and th e 1 inearly independence of solutions Yj , the 
(3.4) can be written again 

(R(h) 24) (x) = 2 UjYj(X, A) + Srn I&(x, t, A) u(t) fit, (3.5) 
1 -02 

wlrge K,,(x, t, A) is a n x n matrix function of x, t, X which is given by 

Ix ,,(Aj+l Yj(x, A) &*(t, A) A;‘(t) B(t) for x < t and 

v(A) 

for x > t. R(A) u belongs to D(X) and so by Theorem 3.3, we 
have (R(h) II / v,(A)) = 0 for j = 1, 2,..., r(h). Let cl@; y(A)) denote the 
determinant of the y(X) x y(X) matrix ((Yi(A) / q(X))) where i and j denote 
the ith row and jth column respectively. Then, since A(A; y(h) f 0 (cf. [4, 
p. 3851) using the similar method used in Naimark [14, p. 911, the form (3.5) 
has the form: 

where 

(qv) u = j-1 qx, t, A) u(t) dt (3.6) 

Y(A) 
I@, t, A) = &I@, t, A) + 1 Yk(X, A) f&*(t, 4 

1 

and 
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with A,j(h; y(X) denoting the cofactor of (j, k)-element of A(A; y(h)). We 
have seen that (3.6) hold for every u in Fj with compact support on (-cc, 00). 
This form is not true for an arbitrary u in !?J as we will see later. To see this, 
first we prove the following. 

LEMMA 3.3. For Im X # 0. 

(I) B(x) K(x, t, A) = K*(t, X, X) B(t) for x # t; 
(II) the column vectors of K(x, t, A) belong to !ij us a function of x; 

(III) for each x fixed and for every u E $j, the entries of the n x 1 column 
vector B(x) K(x, t, A) u(t) are absolutely integrable on (-03, co). 

Proof. Since R*(X) = R(X), (R(X) u 1 a) = (u / R(X) v) for every 24, v f 5. 
This relation in view of (3.6) yields (I). (II) is an immediate consequence of 
the definition of K(x, t, A). We now prove (III). Let kj(t, x, A) denote the 
jth column vector of K(t, x, A). Then kj*(t, x, 1) B(t) u(t) is the jth column 
vector of K*(t, x, A) B(t) u(t). But by (II) the kj(t, x, A) belongs to !CJ as a 
function of t. Hence, for u E!$ ki*(t, x, A) B(t) u(t) is absolutely integrable 
on (-co, co). Thus together with (I) we have (III). This completes the proof. 

We now have the following. 

THEOREM 3.4. Let Im h # 0. Then 

B(x) (R(X) u) (x) = Irn B(x) K(x, t, A) u(t) dt 
-a 

for every UE!$ 

Proof. Take any u E $3. There exists a sequence (u,) in sl, with compact 
support on (-co, co) converging to u in 5. Since R(X) is a bounded operator, 
for every v E !+j with compact support on R, 

(R(h) u / v) = lim(R(X) u, 1 V) = lim j-1 v*(x) B(x) (R(h) u,) (x) dx 

= lim m 
ss 

m v*(x) B(x) K(x, t, A) u,(t) dt dx. 
--m -cc 

By (III) of Lemma 3.3, for each x fixed, B(x) K(x, t, A) u(t) is absolutely 
integrable on (-co, co). Hence 

J-t v*(x) B(X) (R(X) u) (x) dx = j-“, v*(x) 1-1 B(x) W% t, A) @) dt dX, 

from which the result follows. 
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According to Theorem 2.1, /I(h) + /3(x) > n for Im X # 0. We shall give a 
necessary and sufficient condition that the equality actually holds: 

THEOREM 3.5. The following are equivalent: 

(I) dim D(T+*)/D(T+) = n. 
(II) j?(i) + /3(-i) = n. 

(III) (u*(t) A,(t) u(t)) (co) = 0 for every u E D( T+*). 

Proof. That (I) is equivalent to (II) is an immediate consequence of the 
decomposition theorem which states that D( T+*) = D( T+) + Q!(i) + 6(-i). 
Let us construct n vector functions ul(t),..., u,(t) in D(T+*) such that 
each ui has compact support on [0, co) and the ith row of Z+(C) is 
Sij (6 = Kronecker delta). Since c is a regular point for T+ , we can see easily 
that the ui are linearly independent Mod D(T+). Suppose (II) holds. Then 
~1 + W,),..., u, + D(T+) are a basis for D( T+*)/D( T+). Hence any vector 
v E D(T+*) is a linear combination of the uj plus some vector function in 
D(T+). Therefore (v*(t) A,(t) v(t)) (03) = 0 for every v E D(T+*). Hence 
(II) implies (III). Suppose (III) holds. First we define two spaces D, and D, 
as follows: u E D, if and only if u E D(T+*) and u(c) = 0; u E D, if and only 
if (u*(t) A,(t) u(t)) (co) = 0 f or every u E D(T+*). Then dim D(T+*)/DC + 
dim D(T+)/D, = dim D(T+*)/D(T+) (cf. [ll, p. 5201). By our assumption 
W+) =D,, so that dim D(T+)/D, = 0. We note that the uj constructed 
above are in D(T+) and linearly independent Mod D, . Let v be arbitrary 
vector function in D(T+*). Then v(c) - (apI + ... + a,u,(c)) E D, 
where ai is the ith row of v(c). This shows that the n elements ui + D, ,..., 
u, + DC span W”+W%. Therefore dim D(T+)/D, = n. Consequently 
dim D(T+*)/D(T+) = 12, and so we have proved that (III) implies (II). This 
completes the proof. 

Similar consideration discussed above together with Theorem 2.1 can lead 
us the following 

COROLLARY 3.1. y(i) = y(-i) = 0 if and o&y if 

(u”(t) 4(t) v(t)> (-=)I = (u*(t) 4(t) VW (co) = 0 

for every u, v E D(T+*). 
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