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1. Introduction

Let A be an artin algebra. It is shown in [4] that the module category mbés prepro-
jective and preinjective partitions and thatis of finite representation type if and only if
either all indecomposabla-modules are preprojective or all indecomposabtenodules
are preinjective. Further, in [5] it is proved that for a finite-dimensional algebra over an
infinite perfect field of infinite representation type there always exists an indecomposable
module which is neither preprojective nor preinjective. More generally, Skowronski and
Smalg [16] proved thatt is of finite representation type if and only if eagimodule is
either preprojective or preinjective.

In the study of a quasi-hereditary algebtainstead of the complete module category
modA, one is mainly interested in th&-good module categor§(A) which consists of
A-modules which have a filtration by standard modules. It is proved by Ringel [14] that
F(4) is functorially finite in modA. Thus, from [3] it follows that#(A) has both pre-
projective and preinjective partitions. The main purpose of the present paper is to study
the finiteness o (A) in terms of preprojective and preinjective partitionsffA). More
precisely, by defining the degree of a relative irreducible map(a) in a similar way as
in [10], we prove that, ifA is quasi-hereditary and each modulefiiA) is either prepro-
jective or preinjective, thetF(A) does not satisfy the second Brauer—Thrall conjecture.
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In view of Ringel’'s work [13], this implies particularly that, il is a finite-dimensional
quasi-hereditary algebra over an infinite field, thE) is finite, that is, up to isomor-
phism, there are only finitely many indecomposable module&5(in), if and only if each
module inF(A) is either preprojective or preinjective.

2. Preprojective and preinjective partitions

Let A be an artin algebra over a commutative artin riigBy modA we denote the
category of finitely generated left-modules and by ind a full subcategory of mod
of the chosen representatives of the isomorphism class of the indecompdsatadules.
Similarly, for a subcategor¢ of modA, by indC we denote a full subcategory of the
chosen representatives of the isomorphism class of the indecomposable modules in

Definition 2.1. The preprojective partition of indis a partitionP;, i € NU {oco}, of objects
of indC satisfying the following properties:

(i) P is finite for each’ < oo,

(ii) setting?' =J;_; P, fori e NU {oo}‘ and P; = [[xp, X fori € N, we have that
for eachi < co and eachX €indC \ P', the induced map Hot®;, X) ® P, —> X is
surjective, and

(iiiy eachP; is minimal with the property in (ii).

The preinjective partitior?;, i € N U {oo}, is defined dually. The modules > are
called preprojective and thoseIi¥° are called preinjective. In [4, Theorems 1.2, 1.3] itis
proved that both preprojective and preinjective partitions are unique.

In this paper, we always assume that is quasi-hereditary with a fixed order-
ing E(1),..., E(n) of the isomorphism classes of the simpfemodules and where
A, ..., A(n) are the corresponding standard modules, B, ..., T (n) are the char-
acteristic modules (see [14]). Let(A) be the A-good module category oft which
by definition consists of modules havinggood filtration. It is proved in [14] that
F(4) is functorially finite (i.e., everyA-module has a rightF(A)-approximation and
a left F(A)-approximation). So it follows from [3, Theorem 3.3] th&i(A) admits
both preprojective and preinjective partitions, denotedHpyP1, ..., Py, ..., P and
70,21, ..., Ly, ..., Iso, respectively. From the definition, we have the following propo-
sition.

Proposition 2.1. Py consists of all indecomposable projective modules, @pdccon-
sists of all indecomposablExt-injective modules, that is, the characteristic modules
T,...,Tn).

For two modulesA, B in F(A), we define

Homu (A, B) =Homy, (A, B),
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Na(A, B)={f € Homa(A, B) | for every moduleX € F(A), g: X — A,
h:B— X, hfg is not an isomorphistn

(A, B) = | f e Hom (A, B) | there existX € F(A), g € %a(4, X),
andh e %t 1(X, B) such thatf = hg},

wheren > 1. Thus, we get a chain
Homa(A, B) D Ra(A, B)D2RA(A,B)2--- DR (A,B)D---.

Given A-modulesA, B in F(A), a morphismf : A — B is to said to be relative irre-
ducible inF(A) if f is neither a split monomorphism nor a split epimorphism, and for any
factorization f = f2f1 in F(A), then eitherf; is a split monomorphism, of> is a split
epimorphism. In casd, B are indecomposable, we get a bimodule of relative irreducible
maps Irie4) (A, B) =Na(A, B) /N5 (A, B).

By [14], F(A) has relative almost split sequence, that is, for any non-projective inde-
composable moduld in F(A), there exists a relative almost split sequence

O—-B—>M—>A—NO.

In this case, we definB astp A, andA asta~1B. We denote by (A) the t4-orbit of a
moduleA in F(A).

The Auslander—Reiten quiveTz 4y of F(A) is a valued translation quiver defined as
follows [15]: its vertices are the isomorphism clasga$ of indecomposablet-modules
A in F(A) (sometimes we usd directly for the corresponding vertex). There is an ar-
row [A] — [B] provided there exists a relative irreducible map> B in F(A), that is,
|rr].‘(A)(A, B) # 0.

3. Relativeirreducible maps and their degrees
Lemma 3.1.

(@) Amaps:X — Y in F(A) is irreducible if and only if there exists amafi: X — Y’
in F(A) such that(f, f)': X — Y @ Y’ is a minimal left almost split map iF(A),
where( f, f)! denotes the transpose of, f/).

(b) Dually, a mapf:X — Y in F(A) is irreducible if and only if there exists a map
f/i X' — Y in F(A) such that(f, //): X & X’ — Y is a minimal right almost split
mapF(A).

The proof of the lemma is a complete analogue of [2, V, Theorem 5.3].

By [15, Theorem 4.3],7(A) is resolving (i.e.,F(A) contains all the projective
A-modules, is closed under extension and closed under kernels of surjective maps). This
fact gives the following lemma (see [1, Proposition 3.7]).
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Proposition 3.2. Let0 - X — B — Y — 0 be an exact sequence inodA. If Ay, Ay
are minimal rightF(A)-approximations o andY, respectively. Then the minimal right
F(A)-approximation ofB is a summand of an extensionAf by Ax.

For eachA-moduleA, by /(A) we denote the length of as anR-module. LetD (i) —
E (i) be the minimal rightF(A)-approximation ofE (i) for 1 <i < n.

Corollary 3.3. If Ap is the minimal rightF(A)-approximation ofB, thenl(Ap) < N -
[(B), whereN =max{{(D(i)) | 1<i < n}.

Lemma 3.4 [8, Proposition 9.10]For A € F(A), let0 - 1A - M — A — 0 be the
almost split sequence imodA, and X — t A be the minimal rightF(A)-approximation
of tA. ThenX =t A ® Tx, whereTx € addT'.

Theorem 3.5. There exists a constaht depending only om, such thatiff : X — Y isa
relative irreducible morphism it (A) between indecomposable modukésnd Y, then
I(X)<b-1(Y).

Proof. According to [12, Lemma 2.1], there exists a constanjtwhich only depends
on A, such that for any indecomposablemodulesA, B and an irreducible map: A —
B, we havel(A) < by - I(B). In particular, if the indecomposable moduk is non-
projective, theri(ty B) < b2 - I(B).

Let X andY be indecomposable modules #(A) and f: X — Y be a relative irre-
ducible map. IfY is non-projective, we get(itpY) < N - bf -1(Y) from Proposition 3.2
and Corollary 3.3. IfY is indecomposable projective module, th€ns the minimal right
F(A)-approximation of a summand of radical Bf and/(X) < N - [(radY) < N - [(Y).
Finally, letb = max{N, N - b%}, we conclude that(X) <b-1(Y). O

Theorem 3.6.

(a) Let A be anindecomposable preprojective modulgi). Then there exist indecom-
posable moduled = M1, M>, ..., My, and relative irreducible map#f; .1 — M; in
FA),i=12,....,k—1, whereM;, i =2,...,k — 1, are preprojective, and{y, is
projective.

(b) Let A be an indecomposable preinjective moduleFid). Then there exist indecom-
posable moduled = M1, M», ..., My, and relative irreducible map8f; — M;;1 in
FA),i=12,....,k—1 whereM;,i =2,...,k — 1, are preinjective, and/; is
Ext-injective.

Proof. (a) LetA € P;. We proceed by induction anlf i =0, thatis,A is projective, this is
clear. LetA € P; and consider the relative almost split sequenee 94A — Y — A — 0.

If Y does not contain an indecomposable projective summand, thent@QA — Y —

A — 0 is split sinceA € P;. This is a contradiction. Henc&, admits an indecomposable
projective summand®’ and with an irreducible map’ — A according to Lemma 3.1.
Let m > 1 and suppose that the statement holds for each maBluleP,,_1. Now let
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A € P,,. We then have a right almost split m&p— A which is an epimorphism, but not
a split epimorphism. Thed@ admits a summand i®™ = Uf”:’llpi, that is, there is an
irreducible mapB — A with B € P™. By induction hypothesis, we have indecomposable
modulesB = My, ..., M; and irreducible mapM}Jrl =M, j=1... k-1, with M;
is projective andVf}, i =2,...,k — 1, are preprojective. Séff; = A andM; = M;.fl for
j=2,...,k+1, as required.

(b) Itis the dual of (a). O

The following theorem will be useful. However, we omit its proof since it is similar to
that of [5, Lemma 3.1].

Theorem 3.7. Let X be an indecomposable module#i(A).
(a) If X is preprojective, then there exists a sectional path
P=Xo—=>X1— = X;=1t4"X, n>=0

from an indecomposable projective mod#l¢o a positive power of the relative trans-
late of X such that
(1) X; is left stable for alli > 0, and
(2) if X; € O(X;) for j <i, thenX; = t4'X; for some > 0.
(b) If X is preinjective, then there exists a sectional path

wWX=X,—>X—1—>---—>Xo=1I, n<0

from a negative power of the relative translateofo an indecomposablext-injective
module/ such that

(1) X; isright stable for alli > 0, and

(2) if X; € O(X;) for j <ithenX; = 74! X; for some <O0.

In order to study the properties of stable componentd'sfs), we now define the
degrees of relative irreducible mapsi#itA) as Liu has done in [10, Definition 1.1].

Definition 3.1. Let f: X — Y be a relative irreducible map ifF(A). It then induces a
natural transformation for eaeh> 0

Li(f) R (=, X) /R (=, X) — R (=, ¥) /2 (=, 7).

We defined the left degreé(f) of f to beco if all 1,(f), n > 0, are monomorphisms,
otherwise, to be the least integersuch that,, (f) is not a monomorphism.

Remark 3.8. Note thatd;( f) = m, wheref : X — Y is arelative irreducible map i (4A),
means that there exists¢ %" *1(Z, X) such thatfp € "2 If the composition of some
relative irreducible maps is zero, then at least one of these maps has finite left degree.
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Proposition 3.9. Let f: Y — Z be arelative irreducible map wit# indecomposable non-
projective andi;(f) = m. Let further

)

(.8 ,
— YooY ——-Z—>0

0— taZ

be the relative almost split sequence. If there exisiX — Y ¢ 9%’2*1 such thatfp €

R"F2, then there exist a map: X — toZ ¢ N satisfyingp + gg € W™ and g'q €
Rt

Proof. Since fp € SRQ*Z, we have a factorizatiorfp = ts with s: X — W € 2)’%’?1,
t:W — Z € %a. Thent factors through( £, ), sayt = (f. f/)(), then(f, f))(*/.F) =

0. This implies
us —p g
Im( e ) clIm <g/) =Ker(f, f').

So there exists @: X — t4Z such tha("}, ") = (£) - ¢, i.e.,

us _ p+8q eﬂig"'l.
u's g'q

Fromp ¢ %! we conclude thag ¢ %. O

Corollary 3.10. Assume a relative irreducible map:Y — Z satisfiesd;(f) =m < oo
with Z indecomposable non-projective ¥f® Y’ is a summand of the whole middle term
of the relative almost split sequence endingZaand Y’ # 0. Then there is an irreducible
mapg’:taZ — Y’ withd;(g’) < d;(f). Consequently, f;(f) = 1, then f is a surjective
map.

Proof. According to Proposition 3.9, there exisjs X — t4Z ¢ %’} such thatg'q €

R sodi(g) <m —1<di(f) =m. If di(f) =1 andY’ #0, theng’:t4Z — Y’ has
left degree 0. This implies that there exists an isomorphisorch thatg’s € S’ii. Thisis a
contradiction. Hence}’ = 0 and f is a surjective map. O

Proposition 3.11. Let f : X — Y be a relative irreducible map of finite left degree#ifA)
with Y indecomposable. Assume that

Yo > Ypu1—>---—>Y1—> Yo=Y

is a sectional path in a left stable connected componentmwithO. If X @ Y7 is a summand
of the whole middle term of the relative almost split sequence endingtlaén for eachl <

i < m,thereis arelative irreducible maf : toY;_1 — Y; such thatd;(f,,,) < dj(fm—1) <
<< di(f1) < di(f). In particular, d;( f) > m.
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Proof. From Corollary 3.10, we hav& ( f1) < d;(f), thus

di(fir1) <di(fr), 1<k<m-—-1

by an inductive argument. Therefore,

di(fm) <di(fm-1) <--- <di(f1) <di(f)

andd;(f)>m. O

Corollary 3.12. Let f: Y — X be arelative irreducible map witlt indecomposable non-
projective. Assume that there is an infinite sectional path

=Xy X 1> 2> X1—> X=X

in a left stable component dfx(4) such thatY @ X is a summand of the whole middle
term of the relative almost split sequence ending athend; (f) = co.

The proof follows directly from Proposition 3.11.
The following proposition and corollary will be used to define the degree of an arrow in
I'r (). The result follows from those of [10, Lemma 1.7] and its corollary.

Proposition 3.13. Let[X] — [Y'] be an arrow inf"z(4) with valuation(ax.y, a;”), and
with Y not projective. If a relative irreducible map: X — Y has finite left degree, then at
least one ofvy y ando/xgy is equal tol.

Corollary 3.14. Let[X] — [Y] be an arrow inl"z 4y, with Y non-projective. Iff : X — 7,
g X — Y are both relative irreducible maps iA(A), thend;(f) = d;(g).

So in a left stable component dfr4), we may define the left degree of an arrow
[X] — [Y] to be the left degree of a relative irreducible néap-> Y.

Lemma 3.15. Let f = (f1, f2): X — Y = Y1 @ Y> be a relative irreducible map itF(A)
with Y1, Y indecomposable non-projective. Let
(g8 (fis )
01,7 —28 L xax 2y o

be relative almost split sequences #(A), i = 1,2. Thend;(g) < d;(f), whereg =
(81,82) 1taY1 @ TAY2 > X.

Proof. Sinced;(f)=m < oo, there exists amap: M — X € R} with p ¢ 5)’t’f\+l such

that fp e W2, This impliesf; p € R *2, i = 1, 2. Then there exist relative almost split
sequences itF(A)

(g8 (fis ) .
O->14Y, ——— XX — Vv, -0, i=12
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According to Proposition 3.9, there exigt: M — t4Y; ¢ ) suchthalg;q; + p € m'g*l,
i=1,2.S0(") ¢} and(g1, g2)( %) € N Thus,di((g1,82) <m—1<m. O

Theorem 3.16. Let Xg —> X1 — --- —> X,,—1 — X, be a sectional path in a left stable
component of 'r(4). Then there are relative irreducible mags: X;_1 — X; in F(A)
such that the compositg, f,—1--- f1 is not inmg“. In particular, fy, fiu—1--- f1#0.

Proof. It is sufficient to prove that for every & j < m there exists a relative irreducible

map(fj,g;):Xj—1® taX ;41— X; such that for everp;_1:Xo — taX;_1, we have
NEE :

fifi—1-- fi+gipj-1¢ N, (taXm41 =0 by convention).

Let (f1,g1): X0 ® taX2 — X3 be a relative irreducible map, then for any map
po.Xo— taX2, We havefy + g1po ¢ S)tzA sincegi € M4 and pg € N4. We make an in-
duction onj. Let 1< j <m and suppose that we have a relative irreducible yapg ;)
satisfying that for every;_1:Xo — taX 11, itholds f;--- f1+g;jpj—1 ¢ WAH. Thus

\. 1 H
fi-- f1g W, by takingp;_1 =0.

If 14X;41#0, andX; © 14X ;,2 is a summand of the middle term of the rela-
tive almost split sequence ending X1, we get irreducible mapéﬁ-}i):mxﬁl —

Xj @‘L’AX]'+2 and(fj+1, gj+l) :Xj @TAX]'+2 — Xj,]_. If there eXiSt$j Xo— ‘L'AXJ'+2

such thatfj 1 fi - f1+ gj41p; = (fi+1. gj+D (T2 1Y) € 9.2, then there exists

pj1:Xo — TaX,_1 satisfying (fj.f./;}-"Afl) +(7)pj-1e SRJAH by Proposition 3.9, so
J J

fifi-1--fitgjpj-1€ Eﬁfl, which contradicts the induction hypothesistAfX ; ;1=0,
thenj = m because the component is left stable. This impfigs: - f1 € m’g*l. By Propo-
sition 3.9, there exisp,,_» : Xog — 1X,, such thatf,,_1--- f1 + gu—1pm—2 € R’;. This
also contradicts the induction hypothesis. Henfef,—1--- f1 ¢ m’g“. O

4. Left-stable and stable components

In this section, we include some useful lemmas and theorems concerning left stable
and stable components ifir4). The proofs are similar to those in the Auslander—Reiten
quiver', of A.

Lemma4.1[11, Lemma 2.1]LetI" be a left stable component bf-(4). If there is a path
from X to Y in I', then eitherX = 7,"Y for somer > 0 or there is a sectional path if
from X to t4"Y for somer > 0.

Lemma 4.2 [10, Proposition 1.13]Let
e X, = Xy 1> > X1—> Xo=X (1)
be an infinite sectional path if'F4) with all X; left stable. If the patlfl) contains infi-

nitely many arrows with finite left degree, then the relative almost split sequence ending at
X,, has at most two left stable summands as middle terms.
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Theorem 4.3 [11, Theorem 2.3]Let I be a stable component éfr(4), containing no
T4-periodic module. If there is an oriented cyclelih thenI” contains only finitely many
TA-0rbits.

Proposition 4.4. Suppose there exists a relative irreducible map between two indecom-
posable modulex and Y in F(A). If Y is t4-periodic, then eitherX is T4 periodic

or there are non-negative integersand m such thatr," X is projective andr, " X is
Ext-injective.

Proof. SinceY is t4-periodic, we getr,kY = ¥ for somek > 0. Let f: X — Y be a
relative irreducible map. I is not in thet,-orbit of a projective, therr," X exist for
all n > 0. So there are relative irreducible maps‘X — %Y = Y. This implies that
there exist relative irreducible maps fraf 1% X, ..., 74"*X, ... to Y. Because x4
is locally finite, there is ah > 1 such thatt,* X = t4¥ X, thus,t ¥ %X = X, i.e., X is
T4-periodic. In a similar way, we can show thatXifis not in ar-orbit of an Ext-injective
module, thenX is t4-periodic. O

Corollary 4.5. Assume thaf is a left or right stable component ifir ). If there is a
T4-periodic module irC, then all modules i are t-periodic(such a componerit will
be called periodil

In the following, we consider the stable paﬁﬁ()m of I'ra), that is, the maximal full
sub-quiver of'r(4) by deleting allzs-orbits of projective and Ext-injective modules.

Theorem 4.6 [9,15,17] A periodic component df”](g()m is of the formZQ/ G, whereQ is
Dynkin quiver or a quiver of the formi ., andG is a non-trivial group of automorphism
of ZQ. A non-periodic component dfr,) is of the formZQ, whereQ is a connected
valued quiver without cyclic paths.

Definition 4.1. Let I" be a connected componentbf()A ,andY, Z € 7(A) be indecom-
posable modules with' ¢ I", Z € I'. If there is a relative irreducible map:Y — Z or
Z — Y, we callZ afrontier of I".

A frontier Y of a component must lie in the orbit of a projective or Ext-injective module.
Thus, there are only finitely many indecomposable modijleZ,, ..., Z, € I", such that
all the frontiers inI” lie in the orbits ofZ4, Z>, ..., Z,, that is, int’:1 O(Z;).

Lemma 4.7 [5, Lemma 3.2] Let I" be a non-periodic connected componentﬂif()m.
Assumd™ is of the formZ Q, whereQ is an infinite connect valued quiver without oriented
cycles, andZy, Z», ..., Z, are chosen as above, then

(a) for eachl <i < ¢, there exists a non-negative integgrsuch thatr,/ Z; belongs to
Ps forall j > n;,

(b) for eachl <i < ¢, there exists a non-negative integey such thatr,~/ Z; belongs
toZy forall j > m;.
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Lemma4.8[5, Lemma 3.3]LetI" be as above, an® a module inI". Then

(a) there exists a non-negative integesuch that ifX is a preprojective module if, then
there exists a path i" fromt," D to X,

(b) there exists a non-negative integesuch that ifX is a preinjective module ii", then
there exists a path i from X totp~*D.

Theorem 4.9. Let I" be a non-periodic connected componenféf()A . If " is of the form
7.9, with @ being an infinite quiver without oriented cycles, then there are infinitely many
modules inI” which are neither preprojectives nor preinjectives.

Proof. Let Q = (Qp, Q1) be such thabg = {q;: i € N} and that there is a path from to
every point inQ. Clearly,(ZQ)o = {(a;, j): i €N, j € Z}.

Let D be the module corresponding tay, 0) andr ands be chosen as in Lemma 4.8.
Then we have the set of irreducible successors,6D in A is

SAta" D) = {(ai, j), j<r}
and the set of irreducible predecessors of*D in I' is
Pta™" D) ={(ai. j). j = —s+n(a},

wheren(a;) denotes the length of the shortest path fram, 0) to (a;, 0). Since Qg is
infinite, for eachm > 0 there exists a vertex, such that(b,,) > m, that is, there are infi-
nitely manyc;,i € N such that(c;) > s +r + 1 for everyi € N. Consider now for each
the moduleC; in I corresponding to the vertgx;, r + 1). Note thatC; ¢ So(t” D) and
thenC; is not preprojective according to Lemma 4.8. On the other h@pe, Pr(z —* D)
since—s +n(c;) > —s + (s +r+1) =r + 1. Thisimplies that; is not preinjective either.
Therefore, foreache N, C; € Poo Nls. O

Proposition 4.10 [5, Proposition 4.2]Let X1, ..., X, be indecomposable modules in a
connected componetit of I'r(4. Let I"” be the full sub-quiver of without the vertices
corresponding to the modules in the uniptf’_; O(X;). ThenI” contains only finitely
many non-trivial connected components. Moreover, all the trivial components, df
any, belong to a finite number ofi-orbits.

5. Components containing finitely many z4-orbits only
Definition 5.1. Let I be a sub-quiver orj(ﬁ()A). We say that” satisfies Brauer—Thrall-I|
or, shorter, BT-lI, if there are infinitely many natural numb@fs;n such that for each

i € N there are infinitely many modules il of dimensiond; .

Theorem 5.1. LetI” be a connected componentiof 4y with only finitely manyt 4 -orbits.
ThenI” does not satisfBT-II.
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In order to prove the theorem we need the following definition and lemmas.

Definition 5.2[10]. Let £2 be a connected value quiver without oriented cycles. A sectional
subgraph¥ of type$2 in I'r( 4 is a value quiver with a value quiver isomorphigms2 —
X such that the following conditions hold:

(1) Foreach vertexof 2, X; := ¢ (i) is a vertex ofl 'z ,).

(2) Ifi — jandj — k are arrows in2, thenX; # t4 X;.

(3) If i — j is an arrow with valuatio(8, g') in £2, thenX; — X, is an arrow with
valuation(a, ) in I'r( 4y satisfying(a, o’) > (8, B').

(4) If i andj are different immediate predecessors or successors of a veszxtbénX;
andX; are different vertices of r ().

If, moreover, for all arrows in2, we have(a, ') = (B8, B'), then we say thak is fully
valued.

Lemma5.2[10, Lemma 3.4]Let$2 be a Euclidean quiver an®’ a sectional subgraph of
types2 in I'r(ay. If X contains only left stable modules, them,™ X) — oo asm — oo
for each vertexx € X'. Dually, if X contains only right stable modules, them, " X) —
oo asm — oo for each vertexx € X.

Lemma 5.3 [10, Lemma 3.3]Let £2 be a Dynkin quiver and a sectional subgraph
of type 2 in I'reay. If X contains only left stable modules, then eitl®rconsists of
74-periodic modules or there is some intege= 0 such thatr,™ X' is properly contained
in a sectional subgraph i’z 4y which contains only left stable modules.

Lemmab5.4. LetI" be a left stable sub-quiver dtr 4. Assume that there exists a module
X in I" such that/(t4™ X) does not tend to infinity a& tending to infinity. Then there is
no sectional subgraph of Euclidean typelin

Proof. Suppose there is an arrow— X or X — Y in I', so there exist$ > 0 such
thatl/(Y) < bl(X) orI(Y) < bl(roX) according to Theorem 3.5. Because,™ X) does
not tend to infinity whenn tends to infinity, there existsy such that (z,™ X) < by for
infinitely manym’s. Thenl(to%Y) < b - bx, for s =m orm + 1, that is,l(t4* X) does
not tend to infinity ag tends to infinity. Sincd™ is connected, every module iii has the
same property. Hence, there is no sectional subgraph of Euclidean typadnording to
Lemmab5.2. O

Lemma5.5. Let I' be a connected left stable sub-quiverlgf 4). Assume that there is a
moduleX in I" such that (z4™ X) does not tend to infinity as tends to infinity. If there is
a sectional path i which meets a,-orbit twice, thenl” containst ,-periodic modules.

Proof. According to Lemma 5.4, for every modulein I, there is a constarity such
that/(zA™Y) < by for infinitely manym’s. If there is an arronZ — Z’ in F(A), then
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1(Z) < b-1(Z") because of Theorem 3.5. Hence, for a given positive integtirere are
infinitely manym’s such that (t,™"Y) < b" - by. If there is a sectional path

AW Yo=Y, > Y 1> - = Y1 =Y

in I, we may supposé&;_; andY; are not in the samex-orbit. Sincel'r,) has no
sectional cyclic paths [12, Theorem 2], we havg 0. Now assume > 2. If r > 0, then
there exists an infinite path

R TAZVYO—> WY 1> o>t 1> tA Y>> Y 1— - = Y1 > Y. (%)

Sincel(ta* Yo) < b" - by, holds for infinitely manys, and in a left stable sub-quiver,
the composition of the sectional path is not zero (Theorem 3.4p)s(not a sectional
path. Thus, K < 2.Incase =1,7o2 1Yg=Yo. Incaser =2,r > 1, Y1 = 14" V1.
So there is a,-periodic module inl". Becausd is a left stable connected sub-quiver,
I" contains onlyr,-periodic modules. The case< 0 can be treated in a similar wayx

Lemma 5.6 [10, Lemma 3.5] Let I be a maximal connected left stable sub-quiver of
I'ray. Assume that there is no sectional subgraph of Euclidean tygeamd that each
sectional path inI” meets each-orbit in I at most once. Then eithdr consists of
T4-periodic modules or, for each modulg there is an infinite sectional path il which
ends atr,™ X for somem > 0.

Proof of Theorem 5.1. If, for someb, there are infinitely many modules with the length
then there must existay-orbit of a moduleX such thai (t4” X) = b for infinitely many
m'’s. Hence/(t4" X) does not tend to infinity (a8 — o00). Therefore, there exists an> 0

such that 4" X is in I'’, the maximal left stable connected sub-quiverofSinceX is not

T4-periodic, I is not periodic. According to Lemmas 5.5 and 58,has infinitely many
orbits. This is a contradiction. O

Definition 5.3. A quasi-periodic component is a connected componefizgf, with infi-
nitely manyz 4-orbits such that at most finitely many of them do not contain geriod
module.

Theorem 5.7. A quasi-periodic component ¢fr 4, does not satisfBT-Il.

Proof. Let I" be a quasi-periodic component bi-4y, and "’ the full sub-quiver ofl”
without the vertices corresponding to thg-orbits of non-periodic modules. It follows
from Proposition 4.9 thak” is a finite union of non-trivial connected sub-quiverdoand
by construction each of them contains omjy-periodic modules, that is, they are periodic.
LetC be a connected sub-quiver bf. If C is a finite sub-quiver of 'r(,), then it does
not satisfy BT-1l. On the other hand, @ is not finite, then it is a stable tube and does not
satisfy BT-II, either.
If I" satisfies BT-Il, then so i$7/I"". SinceI"/I"’ has only finitely manyr 4-orbits,
at least one of them should satisfy BT-Il. Becauskis a finite union of periodic sub-
quivers ofI", there existsn > 0 such that Rea™ M) C I'/T"’, where P¢r,™ M) should
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be maximal left stable. So according to Theorem 5.1z P¥M) has only finite many
74-0rbits, which does not satisfy BT-II. This is a contradiction and finishes the praof.

6. Proof of the main result

In this section we use a relation between the catega) and the subspace category
given in [6] to prove the main theorem.

Lemma 6.1 [5, Lemma 6.1] Let C be a connected component Bf 4y with infinitely
manyt,-orbits. Suppose that has no connected sub-quiver of the fo#i®@ with Q an
infinite quiver without oriented cycles. Théns quasi-periodic.

Theorem 6.2. If Poo NZoo =@ in F(A), thenF(A) does not satisfBT-I1.

Proof. Let Py, N Z = @. Then any indecomposable module/iiA) is either a prepro-
jective or a preinjective module. It follows from Theorems 3.6 and 3.7 that any connected
component of 'z ) contains either a projective or an Ext-injective. In particulafly, )

has only finitely many connected components, §ayl>», ..., I},. SinNCePy N Lo = 0,

it follows from Theorem 4.9 that for each<li < m, I'; contains no connected sub-quiver

of the formZQ with Q an infinite quiver without oriented cycles. Therefore, according to
Lemma 6.1 all the componenit$ containing infinitely manyt 4 -orbits are quasi-periodic.

To summarize, for eachd i < m, either[; is a quasi-periodic component 6y has only
finitely manyt4-orbits. By Theorems 5.1 and 5.7; does not satisfy BT-Il. Thus'z 4

does not satisfy BT-1l. O

Definition 6.1 [6]. Let K be a Krull-Schmidt category over a commutative artin rygD

a division ring overR which is finitely generated as @rmodule, and - | : X — modD an
additive functor. We call the paifC, | - |) a vector space category and denotelhyC,

| - ) =: X, called a subspace category @€, | - |), the category of all triplesV =

Vo, Vw, yv), whereV,, e modD, Vp € K, andyy : V,, — | Vo] is a D-linear map. A mor-
phism fromV to V' by definition is a pair( fo, f.,), where fo: Vo — Vg, fo: Ve = V,,

such thatf,yv' = vl fol-

SinceA(n) = P(n), D = Ends (P (n)) is a division ring. LetAg = A/Ae, A, wheree,
is the idempotent corresponding to the indecomposable projective m@duje= Ae,,.
Then Ag is a quasi-hereditary algebra attd A 4,) = F(AQ), ..., A(n — 1)). Now we
get a functor

Exth (—, P(n)): F(Aa,)° — modD,

whereF (A 4,)°P is the opposite category ¢f(A 4,). S0 we have a vector space category
(F(A ), Ext(—, P(n))) and the subspace categdu‘W-"(A?&, Ext(—, P(n))).
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Lemma 6.3 [7, Proposition 2.2]There is a full and dense functor
N1 F(A)® = U(F (A1) Exty (=, P(m))),

such that the kernel of is contained in the radical ofF(A)°P. Son induces a bijec-
tion between the isomorphism classes of indecomposable objegtg4n and those in
U(F (A ng)*, EXty (=, P(n))).

Let D be a finite dimension division ring over a fiekdand KC a k-additive category.
Assume that the number of the isomorphism classes of indecomposable objcts in
finite. Moreover, let- | : K — modD be a functor andi{ (» ) denote the subspace category
UK, T-D.

Proposition 6.4 [13, Proposition 3.1JAssumep K is infinite, that is, there are infinitely
many isomorphism classes of indecomposable objed& i), then there exists a bi-
module Mg such thatdim z M - dim Mg > 4 and thatmod(y ¥¢) is equivalent to a
full subcategory o/ (pK), whereF, G are finite-dimensional division rings over

From now on, we assuma is a finite-dimensional quasi-hereditary algebra over an
infinite field k.

Theorem 6.5. If F(A) is infinite, thenF (A) satisfieBT-I1.
Proof. According to Lemma 6.3, there exists a functor

12 F(A)%P — U(F(Aay)°P, Exth (=, P(n))).
By an inductive argument, we may assume ttftA)(A,,) is finite. Since F(A)
is infinite, so is the vector space categc(tYf(A)(AAo),Ext}‘(—,P(n))). It follows
from Proposition 6.4 that there is a bimoduyld/; such that a full subcategory of
U(F(A)(Aa), Exth(—, P(n))) is equivalent to mog{ #%¢). Sincek is an infinite field,
the category mo(jg F’gﬁ) satisfies BT-Il (see [13, Example 2.6]). Hendg(A) satisfies
BT-1l. O
Theorem 6.6. F(A) is finite if and only ifPse N Zoo = 1.
Proof. If F(A) isfinite, then from the definition we hat®,, = 7o, =@, thusPec N I =
@. Conversely, letPo, N Zoo = @. By Theorem 6.2,7(A) does not satisfy BT-Il. The

finiteness ofF (A) follows from Theorem 6.5. O

Coroallary 6.7. F(A) is finite if and only if either all indecomposable modulesitA) are
preprojective, or all indecomposable modulesfA) are preinjective.

Corollary 6.8. 7(A) is finite if and only ifl"r( 4y has only finitely many ,-orbits.
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Proof. Let F(A) be finite. Then, obviouslyr(4) has only finitely manyt 4 -orbits. Con-
versely, assume thdlr 4y has only finitely manyt4-orbits. ThenF(A) does not satisfy
BT-Il according to Theorem 4.1. By Theorem 6/5(A) is finite. O
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