

Available online at www.sciencedirect.com

Journal of Algebra 285 (2005) 608-622

www.elsevier.com/locate/jalgebra

On preprojective and preinjective partitions of a Δ -good module category $\stackrel{\mbox{\tiny{$\stackrel{l}{$}$}}}{\rightarrow}$

Ziting Zeng*

Department of Mathematics, Beijing Normal University, Beijing 100875, PR China Received 12 May 2003 Available online 25 January 2005 Communicated by Kent R. Fuller

1. Introduction

Let Λ be an artin algebra. It is shown in [4] that the module category mod Λ has preprojective and preinjective partitions and that Λ is of finite representation type if and only if either all indecomposable Λ -modules are preprojective or all indecomposable Λ -modules are preinjective. Further, in [5] it is proved that for a finite-dimensional algebra over an infinite perfect field of infinite representation type there always exists an indecomposable module which is neither preprojective nor preinjective. More generally, Skowronski and Smalø [16] proved that Λ is of finite representation type if and only if each Λ -module is either preprojective.

In the study of a quasi-hereditary algebra Λ , instead of the complete module category mod Λ , one is mainly interested in the Δ -good module category $\mathcal{F}(\Delta)$ which consists of Λ -modules which have a filtration by standard modules. It is proved by Ringel [14] that $\mathcal{F}(\Delta)$ is functorially finite in mod Λ . Thus, from [3] it follows that $\mathcal{F}(\Delta)$ has both preprojective and preinjective partitions. The main purpose of the present paper is to study the finiteness of $\mathcal{F}(\Delta)$ in terms of preprojective and preinjective partitions of $\mathcal{F}(\Delta)$. More precisely, by defining the degree of a relative irreducible map in $\mathcal{F}(\Delta)$ in a similar way as in [10], we prove that, if Λ is quasi-hereditary and each module in $\mathcal{F}(\Delta)$ is either preprojective.

0021-8693/\$ – see front matter @ 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2004.09.023

 $^{^{*}}$ The research was supported by the Natural Science Foundation of China (Grant no. 10271014).

^{*} Current address: Department of Mathematics, York University, North York, ON M3J IP3, Canada. *E-mail address:* zengzt@hotmail.com.

In view of Ringel's work [13], this implies particularly that, if Λ is a finite-dimensional quasi-hereditary algebra over an infinite field, then $\mathcal{F}(\Delta)$ is finite, that is, up to isomorphism, there are only finitely many indecomposable modules in $\mathcal{F}(\Delta)$, if and only if each module in $\mathcal{F}(\Delta)$ is either preprojective or preinjective.

2. Preprojective and preinjective partitions

Let Λ be an artin algebra over a commutative artin ring R. By mod Λ we denote the category of finitely generated left Λ -modules and by ind Λ a full subcategory of mod Λ of the chosen representatives of the isomorphism class of the indecomposable Λ -modules. Similarly, for a subcategory C of mod Λ , by ind C we denote a full subcategory of the chosen representatives of the isomorphism class of the indecomposable modules in C.

Definition 2.1. The preprojective partition of ind C is a partition \mathcal{P}_i , $i \in \mathbb{N} \cup \{\infty\}$, of objects of ind C satisfying the following properties:

- (i) \mathcal{P}_i is finite for each $i < \infty$,
- (ii) setting $\mathcal{P}^i = \bigcup_{j < i} \mathcal{P}_j$ for $i \in \mathbb{N} \cup \{\infty\}$ and $P_i = \coprod_{X \in \mathcal{P}_i} X$ for $i \in \mathbb{N}$, we have that for each $i < \infty$ and each $X \in \operatorname{ind} \mathcal{C} \setminus \mathcal{P}^i$, the induced map $\operatorname{Hom}(P_i, X) \otimes P_i \to X$ is surjective, and
- (iii) each \mathcal{P}_i is minimal with the property in (ii).

The preinjective partition \mathcal{I}_i , $i \in \mathbb{N} \cup \{\infty\}$, is defined dually. The modules in \mathcal{P}^{∞} are called preprojective and those in \mathcal{I}^{∞} are called preinjective. In [4, Theorems 1.2, 1.3] it is proved that both preprojective and preinjective partitions are unique.

In this paper, we always assume that Λ is quasi-hereditary with a fixed ordering $E(1), \ldots, E(n)$ of the isomorphism classes of the simple Λ -modules and where $\Delta(1), \ldots, \Delta(n)$ are the corresponding standard modules, and $T(1), \ldots, T(n)$ are the characteristic modules (see [14]). Let $\mathcal{F}(\Delta)$ be the Δ -good module category of Λ which by definition consists of modules having a Δ -good filtration. It is proved in [14] that $\mathcal{F}(\Delta)$ is functorially finite (i.e., every Λ -module has a right $\mathcal{F}(\Delta)$ -approximation and a left $\mathcal{F}(\Delta)$ -approximation). So it follows from [3, Theorem 3.3] that $\mathcal{F}(\Delta)$ admits both preprojective and preinjective partitions, denoted by $\mathcal{P}_0, \mathcal{P}_1, \ldots, \mathcal{P}_n, \ldots, \mathcal{P}_\infty$ and $\mathcal{I}_0, \mathcal{I}_1, \ldots, \mathcal{I}_n, \ldots, \mathcal{I}_\infty$, respectively. From the definition, we have the following proposition.

Proposition 2.1. \mathcal{P}_0 consists of all indecomposable projective modules, and \mathcal{I}_0 consists of all indecomposable Ext-injective modules, that is, the characteristic modules $T(1), \ldots, T(n)$.

For two modules A, B in $\mathcal{F}(\Delta)$, we define

 $\operatorname{Hom}_{\Delta}(A, B) = \operatorname{Hom}_{\Lambda}(A, B),$

$$\mathfrak{R}_{\Delta}(A, B) = \left\{ f \in \operatorname{Hom}_{\Delta}(A, B) \mid \text{for every module } X \in \mathcal{F}(\Delta), \ g : X \to A, \\ h : B \to X, \ hfg \text{ is not an isomorphism} \right\},$$
$$\mathfrak{R}^{n}_{\Delta}(A, B) = \left\{ f \in \operatorname{Hom}_{\Delta}(A, B) \mid \text{there exist } X \in \mathcal{F}(\Delta), \ g \in \mathfrak{R}_{\Delta}(A, X), \\ \text{and } h \in \mathfrak{R}^{n-1}_{\Delta}(X, B) \text{ such that } f = hg \right\},$$

where $n \ge 1$. Thus, we get a chain

$$\operatorname{Hom}_{\Delta}(A, B) \supseteq \mathfrak{N}_{\Delta}(A, B) \supseteq \mathfrak{N}_{\Delta}^{2}(A, B) \supseteq \cdots \supseteq \mathfrak{N}_{\Delta}^{n}(A, B) \supseteq \cdots$$

Given Λ -modules A, B in $\mathcal{F}(\Delta)$, a morphism $f: A \to B$ is to said to be relative irreducible in $\mathcal{F}(\Delta)$ if f is neither a split monomorphism nor a split epimorphism, and for any factorization $f = f_2 f_1$ in $\mathcal{F}(\Delta)$, then either f_1 is a split monomorphism, or f_2 is a split epimorphism. In case A, B are indecomposable, we get a bimodule of relative irreducible maps $\operatorname{Irr}_{\mathcal{F}(\Delta)}(A, B) = \Re_{\Delta}(A, B)/\Re_{\Delta}^2(A, B)$.

By [14], $\mathcal{F}(\Delta)$ has relative almost split sequence, that is, for any non-projective indecomposable module A in $\mathcal{F}(\Delta)$, there exists a relative almost split sequence

$$0 \to B \to M \to A \to 0.$$

In this case, we define *B* as $\tau_{\Delta}A$, and *A* as $\tau_{\Delta}^{-1}B$. We denote by $\mathcal{O}(A)$ the τ_{Δ} -orbit of a module *A* in $\mathcal{F}(\Delta)$.

The Auslander–Reiten quiver $\Gamma_{\mathcal{F}(\Delta)}$ of $\mathcal{F}(\Delta)$ is a valued translation quiver defined as follows [15]: its vertices are the isomorphism classes [A] of indecomposable Λ -modules A in $\mathcal{F}(\Delta)$ (sometimes we use A directly for the corresponding vertex). There is an arrow $[A] \rightarrow [B]$ provided there exists a relative irreducible map $A \rightarrow B$ in $\mathcal{F}(\Delta)$, that is, $\operatorname{Irr}_{\mathcal{F}(\Delta)}(A, B) \neq 0$.

3. Relative irreducible maps and their degrees

Lemma 3.1.

- (a) A map $f: X \to Y$ in $\mathcal{F}(\Delta)$ is irreducible if and only if there exists a map $f': X \to Y'$ in $\mathcal{F}(\Delta)$ such that $(f, f')^t: X \to Y \oplus Y'$ is a minimal left almost split map in $\mathcal{F}(\Delta)$, where $(f, f')^t$ denotes the transpose of (f, f').
- (b) Dually, a map f: X → Y in F(Δ) is irreducible if and only if there exists a map f': X' → Y in F(Δ) such that (f, f'): X ⊕ X' → Y is a minimal right almost split map F(Δ).

The proof of the lemma is a complete analogue of [2, V, Theorem 5.3].

By [15, Theorem 4.3], $\mathcal{F}(\Delta)$ is resolving (i.e., $\mathcal{F}(\Delta)$ contains all the projective Λ -modules, is closed under extension and closed under kernels of surjective maps). This fact gives the following lemma (see [1, Proposition 3.7]).

Proposition 3.2. Let $0 \to X \to B \to Y \to 0$ be an exact sequence in mod Λ . If A_X, A_Y are minimal right $\mathcal{F}(\Delta)$ -approximations of X and Y, respectively. Then the minimal right $\mathcal{F}(\Delta)$ -approximation of B is a summand of an extension of A_Y by A_X .

For each Λ -module A, by l(A) we denote the length of A as an R-module. Let $D(i) \rightarrow E(i)$ be the minimal right $\mathcal{F}(\Delta)$ -approximation of E(i) for $1 \leq i \leq n$.

Corollary 3.3. If A_B is the minimal right $\mathcal{F}(\Delta)$ -approximation of B, then $l(A_B) \leq N \cdot l(B)$, where $N = \max\{l(D(i)) \mid 1 \leq i \leq n\}$.

Lemma 3.4 [8, Proposition 9.10]. For $A \in \mathcal{F}(\Delta)$, let $0 \to \tau A \to M \to A \to 0$ be the almost split sequence in mod Λ , and $X \to \tau A$ be the minimal right $\mathcal{F}(\Delta)$ -approximation of τA . Then $X \cong \tau_{\Delta} A \oplus T_X$, where $T_X \in \text{add } T$.

Theorem 3.5. There exists a constant b, depending only on Λ , such that if $f : X \to Y$ is a relative irreducible morphism in $\mathcal{F}(\Delta)$ between indecomposable modules X and Y, then $l(X) \leq b \cdot l(Y)$.

Proof. According to [12, Lemma 2.1], there exists a constant b_1 , which only depends on Λ , such that for any indecomposable Λ -modules A, B and an irreducible map $f: A \to B$, we have $l(A) \leq b_1 \cdot l(B)$. In particular, if the indecomposable module B is non-projective, then $l(\tau_A B) \leq b_1^2 \cdot l(B)$.

Let *X* and *Y* be indecomposable modules in $\mathcal{F}(\Delta)$ and $f: X \to Y$ be a relative irreducible map. If *Y* is non-projective, we get $l(\tau_{\Delta}Y) \leq N \cdot b_1^2 \cdot l(Y)$ from Proposition 3.2 and Corollary 3.3. If *Y* is indecomposable projective module, then *X* is the minimal right $\mathcal{F}(\Delta)$ -approximation of a summand of radical of *Y*, and $l(X) \leq N \cdot l(\operatorname{rad} Y) \leq N \cdot l(Y)$. Finally, let $b = \max\{N, N \cdot b_1^2\}$, we conclude that $l(X) \leq b \cdot l(Y)$. \Box

Theorem 3.6.

- (a) Let A be an indecomposable preprojective module in $\mathcal{F}(\Delta)$. Then there exist indecomposable modules $A = M_1, M_2, \ldots, M_k$, and relative irreducible maps $M_{i+1} \rightarrow M_i$ in $\mathcal{F}(\Delta)$, $i = 1, 2, \ldots, k-1$, where M_i , $i = 2, \ldots, k-1$, are preprojective, and M_k is projective.
- (b) Let A be an indecomposable preinjective module in F(Δ). Then there exist indecomposable modules A = M₁, M₂, ..., M_k, and relative irreducible maps M_i → M_{i+1} in F(Δ), i = 1, 2, ..., k − 1, where M_i, i = 2, ..., k − 1, are preinjective, and M_k is Ext-injective.

Proof. (a) Let $A \in \mathcal{P}_i$. We proceed by induction on *i*. If i = 0, that is, *A* is projective, this is clear. Let $A \in \mathcal{P}_1$ and consider the relative almost split sequence $0 \to \tau_{\Delta}A \to Y \to A \to 0$. If *Y* does not contain an indecomposable projective summand, then $0 \to \tau_{\Delta}A \to Y \to A \to 0$ is split since $A \in \mathcal{P}_1$. This is a contradiction. Hence, *Y* admits an indecomposable projective summand P' and with an irreducible map $P' \to A$ according to Lemma 3.1. Let m > 1 and suppose that the statement holds for each module $B \in \mathcal{P}_{m-1}$. Now let

 $A \in \mathcal{P}_m$. We then have a right almost split map $C \to A$ which is an epimorphism, but not a split epimorphism. Then *C* admits a summand in $\mathcal{P}^m = \bigcup_{i=1}^{m-1} \mathcal{P}_i$, that is, there is an irreducible map $B \to A$ with $B \in \mathcal{P}^m$. By induction hypothesis, we have indecomposable modules $B = M'_1, \ldots, M'_k$ and irreducible maps $M'_{j+1} \to M'_j$, $j = 1, \ldots, k-1$, with M'_k is projective and M'_i , $i = 2, \ldots, k-1$, are preprojective. Set $M_1 = A$ and $M_j = M'_{j-1}$ for $j = 2, \ldots, k+1$, as required.

(b) It is the dual of (a). \Box

The following theorem will be useful. However, we omit its proof since it is similar to that of [5, Lemma 3.1].

Theorem 3.7. Let X be an indecomposable module in $\mathcal{F}(\Delta)$.

(a) If X is preprojective, then there exists a sectional path

$$P = X_0 \to X_1 \to \dots \to X_t = \tau_{\Delta}{}^n X, \quad n \ge 0$$

from an indecomposable projective module P to a positive power of the relative translate of X such that

(1) X_i is left stable for all i > 0, and

(2) if $X_i \in \mathcal{O}(X_i)$ for j < i, then $X_i = \tau_{\Delta}{}^l X_i$ for some l > 0.

(b) If X is preinjective, then there exists a sectional path

$$\tau_{\Delta}{}^{n}X = X_{t} \to X_{t-1} \to \dots \to X_{0} = I, \quad n \leqslant 0$$

from a negative power of the relative translate of X to an indecomposable Ext-injective module I such that

- (1) X_i is right stable for all i > 0, and
- (2) if $X_i \in \mathcal{O}(X_j)$ for j < i then $X_i = \tau_{\Delta}{}^l X_j$ for some l < 0.

In order to study the properties of stable components of $\Gamma_{\mathcal{F}(\Delta)}$, we now define the degrees of relative irreducible maps in $\mathcal{F}(\Delta)$ as Liu has done in [10, Definition 1.1].

Definition 3.1. Let $f: X \to Y$ be a relative irreducible map in $\mathcal{F}(\Delta)$. It then induces a natural transformation for each $n \ge 0$

$$l_n(f):\mathfrak{N}^n_{\Delta}(-,X)/\mathfrak{N}^{n+1}_{\Delta}(-,X)\to\mathfrak{N}^{n+1}_{\Delta}(-,Y)/\mathfrak{N}^{n+2}_{\Delta}(-,Y).$$

We defined the left degree $d_l(f)$ of f to be ∞ if all $l_n(f)$, $n \ge 0$, are monomorphisms, otherwise, to be the least integer m such that $l_m(f)$ is not a monomorphism.

Remark 3.8. Note that $d_l(f) = m$, where $f: X \to Y$ is a relative irreducible map in $\mathcal{F}(\Delta)$, means that there exists $p \notin \Re_{\Delta}^{m+1}(Z, X)$ such that $fp \in \Re_{\Delta}^{m+2}$. If the composition of some relative irreducible maps is zero, then at least one of these maps has finite left degree.

Proposition 3.9. Let $f: Y \to Z$ be a relative irreducible map with Z indecomposable nonprojective and $d_l(f) = m$. Let further

$$0 \to \tau_{\Delta} Z \xrightarrow{(g,g')^t} Y \oplus Y' \xrightarrow{(f,f')} Z \to 0$$

be the relative almost split sequence. If there exists $p: X \to Y \notin \Re_{\Delta}^{m+1}$ such that $fp \in \Re_{\Delta}^{m+2}$, then there exist a map $q: X \to \tau_{\Delta}Z \notin \Re_{\Delta}^{m}$ satisfying $p + gq \in \Re_{\Delta}^{m+1}$ and $g'q \in \Re_{\Delta}^{m+1}$.

Proof. Since $fp \in \Re_{\Delta}^{m+2}$, we have a factorization fp = ts with $s: X \to W \in \Re_{\Delta}^{m+1}$, $t: W \to Z \in \Re_{\Delta}$. Then t factors through (f, f'), say $t = (f, f') {\binom{u}{u'}}$, then $(f, f') {\binom{us-p}{u's}} = 0$. This implies

$$\operatorname{Im} \begin{pmatrix} us - p \\ u's \end{pmatrix} \subseteq \operatorname{Im} \begin{pmatrix} g \\ g' \end{pmatrix} = \operatorname{Ker}(f, f').$$

So there exists a $q: X \to \tau_{\Delta} Z$ such that $\binom{us-p}{u's} = \binom{g}{g'} \cdot q$, i.e.,

$$\binom{us}{u's} = \binom{p+gq}{g'q} \in \mathfrak{R}^{m+1}_{\Delta}.$$

From $p \notin \Re_{\Delta}^{m+1}$ we conclude that $q \notin \Re_{\Delta}^{m}$. \Box

Corollary 3.10. Assume a relative irreducible map $f: Y \to Z$ satisfies $d_l(f) = m < \infty$ with Z indecomposable non-projective. If $Y \oplus Y'$ is a summand of the whole middle term of the relative almost split sequence ending at Z and $Y' \neq 0$. Then there is an irreducible map $g': \tau_{\Delta}Z \to Y'$ with $d_l(g') < d_l(f)$. Consequently, if $d_l(f) = 1$, then f is a surjective map.

Proof. According to Proposition 3.9, there exists $q: X \to \tau_{\Delta} Z \notin \mathfrak{R}_{\Delta}^{m}$ such that $g'q \in \mathfrak{R}_{\Delta}^{m+1}$, so $d_{l}(g') \leq m-1 < d_{l}(f) = m$. If $d_{l}(f) = 1$ and $Y' \neq 0$, then $g': \tau_{\Delta} Z \to Y'$ has left degree 0. This implies that there exists an isomorphism *t* such that $g't \in \mathfrak{R}_{\Delta}^{2}$. This is a contradiction. Hence, Y' = 0 and *f* is a surjective map. \Box

Proposition 3.11. Let $f: X \to Y$ be a relative irreducible map of finite left degree in $\mathcal{F}(\Delta)$ with Y indecomposable. Assume that

$$Y_m \to Y_{m-1} \to \cdots \to Y_1 \to Y_0 = Y$$

is a sectional path in a left stable connected component with $m \ge 0$. If $X \oplus Y_1$ is a summand of the whole middle term of the relative almost split sequence ending at Y, then for each $1 \le i \le m$, there is a relative irreducible map $f_i : \tau_\Delta Y_{i-1} \to Y_i$ such that $d_l(f_m) < d_l(f_{m-1}) < \cdots < d_l(f_1) < d_l(f_1)$. In particular, $d_l(f) > m$. **Proof.** From Corollary 3.10, we have $d_l(f_1) < d_l(f)$, thus

$$d_l(f_{k+1}) < d_l(f_k), \quad 1 \le k \le m-1$$

by an inductive argument. Therefore,

$$d_l(f_m) < d_l(f_{m-1}) < \dots < d_l(f_1) < d_l(f)$$

and $d_l(f) > m$. \Box

Corollary 3.12. Let $f: Y \to X$ be a relative irreducible map with X indecomposable nonprojective. Assume that there is an infinite sectional path

 $\cdots \rightarrow X_n \rightarrow X_{n-1} \rightarrow \cdots \rightarrow X_1 \rightarrow X_0 = X$

in a left stable component of $\Gamma_{\mathcal{F}(\Delta)}$ such that $Y \oplus X_1$ is a summand of the whole middle term of the relative almost split sequence ending at X, then $d_l(f) = \infty$.

The proof follows directly from Proposition 3.11.

The following proposition and corollary will be used to define the degree of an arrow in $\Gamma_{\mathcal{F}(\Delta)}$. The result follows from those of [10, Lemma 1.7] and its corollary.

Proposition 3.13. Let $[X] \to [Y]$ be an arrow in $\Gamma_{\mathcal{F}(\Delta)}$ with valuation $(\alpha_{X,Y}, \alpha'_{X,Y})$, and with Y not projective. If a relative irreducible map $f : X \to Y$ has finite left degree, then at least one of $\alpha_{X,Y}$ and $\alpha'_{X,Y}$ is equal to 1.

Corollary 3.14. Let $[X] \rightarrow [Y]$ be an arrow in $\Gamma_{\mathcal{F}(\Delta)}$, with Y non-projective. If $f : X \rightarrow Y$, $g : X \rightarrow Y$ are both relative irreducible maps in $\mathcal{F}(\Delta)$, then $d_l(f) = d_l(g)$.

So in a left stable component of $\Gamma_{\mathcal{F}(\Delta)}$, we may define the left degree of an arrow $[X] \to [Y]$ to be the left degree of a relative irreducible map $X \to Y$.

Lemma 3.15. Let $f = (f_1, f_2) : X \to Y = Y_1 \oplus Y_2$ be a relative irreducible map in $\mathcal{F}(\Delta)$ with Y_1, Y_2 indecomposable non-projective. Let

$$0 \to \tau_{\Delta} Y_i \xrightarrow{(g_i, g'_i)^t} X \oplus X' \xrightarrow{(f_i, f'_i)} Y_i \to 0$$

be relative almost split sequences in $\mathcal{F}(\Delta)$, i = 1, 2. Then $d_l(g) < d_l(f)$, where $g = (g_1, g_2)^t : \tau_\Delta Y_1 \oplus \tau_\Delta Y_2 \to X$.

Proof. Since $d_l(f) = m < \infty$, there exists a map $p: M \to X \in \mathfrak{R}^m_\Delta$ with $p \notin \mathfrak{R}^{m+1}_\Delta$ such that $fp \in \mathfrak{R}^{m+2}_\Delta$. This implies $f_i p \in \mathfrak{R}^{m+2}_\Delta$, i = 1, 2. Then there exist relative almost split sequences in $\mathcal{F}(\Delta)$

$$0 \to \tau_{\Delta} Y_i \xrightarrow{(g_i, g'_i)^t} X \oplus X' \xrightarrow{(f_i, f'_i)} Y_i \to 0, \quad i = 1, 2.$$

According to Proposition 3.9, there exist $q_i: M \to \tau_\Delta Y_i \notin \mathfrak{R}^m_\Delta$ such that $g_i q_i + p \in \mathfrak{R}^{m+1}_\Delta$, i = 1, 2. So $\binom{q_1}{-q_2} \notin \mathfrak{R}^m_\Delta$ and $(g_1, g_2) \binom{q_1}{-q_2} \in \mathfrak{R}^{m+1}_\Delta$. Thus, $d_l((g_1, g_2)) \leq m - 1 < m$. \Box

Theorem 3.16. Let $X_0 \to X_1 \to \cdots \to X_{m-1} \to X_m$ be a sectional path in a left stable component of $\Gamma_{\mathcal{F}(\Delta)}$. Then there are relative irreducible maps $f_i: X_{i-1} \to X_i$ in $\mathcal{F}(\Delta)$ such that the composite $f_m f_{m-1} \cdots f_1$ is not in $\mathfrak{N}_{\Delta}^{m+1}$. In particular, $f_m f_{m-1} \cdots f_1 \neq 0$.

Proof. It is sufficient to prove that for every $1 \le j \le m$ there exists a relative irreducible map $(f_j, g_j): X_{j-1} \oplus \tau_\Delta X_{j+1} \to X_j$ such that for every $p_{j-1}: X_0 \to \tau_\Delta X_{j-1}$, we have $f_j f_{j-1} \cdots f_1 + g_j p_{j-1} \notin \mathfrak{R}^{j+1}_{\Delta}$ $(\tau_\Delta X_{m+1} = 0$ by convention). Let $(f_1, g_1): X_0 \oplus \tau_\Delta X_2 \to X_1$ be a relative irreducible map, then for any map

Let $(f_1, g_1): X_0 \oplus \tau_\Delta X_2 \to X_1$ be a relative irreducible map, then for any map $p_0: X_0 \to \tau_\Delta X_2$, we have $f_1 + g_1 p_0 \notin \mathfrak{R}^2_\Delta$ since $g_1 \in \mathfrak{R}_\Delta$ and $p_0 \in \mathfrak{R}_\Delta$. We make an induction on j. Let 1 < j < m and suppose that we have a relative irreducible map (f_j, g_j) satisfying that for every $p_{j-1}: X_0 \to \tau_\Delta X_{j+1}$, it holds $f_j \cdots f_1 + g_j p_{j-1} \notin \mathfrak{R}^{j+1}_\Delta$. Thus $f_j \cdots f_1 \notin \mathfrak{R}^{j+1}_\Delta$ by taking $p_{j-1} = 0$. If $\tau_\Delta X_{j+1} \neq 0$, and $X_j \oplus \tau_\Delta X_{j+2}$ is a summand of the middle term of the relationary of $f_j = X_j$.

If $\tau_{\Delta}X_{j+1} \neq 0$, and $X_j \oplus \tau_{\Delta}X_{j+2}$ is a summand of the middle term of the relative almost split sequence ending at X_{j+1} , we get irreducible maps $\binom{g_j}{h_j}: \tau_{\Delta}X_{j+1} \rightarrow X_j \oplus \tau_{\Delta}X_{j+2}$ and $(f_{j+1}, g_{j+1}): X_j \oplus \tau_{\Delta}X_{j+2} \rightarrow X_{j-1}$. If there exists $p_j: X_0 \rightarrow \tau_{\Delta}X_{j+2}$ such that $f_{j+1}f_j \cdots f_1 + g_{j+1}p_j = (f_{j+1}, g_{j+1})\binom{f_jf_{j-1}\cdots f_1}{p_j} \in \Re_{\Delta}^{j+2}$, then there exists $p_{j-1}: X_0 \rightarrow \tau_{\Delta}X_{j-1}$ satisfying $\binom{f_jf_{j-1}\cdots f_1}{p_j} + \binom{g_j}{h_j}p_{j-1} \in \Re_{\Delta}^{j+1}$ by Proposition 3.9, so $f_jf_{j-1}\cdots f_1 + g_jp_{j-1} \in \Re_{\Delta}^{j+1}$, which contradicts the induction hypothesis. If $\tau_{\Delta}X_{j+1}=0$, then j = m because the component is left stable. This implies $f_m \cdots f_1 \in \Re_{\Delta}^{m+1}$. By Proposition 3.9, there exist $p_{m-2}: X_0 \rightarrow \tau X_m$ such that $f_{m-1}\cdots f_1 + g_m p_{m-2} \in \Re_{\Delta}^m$. This also contradicts the induction hypothesis. Hence, $f_m f_{m-1}\cdots f_1 \notin \Re_{\Delta}^{m+1}$. \Box

4. Left-stable and stable components

In this section, we include some useful lemmas and theorems concerning left stable and stable components in $\Gamma_{\mathcal{F}(\Delta)}$. The proofs are similar to those in the Auslander–Reiten quiver Γ_A of Λ .

Lemma 4.1 [11, Lemma 2.1]. Let Γ be a left stable component of $\Gamma_{\mathcal{F}(\Delta)}$. If there is a path from X to Y in Γ , then either $X = \tau_{\Delta}^{r} Y$ for some r > 0 or there is a sectional path in Γ from X to $\tau_{\Delta}^{r} Y$ for some $r \ge 0$.

Lemma 4.2 [10, Proposition 1.13]. Let

$$\dots \to X_n \to X_{n-1} \to \dots \to X_1 \to X_0 = X \tag{1}$$

be an infinite sectional path in $\Gamma_{\mathcal{F}(\Delta)}$ with all X_i left stable. If the path (1) contains infinitely many arrows with finite left degree, then the relative almost split sequence ending at X_n has at most two left stable summands as middle terms. **Theorem 4.3** [11, Theorem 2.3]. Let Γ be a stable component of $\Gamma_{\mathcal{F}(\Delta)}$, containing no τ_{Δ} -periodic module. If there is an oriented cycle in Γ , then Γ contains only finitely many τ_{Δ} -orbits.

Proposition 4.4. Suppose there exists a relative irreducible map between two indecomposable modules X and Y in $\mathcal{F}(\Delta)$. If Y is τ_{Δ} -periodic, then either X is τ_{Δ} periodic or there are non-negative integers n and m such that $\tau_{\Delta}^{n}X$ is projective and $\tau_{\Delta}^{-m}X$ is Ext-injective.

Proof. Since *Y* is τ_{Δ} -periodic, we get $\tau_{\Delta}{}^{k}Y \cong Y$ for some k > 0. Let $f: X \to Y$ be a relative irreducible map. If *X* is not in the τ_{Δ} -orbit of a projective, then $\tau_{\Delta}{}^{n}X$ exist for all n > 0. So there are relative irreducible maps $\tau_{\Delta}{}^{k}X \to \tau_{\Delta}{}^{k}Y \cong Y$. This implies that there exist relative irreducible maps from $X, \tau_{\Delta}{}^{k}X, \ldots, \tau_{\Delta}{}^{mk}X, \ldots$ to *Y*. Because $\Gamma_{\mathcal{F}(\Delta)}$ is locally finite, there is an l > 1 such that $\tau_{\Delta}{}^{lk}X \cong \tau_{\Delta}{}^{k}X$, thus, $\tau_{\Delta}{}^{lk-k}X \cong X$, i.e., *X* is τ_{Δ} -periodic. In a similar way, we can show that, if *X* is not in a τ_{Δ} -orbit of an Ext-injective module, then *X* is τ_{Δ} -periodic. \Box

Corollary 4.5. Assume that C is a left or right stable component in $\Gamma_{\mathcal{F}(\Delta)}$. If there is a τ_{Δ} -periodic module in C, then all modules in C are τ_{Δ} -periodic (such a component C will be called periodic).

In the following, we consider the stable part $\Gamma_{\mathcal{F}(\Delta)}^{(s)}$ of $\Gamma_{\mathcal{F}(\Delta)}$, that is, the maximal full sub-quiver of $\Gamma_{\mathcal{F}(\Delta)}$ by deleting all τ_{Δ} -orbits of projective and Ext-injective modules.

Theorem 4.6 [9,15,17]. A periodic component of $\Gamma_{\mathcal{F}(\Delta)}^{(s)}$ is of the form $\mathbb{Z}\mathcal{Q}/G$, where \mathcal{Q} is Dynkin quiver or a quiver of the form A_{∞} , and G is a non-trivial group of automorphism of $\mathbb{Z}\mathcal{Q}$. A non-periodic component of $\Gamma_{\mathcal{F}(\Delta)}$ is of the form $\mathbb{Z}\mathcal{Q}$, where \mathcal{Q} is a connected valued quiver without cyclic paths.

Definition 4.1. Let Γ be a connected component of $\Gamma_{\mathcal{F}(\Delta)}^{(s)}$, and $Y, Z \in \mathcal{F}(\Delta)$ be indecomposable modules with $Y \notin \Gamma$, $Z \in \Gamma$. If there is a relative irreducible map $f: Y \to Z$ or $Z \to Y$, we call Z a frontier of Γ .

A frontier Y of a component must lie in the orbit of a projective or Ext-injective module. Thus, there are only finitely many indecomposable module $Z_1, Z_2, \ldots, Z_q \in \Gamma$, such that all the frontiers in Γ lie in the orbits of Z_1, Z_2, \ldots, Z_q , that is, in $\bigcup_{i=1}^q \mathcal{O}(Z_i)$.

Lemma 4.7 [5, Lemma 3.2]. Let Γ be a non-periodic connected component of $\Gamma_{\mathcal{F}(\Delta)}^{(s)}$. Assume Γ is of the form $\mathbb{Z}Q$, where Q is an infinite connect valued quiver without oriented cycles, and Z_1, Z_2, \ldots, Z_q are chosen as above, then

- (a) for each $1 \leq i \leq q$, there exists a non-negative integer n_i such that $\tau_{\Delta}{}^j Z_i$ belongs to \mathcal{P}_{∞} for all $j > n_i$,
- (b) for each 1 ≤ i ≤ q, there exists a non-negative integer m_i such that τ_Δ^{-j} Z_i belongs to I_∞ for all j > m_i.

Lemma 4.8 [5, Lemma 3.3]. Let Γ be as above, and D a module in Γ . Then

- (a) there exists a non-negative integer r such that if X is a preprojective module in Γ , then there exists a path in Γ from $\tau_{\Delta}{}^{r}D$ to X,
- (b) there exists a non-negative integer s such that if X is a preinjective module in Γ, then there exists a path in Γ from X to τ_Δ^{-s}D.

Theorem 4.9. Let Γ be a non-periodic connected component of $\Gamma_{\mathcal{F}(\Delta)}^{(s)}$. If Γ is of the form $\mathbb{Z}\mathcal{Q}$, with \mathcal{Q} being an infinite quiver without oriented cycles, then there are infinitely many modules in Γ which are neither preprojectives nor preinjectives.

Proof. Let $Q = (Q_0, Q_1)$ be such that $Q_0 = \{a_i : i \in \mathbb{N}\}$ and that there is a path from a_0 to every point in Q. Clearly, $(\mathbb{Z}Q)_0 = \{(a_i, j) : i \in \mathbb{N}, j \in \mathbb{Z}\}$.

Let *D* be the module corresponding to $(a_0, 0)$ and *r* and *s* be chosen as in Lemma 4.8. Then we have the set of irreducible successors of $\tau_{\Delta}{}^r D$ in Λ is

$$\operatorname{Sc}(\tau_{\Delta}{}^{r}D)_{\Gamma} = \{(a_{i}, j), j \leq r\}$$

and the set of irreducible predecessors of $\tau_{\Delta}^{-s}D$ in Γ is

$$\Pr\left(\tau_{\Delta}^{-s}D\right)_{\Gamma} = \{(a_i, j), \ j \ge -s + n(a_i)\},\$$

where $n(a_i)$ denotes the length of the shortest path from $(a_0, 0)$ to $(a_i, 0)$. Since Q_0 is infinite, for each $m \ge 0$ there exists a vertex b_m such that $n(b_m) \ge m$, that is, there are infinitely many $c_i, i \in N$ such that $n(c_i) > s + r + 1$ for every $i \in N$. Consider now for each ithe module C_i in Γ corresponding to the vertex $(c_i, r + 1)$. Note that $C_i \notin Sc(\tau^r D)$ and then C_i is not preprojective according to Lemma 4.8. On the other hand, $C_i \notin Pr(\tau^{-s}D)$ since $-s + n(c_i) > -s + (s + r + 1) = r + 1$. This implies that C_i is not preinjective either. Therefore, for each $i \in N$, $C_i \in P_{\infty} \cap I_{\infty}$. \Box

Proposition 4.10 [5, Proposition 4.2]. Let X_1, \ldots, X_n be indecomposable modules in a connected component Γ of $\Gamma_{\mathcal{F}(\Delta)}$. Let Γ' be the full sub-quiver of Γ without the vertices corresponding to the modules in the union $\bigsqcup_{i=1}^{n} \mathcal{O}(X_i)$. Then Γ' contains only finitely many non-trivial connected components. Moreover, all the trivial components of Γ' , if any, belong to a finite number of τ_{Δ} -orbits.

5. Components containing finitely many τ_{Δ} -orbits only

Definition 5.1. Let Γ be a sub-quiver of $\Gamma_{\mathcal{F}(\Delta)}^{(s)}$. We say that Γ satisfies Brauer–Thrall-II or, shorter, BT-II, if there are infinitely many natural numbers $\{d_i\}_{i \in \mathbb{N}}$ such that for each $i \in \mathbb{N}$ there are infinitely many modules in Γ of dimension d_i .

Theorem 5.1. Let Γ be a connected component of $\Gamma_{\mathcal{F}(\Delta)}$ with only finitely many τ_{Δ} -orbits. Then Γ does not satisfy BT-II. Z. Zeng / Journal of Algebra 285 (2005) 608-622

In order to prove the theorem we need the following definition and lemmas.

Definition 5.2 [10]. Let Ω be a connected value quiver without oriented cycles. A sectional subgraph Σ of type Ω in $\Gamma_{\mathcal{F}(\Delta)}$ is a value quiver with a value quiver isomorphism $\phi : \Omega \to \Sigma$ such that the following conditions hold:

- (1) For each vertex *i* of Ω , $X_i := \phi(i)$ is a vertex of $\Gamma_{\mathcal{F}(\Delta)}$.
- (2) If $i \to j$ and $j \to k$ are arrows in Ω , then $X_i \neq \tau_\Delta X_j$.
- (3) If $i \to j$ is an arrow with valuation (β, β') in Ω , then $X_i \to X_j$ is an arrow with valuation (α, α') in $\Gamma_{\mathcal{F}(\Delta)}$ satisfying $(\alpha, \alpha') \ge (\beta, \beta')$.
- (4) If *i* and *j* are different immediate predecessors or successors of a vertex of Ω, then X_i and X_j are different vertices of Γ_{F(Δ)}.

If, moreover, for all arrows in Ω , we have $(\alpha, \alpha') = (\beta, \beta')$, then we say that Σ is fully valued.

Lemma 5.2 [10, Lemma 3.4]. Let Ω be a Euclidean quiver and Σ a sectional subgraph of type Ω in $\Gamma_{\mathcal{F}(\Delta)}$. If Σ contains only left stable modules, then $l(\tau_{\Delta}^{m}X) \to \infty$ as $m \to \infty$ for each vertex $X \in \Sigma$. Dually, if Σ contains only right stable modules, then $l(\tau_{\Delta}^{-m}X) \to \infty$ as $m \to \infty$ for each vertex $X \in \Sigma$.

Lemma 5.3 [10, Lemma 3.3]. Let Ω be a Dynkin quiver and Σ a sectional subgraph of type Ω in $\Gamma_{\mathcal{F}(\Delta)}$. If Σ contains only left stable modules, then either Σ consists of τ_{Δ} -periodic modules or there is some integer $m \ge 0$ such that $\tau_{\Delta}^m \Sigma$ is properly contained in a sectional subgraph in $\Gamma_{\mathcal{F}(\Delta)}$ which contains only left stable modules.

Lemma 5.4. Let Γ be a left stable sub-quiver of $\Gamma_{\mathcal{F}(\Delta)}$. Assume that there exists a module X in Γ such that $l(\tau_{\Delta}^{m}X)$ does not tend to infinity as m tending to infinity. Then there is no sectional subgraph of Euclidean type in Γ .

Proof. Suppose there is an arrow $Y \to X$ or $X \to Y$ in Γ , so there exists b > 0 such that $l(Y) \leq bl(X)$ or $l(Y) \leq bl(\tau_{\Delta}X)$ according to Theorem 3.5. Because $l(\tau_{\Delta}^m X)$ does not tend to infinity when *m* tends to infinity, there exists b_X such that $l(\tau_{\Delta}^m X) < b_X$ for infinitely many *m*'s. Then $l(\tau_{\Delta}^s Y) < b \cdot b_X$, for s = m or m + 1, that is, $l(\tau_{\Delta}^s X)$ does not tend to infinity as *s* tends to infinity. Since Γ is connected, every module in Γ has the same property. Hence, there is no sectional subgraph of Euclidean type in Γ according to Lemma 5.2. \Box

Lemma 5.5. Let Γ be a connected left stable sub-quiver of $\Gamma_{\mathcal{F}(\Delta)}$. Assume that there is a module X in Γ such that $l(\tau_{\Delta}^{m}X)$ does not tend to infinity as m tends to infinity. If there is a sectional path in Γ which meets a τ_{Δ} -orbit twice, then Γ contains τ_{Δ} -periodic modules.

Proof. According to Lemma 5.4, for every module Y in Γ , there is a constant b_Y such that $l(\tau_{\Delta}^m Y) \leq b_Y$ for infinitely many m's. If there is an arrow $Z \to Z'$ in $\mathcal{F}(\Delta)$, then

 $l(Z) \leq b \cdot l(Z')$ because of Theorem 3.5. Hence, for a given positive integer r, there are infinitely many m's such that $l(\tau_{\Delta}^{m \cdot r}Y) \leq b^r \cdot b_Y$. If there is a sectional path

 $\tau_{\Delta}{}^{r}Y_{0} = Y_{t} \to Y_{t-1} \to \cdots \to Y_{1} \to Y_{0}$

in Γ , we may suppose Y_{t-1} and Y_1 are not in the same τ_{Δ} -orbit. Since $\Gamma_{\mathcal{F}(\Delta)}$ has no sectional cyclic paths [12, Theorem 2], we have $r \neq 0$. Now assume t > 2. If r > 0, then there exists an infinite path

$$\cdots \to \tau_{\Delta}{}^{2r}Y_0 \to \tau_{\Delta}{}^rY_{t-1} \to \cdots \to \tau_{\Delta}{}^rY_1 \to \tau_{\Delta}{}^rY_0 \to Y_{t-1} \to \cdots \to Y_1 \to Y_0. \quad (*)$$

Since $l(\tau_{\Delta}{}^{sr}Y_0) \leq b^r \cdot b_{Y_0}$ holds for infinitely many *s*, and in a left stable sub-quiver, the composition of the sectional path is not zero (Theorem 3.16), (*) is not a sectional path. Thus, $1 \leq t \leq 2$. In case t = 1, $\tau_{\Delta}{}^{2r-1}Y_0 = Y_0$. In case t = 2, r > 1, $Y_1 = \tau_{\Delta}{}^{r-1}Y_1$. So there is a τ_{Δ} -periodic module in Γ . Because Γ is a left stable connected sub-quiver, Γ contains only τ_{Δ} -periodic modules. The case r < 0 can be treated in a similar way. \Box

Lemma 5.6 [10, Lemma 3.5]. Let Γ be a maximal connected left stable sub-quiver of $\Gamma_{\mathcal{F}(\Delta)}$. Assume that there is no sectional subgraph of Euclidean type in Γ and that each sectional path in Γ meets each τ_{Δ} -orbit in Γ at most once. Then either Γ consists of τ_{Δ} -periodic modules or, for each module X, there is an infinite sectional path in Γ which ends at $\tau_{\Delta}^{m}X$ for some $m \ge 0$.

Proof of Theorem 5.1. If, for some *b*, there are infinitely many modules with the length *b*, then there must exist a τ_{Δ} -orbit of a module *X* such that $l(\tau_{\Delta}^m X) = b$ for infinitely many *m*'s. Hence, $l(\tau_{\Delta}^n X)$ does not tend to infinity (as $m \to \infty$). Therefore, there exists an r > 0 such that $\tau_{\Delta}^r X$ is in Γ' , the maximal left stable connected sub-quiver of Γ . Since *X* is not τ_{Δ} -periodic, Γ' is not periodic. According to Lemmas 5.5 and 5.6, Γ' has infinitely many orbits. This is a contradiction. \Box

Definition 5.3. A quasi-periodic component is a connected component of $\Gamma_{\mathcal{F}(\Delta)}$ with infinitely many τ_{Δ} -orbits such that at most finitely many of them do not contain a τ_{Δ} -period module.

Theorem 5.7. A quasi-periodic component of $\Gamma_{\mathcal{F}(\Delta)}$ does not satisfy BT-II.

Proof. Let Γ be a quasi-periodic component of $\Gamma_{\mathcal{F}(\Delta)}$, and Γ' the full sub-quiver of Γ without the vertices corresponding to the τ_{Δ} -orbits of non-periodic modules. It follows from Proposition 4.9 that Γ' is a finite union of non-trivial connected sub-quivers of Γ and by construction each of them contains only τ_{Δ} -periodic modules, that is, they are periodic.

Let C be a connected sub-quiver of Γ' . If C is a finite sub-quiver of $\Gamma_{\mathcal{F}(\Delta)}$, then it does not satisfy BT-II. On the other hand, if C is not finite, then it is a stable tube and does not satisfy BT-II, either.

If Γ satisfies BT-II, then so is Γ/Γ' . Since Γ/Γ' has only finitely many τ_{Δ} -orbits, at least one of them should satisfy BT-II. Because Γ' is a finite union of periodic subquivers of Γ , there exists m > 0 such that $\Pr(\tau_{\Delta}^m M) \subseteq \Gamma/\Gamma'$, where $\Pr(\tau_{\Delta}^m M)$ should be maximal left stable. So according to Theorem 5.1, $Pr(\tau_{\Delta}^{m}M)$ has only finite many τ_{Δ} -orbits, which does not satisfy BT-II. This is a contradiction and finishes the proof. \Box

6. Proof of the main result

In this section we use a relation between the category $\mathcal{F}(\Delta)$ and the subspace category given in [6] to prove the main theorem.

Lemma 6.1 [5, Lemma 6.1]. Let C be a connected component of $\Gamma_{\mathcal{F}(\Delta)}$ with infinitely many τ_{Δ} -orbits. Suppose that C has no connected sub-quiver of the form $\mathbb{Z}Q$ with Q an infinite quiver without oriented cycles. Then C is quasi-periodic.

Theorem 6.2. If $\mathcal{P}_{\infty} \cap \mathcal{I}_{\infty} = \emptyset$ in $\mathcal{F}(\Delta)$, then $\mathcal{F}(\Delta)$ does not satisfy BT-II.

Proof. Let $\mathcal{P}_{\infty} \cap \mathcal{I}_{\infty} = \emptyset$. Then any indecomposable module in $\mathcal{F}(\Delta)$ is either a preprojective or a preinjective module. It follows from Theorems 3.6 and 3.7 that any connected component of $\Gamma_{\mathcal{F}(\Delta)}$ contains either a projective or an Ext-injective. In particularly, $\Gamma_{\mathcal{F}(\Delta)}$ has only finitely many connected components, say $\Gamma_1, \Gamma_2, \ldots, \Gamma_m$. Since $\mathcal{P}_{\infty} \cap \mathcal{I}_{\infty} = \emptyset$, it follows from Theorem 4.9 that for each $1 \leq i \leq m$, Γ_i contains no connected sub-quiver of the form $\mathbb{Z}\mathcal{Q}$ with \mathcal{Q} an infinite quiver without oriented cycles. Therefore, according to Lemma 6.1 all the components Γ_i containing infinitely many τ_{Δ} -orbits are quasi-periodic. To summarize, for each $1 \leq i \leq m$, either Γ_i is a quasi-periodic component or Γ_i has only finitely many τ_{Δ} -orbits. By Theorems 5.1 and 5.7, Γ_i does not satisfy BT-II. Thus, $\Gamma_{\mathcal{F}(\Delta)}$ does not satisfy BT-II. \Box

Definition 6.1 [6]. Let \mathcal{K} be a Krull–Schmidt category over a commutative artin ring R, D a division ring over R which is finitely generated as an R-module, and $|\cdot|:\mathcal{K} \to \mod D$ an additive functor. We call the pair $(\mathcal{K}, |\cdot|)$ a vector space category and denote by $\mathcal{U}(\mathcal{K}, |\cdot|) =: \mathcal{X}$, called a subspace category of $(\mathcal{K}, |\cdot|)$, the category of all triples $V = (V_0, V_\omega, \gamma_V)$, where $V_\omega \in \mod D$, $V_0 \in \mathcal{K}$, and $\gamma_V : V_\omega \to |V_0|$ is a D-linear map. A morphism from V to V' by definition is a pair (f_0, f_ω) , where $f_0 : V_0 \to V'_0$, $f_\omega : V_\omega \to V'_\omega$, such that $f_\omega \gamma_{V'} = \gamma_\omega |f_0|$.

Since $\Delta(n) = P(n)$, $D = \text{End}_{\Lambda}(P(n))$ is a division ring. Let $\Lambda_0 = \Lambda/\Lambda e_n \Lambda$, where e_n is the idempotent corresponding to the indecomposable projective module $P(n) = \Lambda e_n$. Then Λ_0 is a quasi-hereditary algebra and $\mathcal{F}(\Delta_{\Lambda_0}) = \mathcal{F}(\Delta(1), \dots, \Delta(n-1))$. Now we get a functor

$$\operatorname{Ext}_{A}^{1}(-, P(n)): \mathcal{F}(\Delta_{A_{0}})^{\operatorname{op}} \to \operatorname{mod} D,$$

where $\mathcal{F}(\Delta_{\Lambda_0})^{\text{op}}$ is the opposite category of $\mathcal{F}(\Delta_{\Lambda_0})$. So we have a vector space category $(\mathcal{F}(\Delta_{\Lambda_0})^{\text{op}}, \text{Ext}(-, P(n)))$ and the subspace category $\mathcal{U}(\mathcal{F}(\Delta_{\Lambda_0}^{\text{op}}, \text{Ext}(-, P(n)))$.

Lemma 6.3 [7, Proposition 2.2]. There is a full and dense functor

$$\eta: \mathcal{F}(\Delta)^{\mathrm{op}} \to \mathcal{U}\big(\mathcal{F}(\Delta_{\Lambda_0})^{\mathrm{op}}, \mathrm{Ext}^1_{\Lambda}\big(-, P(n)\big)\big),$$

such that the kernel of η is contained in the radical of $\mathcal{F}(\Delta)^{\text{op}}$. So η induces a bijection between the isomorphism classes of indecomposable objects in $\mathcal{F}(\Delta)$ and those in $\mathcal{U}(\mathcal{F}(\Delta_{A_0})^{\text{op}}, \operatorname{Ext}^1_A(-, P(n)))$.

Let *D* be a finite dimension division ring over a field *k* and \mathcal{K} a *k*-additive category. Assume that the number of the isomorphism classes of indecomposable objects in \mathcal{K} is finite. Moreover, let $|\cdot|: \mathcal{K} \to \text{mod } D$ be a functor and $\mathcal{U}(_D\mathcal{K})$ denote the subspace category $\mathcal{U}(\mathcal{K}, |\cdot|)$.

Proposition 6.4 [13, Proposition 3.1]. Assume ${}_D\mathcal{K}$ is infinite, that is, there are infinitely many isomorphism classes of indecomposable objects in $\mathcal{U}({}_D\mathcal{K})$, then there exists a bimodule ${}_FM_G$ such that dim ${}_FM \cdot \dim M_G \ge 4$ and that $\operatorname{mod}\left({}_0^{F_F} {}_M^{G_G}\right)$ is equivalent to a full subcategory of $\mathcal{U}({}_D\mathcal{K})$, where F, G are finite-dimensional division rings over k.

From now on, we assume Λ is a finite-dimensional quasi-hereditary algebra over an infinite field k.

Theorem 6.5. If $\mathcal{F}(\Delta)$ is infinite, then $\mathcal{F}(\Delta)$ satisfies BT-II.

Proof. According to Lemma 6.3, there exists a functor

$$\eta: \mathcal{F}(\Delta)^{\mathrm{op}} \to \mathcal{U}\big(\mathcal{F}(\Delta_{\Lambda_0})^{\mathrm{op}}, \operatorname{Ext}^1_{\Lambda}\big(-, P(n)\big)\big).$$

By an inductive argument, we may assume that $\mathcal{F}(\Delta)(\Delta_{A_0})$ is finite. Since $\mathcal{F}(\Delta)$ is infinite, so is the vector space category $(\mathcal{F}(\Delta)(\Delta_{A_0}), \operatorname{Ext}_A^1(-, P(n)))$. It follows from Proposition 6.4 that there is a bimodule ${}_FM_G$ such that a full subcategory \mathcal{V} of $\mathcal{U}(\mathcal{F}(\Delta)(\Delta_{A_0}), \operatorname{Ext}_A^1(-, P(n)))$ is equivalent to mod $\begin{pmatrix} F & FM_G \\ 0 & G \end{pmatrix}$. Since *k* is an infinite field, the category mod $\begin{pmatrix} F & FM_G \\ 0 & G \end{pmatrix}$ satisfies BT-II (see [13, Example 2.6]). Hence, $\mathcal{F}(\Delta)$ satisfies BT-II. \Box

Theorem 6.6. $\mathcal{F}(\Delta)$ *is finite if and only if* $\mathcal{P}_{\infty} \cap \mathcal{I}_{\infty} = \emptyset$.

Proof. If $\mathcal{F}(\Delta)$ is finite, then from the definition we have $\mathcal{P}_{\infty} = \mathcal{I}_{\infty} = \emptyset$, thus $\mathcal{P}_{\infty} \cap \mathcal{I}_{\infty} = \emptyset$. Conversely, let $\mathcal{P}_{\infty} \cap \mathcal{I}_{\infty} = \emptyset$. By Theorem 6.2, $\mathcal{F}(\Delta)$ does not satisfy BT-II. The finiteness of $\mathcal{F}(\Delta)$ follows from Theorem 6.5. \Box

Corollary 6.7. $\mathcal{F}(\Delta)$ is finite if and only if either all indecomposable modules in $\mathcal{F}(\Delta)$ are preprojective, or all indecomposable modules in $\mathcal{F}(\Delta)$ are preinjective.

Corollary 6.8. $\mathcal{F}(\Delta)$ is finite if and only if $\Gamma_{\mathcal{F}(\Delta)}$ has only finitely many τ_{Δ} -orbits.

Proof. Let $\mathcal{F}(\Delta)$ be finite. Then, obviously, $\Gamma_{\mathcal{F}(\Delta)}$ has only finitely many τ_{Δ} -orbits. Conversely, assume that $\Gamma_{\mathcal{F}(\Delta)}$ has only finitely many τ_{Δ} -orbits. Then $\mathcal{F}(\Delta)$ does not satisfy BT-II according to Theorem 4.1. By Theorem 6.5, $\mathcal{F}(\Delta)$ is finite. \Box

Acknowledgment

The author is grateful to her supervisor Bangming Deng for helpful suggestions and encouragement.

References

- [1] M. Auslander, I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991) 111–152.
- [2] M. Auslander, I. Reiten, S.O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., vol. 36, Cambridge University Press, Cambridge, 1995.
- [3] M. Auslander, S.O. Smalø, Preprojective modules over artin algebras, J. Algebra 66 (1980) 61-122.
- [4] M. Auslander, S.O. Smalø, Preprojective modules: an introduction and some applications, in: Lecture Notes in Math., vol. 832, Springer, Berlin, 1980, pp. 48–73.
- [5] R. Bautista, F.U. Coelho, On the existence of modules which are neither preprojectives nor preinjectives, J. Algebra 168 (1994) 430–442.
- [6] B. Deng, C.C. Xi, On Δ-good module categories of quasi-hereditary algebras, Chinese Ann. Math. 18B (4) (1997) 467–480.
- [7] B. Deng, B. Zhu, On Δ-good module categories without short cycles, Proc. Amer. Math. Soc. 129 (2001) 69–77.
- [8] P. Gabriel, A.V. Roiter, Representations of Finite-Dimensional Algebras, Algebra VIII, Encyclopedia Math. Sci., vol. 73, 1992.
- [9] D. Happal, U. Preiser, C.M. Ringel, Vinberg's characterizations of Dynkin diagrams using subadditive functions with applications to DTr-periodic modules, in: Lecture Notes in Math., vol. 832, Springer, Berlin, 1980, pp. 280–294.
- [10] S. Liu, Degrees of irreducible maps and the shapes of Auslander–Reiten quivers, J. London Math. Soc. 45 (1) (1992) 35–54.
- [11] S. Liu, Semi-stable components of an Auslander–Reiten quiver, J. London Math. Soc. 47 (1993) 405–416.
- [12] C.M. Ringel, Finite dimensional hereditary algebras of wild representation type, Math. Z. 161 (1978) 199– 224.
- [13] C.M. Ringel, Report on the Brauer–Thrall conjectures, in: Lecture Notes in Math., vol. 831, Springer, Berlin, 1980, pp. 104–136.
- [14] C.M. Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z. 208 (1991) 209–223.
- [15] C.M. Ringel, The category of good modules over a quasi-hereditary algebra, in: Proceedings of the Sixth International Conference on Representations of Algebras, in: Carleton–Ottawa Math. Lecture Note Ser., vol. 14, 1992.
- [16] A. Skowronski, S.O. Smalø, Artin algebras with only preprojective or preinjective modules are of finite type, Arch. Math. 64 (1995) 8–10.
- [17] Y. Zhang, The structure of stable components, Canad. J. Math. 43 (1991) 652-672.