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Abstract

The Isomorphism Conjectures are translated into the language of homotopical algebra,

where they resemble Thomason’s descent theorems.
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1. Introduction and statement of the results

In [8], Thomason establishes that algebraic K-theory satisfies Zariski and
Nisnevich descent. This is now considered a profound algebraico-geometric property
of K-theory. In [1,2], we have introduced the sister notion of codescent. Here, we
prove that each one of the so-called Isomorphism Conjectures (see [3,5]) among

(1) the Baum–Connes Conjecture,
(2) the real Baum–Connes Conjecture,
(3) the Bost Conjecture,
(4) the Farrell–Jones Conjecture in K-theory,
(5) the Farrell–Jones Conjecture in L-theory

is equivalent to the codescent property for a suitable K- or L-theory functor.
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For a (discrete) group G; these conjectures aim at computing, in geometrical and

topological terms, the groups K top
� ðC�

r GÞ; KOtop
� ðRC�

r GÞ; K top
� ðc1GÞ; Kalg

� ðRGÞ and

Lalg
� ðLGÞ; respectively, where R and L are associative rings with units, and L is

equipped with an involution. Davis and Lück [4] express these conjectures as follows
(the equivalence with the original statements is due to Hambleton–Pedersen [6]).
First, fix one of the Conjectures (1)–(5) and denote by K�ðGÞ the corresponding
K- or L-group among the five listed above (for (4) and (5), R and L are understood).
Denote by C :¼ OrðGÞ the orbit category of G; whose objects are the quotients
G=H with H running among the subgroups of G; and the morphisms are the
left-G-maps. Let D :¼ OrðG;VCÞ be the full subcategory of OrðGÞ on those
objects G=H for which H is virtually cyclic. We sometimes write CG and DG to
stress the dependence on the group G: Then, a suitable functor XG: C-S is
constructed, where S denotes the usual stable model category of spectra (of
compactly generated Hausdorff spaces), for which the weak equivalences are the
stable ones. This functor XG has the property that p�ðXGðG=HÞÞ is canonically
isomorphic to K�ðHÞ for all HpG: Then, the fixed Isomorphism Conjecture for G

amounts to the statement that the following composition, called assembly map, is a
weak equivalence in S:

mG: hocolim
D

resCD XG- hocolim
C

XG -
B

colim
C

XG -
D

XGðG=GÞ:

We turn to homotopical algebra. First, we denote by USðC;DÞ the model category

SC of functors C-S; where the weak equivalences and fibrations are the D-weak

equivalences and D-fibrations, respectively, i.e. they are defined D-objectwise. See

details in [1, Section 3], for instance. For a diagram XASC; we let xX : QX-X be
the cofibrant replacement of X in USðC;DÞ: As in [1, Section 4], we say that X

satisfies D-codescent if the map xX ðcÞ is a weak equivalence in S for every cAC; if
this is only fulfilled at some c0AC; we say that X satisfies D-codescent at c0: For a
conceptual approach to codescent and a parallel with descent, see [1, Sections 1

and 5]. Let USðCÞ be the model structure on SC with the C-weak equivalences

and C-fibrations; we define USðDÞ on SD similarly. We denote by HoSðCÞ
and HoSðDÞ the homotopy category of USðCÞ and USðDÞ; respectively. As in
[1, Proposition 13.2], we have the derived adjunction of the Quillen adjunction

indC
D:UðDÞ$UðCÞ: resCD; namely

LindC
D: HoSðDÞ$HoSðCÞ: ResCD:

For the sequel, fix a group G and one of the Isomorphism Conjectures (1–5); let

XGASC be the corresponding functor. Keep the other notations as above.

Theorem 1.1. The following statements are equivalent:

(1) G satisfies the considered Isomorphism Conjecture;
(2) the corresponding functor XGAUSðC;DÞ satisfies D-codescent at G=GAC:
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Theorem 1.2. For subgroups LpHpG; the following statements are equivalent:

(1) XHAUSðCH ;DHÞ satisfies DH -codescent at H=LACH ;
(2) XGAUSðCG;DGÞ satisfies DG-codescent at G=LACG:

In fact, by general results of [1] (without invoking 1.1 above), if XG satisfies DG-
codescent, then XH satisfies DH -codescent for every subgroup HpG:

Main Theorem. The following statements are equivalent:

(1) every subgroup H of G satisfies the considered Isomorphism Conjecture;
(2) the corresponding functor XGAUSðC;DÞ satisfies D-codescent;

(3) up to isomorphism, the image of XG in HoSðCÞ belongs to LindC
DðHoSðDÞÞ:

Note that the usual Baum–Connes and Bost Conjectures are stated with
finite subgroups instead of virtually cyclic ones, but this is known to be
equivalent. So, in these cases, we could as well set DG :¼ OrðG;FinÞ instead of
OrðG;VCÞ:

Remark 1.3. Let XASC be a diagram and let zX : QX-X be an arbitrary cofibrant

approximation of X in USðC;DÞ; namely, zX is merely a D-weak equivalence and
QX is cofibrant in USðC;DÞ: Then, X satisfies D-codescent at some object cAC if
and only if zX ðcÞ is a weak equivalence in S; see [1, Proposition 6.5]. This illustrates
the flexibility of the codescent-type reformulation of the Isomorphism Conjectures,
namely, every such cofibrant approximation of XG yields a possibly very different
assembly map that can be used to test the considered conjecture.

2. The proofs

Let Gpdsf be the category of groupoids with faithful functors. For the considered

conjecture, by [4,7], there exists a homotopy functor X: Gpdsf-S; i.e. X takes
equivalences of groupoids to weak equivalences, such that XG is the composite

XG: C ¼ OrðGÞ-i Gpdsf -
X

S:

The functor i takes G=H to its G-transport groupoid G=H
G

with the set G=H as
objects and with fgAG j gg1H ¼ g2Hg as morphisms from g1H to g2H: Moreover,
the functor X takes values in cofibrant spectra, so that XG is C-objectwise cofibrant.

Let Cat be the category of small categories and sSets that of simplicial sets.

Denote by #D: sSetsD
op �SD-S the tensor product over D induced by the

simplicial model structure on S; where KAsSets ‘‘acts’’ on EAS by jK jþ4E:

Proof of Theorem 1.1. A priori, to test whether XG satisfies D-codescent at some cAC
requires a thorough understanding of the usually mysterious cofibrant replacement
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of XG: A key point here is the freedom to use any cofibrant approximation instead,
see Remark 1.3. We provide in [2, Section 6] a general construction of cofibrant
approximations in USðC;DÞ; one of which is exactly suited for our present purposes
[2, Corollary 6.9]. Evaluated at the terminal object G=GAC; this cofibrant
approximation zXG

: QXG-XG is a certain map (described at the end of the proof)

zXG
ðG=GÞ: QXGðG=GÞ ¼ Bð?rDÞop#

?AD
resCD XGð?Þ-XGðG=GÞ:

Indeed, using the notations of [2, Notation 6.1], this follows from the canonical

identification ð?rDr
C

G=GÞop ¼ ð?rDÞop of diagrams in CatD
op

and from the fact

that XG is C-objectwise cofibrant. By definition of the homotopy colimit, we have

Bð?rDÞop#
?AD

resCD XGð?Þ ¼ hocolimD resCDXG:

So, it suffices to show that zXG
ðG=GÞ coincides with the assembly map mG: In the

notations of [2, Notation 5.1], we have morD;Cð?;G=GÞ ¼ � in sSetsD
op

(the constant

diagram with value the point). By [2, Lemma 5.3], the spectrum �#Dres
C
DXG

identifies with indC
D resCDXGðG=GÞ: Letting e denote the counit of the adjunction

ðindC
D; res

C
DÞ; it is routine to verify that there is a canonical commutative diagram

hocolimD resCD XG B (?  D)op ⊗ D resCDXG(?)

 
hocolimD resCD XG

 

  

colimD resCD XG
≅  * ⊗ D resCD XG

εXG(G/G)

hocolimC XG
 colimC XG

≅   XG(G/G)

↑

∼

The composition of the first column followed by the last row is the assembly

map mG: The composition in the last column is zXG
ðG=GÞ; see [2, Corollary 6.9]. &

More generally, one can prove that the ‘‘ðX ;F;GÞ-Isomorphism Conjecture’’ of
[4, Definition 5.1] is equivalent to X satisfying OrðG;FÞ-codescent at G=G; for any

objectwise cofibrant diagram XASOrðGÞ and any family F of subgroups of G:

For gAG and HpG; we write gH :¼ gHg
1: In the orbit category OrðGÞ ¼ CG; for
an element gAG such that gHpK for some subgroups H and K of G; we designate

by the right coset Kg the morphism G=H-G=K taking g̃H to g̃g
1K :

Proof of Theorem 1.2. Consider the functor F: CH-CG taking a coset H=LACH to

G=L: For any LpH; we have canonical equivalences of groupoids in Gpdsf

H=L
H
’
B

%L-
B

G=L
G
;
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where %L is L viewed as a one-object groupoid. Since X is a homotopy functor, one
checks that there is a canonical zig-zag of two CH -weak equivalences between XH

and F�XG ¼ XG3F in USðCHÞ: By weak invariance of codescent [1, Proposition
6.10], XH and F�XG satisfy DH -codescent at exactly the same objects H=L of CH :

Fix an object H=KADH : Let EH=KCG be a set of representatives for the quotient

H\fgAG j gKpHg: Let Mg: FðH=KÞ ¼ G=K-G=M ¼ FðH=MÞ be a morphism in
CG with MpH (and gAG). It is straightforward that there is a unique pair ðg;MhÞ
with gAEH=K and MhAmorCH

ðH=gK ;H=MÞ (namely characterized by Hg ¼ Hg
and Mh ¼ Mgg
1) such that Mg decomposes in CG as

G/K
gKg

M�

G/ gK
Mh

G/M.

Since FðDHÞCDG; this precisely says that F is a left glossy morphism of pairs of

small categories in the sense of [1, Definitions 7.3 and 8.1]. By left glossy invariance
of codescent [1, Theorem 9.14], F�XG satisfies DH -codescent at some H=LACH if
and only if XG satisfies D1-codescent at G=LACG; where D1 :¼ FðDHÞ: Set D2 :¼ DG

and fix H=LACH : For i ¼ 1; 2; consider the full subcategory Ei of Di given by

Ei :¼ fG=KADi jmorCG
ðG=K ;G=LÞa+g:

By the Pruning Lemma [1, Theorem 11.5], XG satisfies D1-codescent at G=L if and
only if it satisfies E1-codescent at G=L: Since LpH; every object of E1 is isomorphic,
inside CG; to some object of E2 and conversely; in other words, E1 and E2 are
essentially equivalent in CG; in the sense of [1, Definition 3.12]. So, by [1, Proposition
10.1], XG satisfies E1-codescent at G=L if and only if it satisfies E2-codescent at G=L:
By the Pruning Lemma again, XG satisfies E2-codescent at G=L if and only if it
satisfies D2-codescent at G=L; i.e. DG-codescent at G=L:

In total, we have proven that XH satisfies DH -codescent at an object H=LACH if
and only if XG satisfies DG-codescent at G=L; as was to be shown. &

Proof of the Main Theorem. The equivalence between (1) and (2) follows from
Theorems 1.1 and 1.2; (2) and (3) are equivalent by [1, Theorem 13.5]. &
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