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Abstract

The spread of carbapenemase producers in Enterobacteriaceae has now been identified worldwide. Three main carbapenemases have been

reported; they belong to three classes of b-lactamases, which are KPC, NDM, and OXA-48. The main reservoirs of KPC are Klebsiella

pneumoniae in the USA, Israel, Greece, and Italy, those of NDM are K. pneumoniae and Escherichia coli in the Indian subcontinent, and those of

OXA-48 are K. pneumoniae and Escherichia coli in North Africa and Turkey. KPC producers have been mostly identified among nosocomial

isolates, whereas NDM and OXA-48 producers are both nosocomial and community-acquired pathogens. Control of their spread is still

possible in hospital settings, and relies on the use of rapid diagnostic techniques and the strict implemention of hygiene measures.
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Introduction

Although they were rarely reported a decade ago, carbape-

nemase-producing Enterobacteriaceae are now being extensively

reported. Different groups of enzymes possessing carbape-

nemase properties have emerged, and are spreading worldwide.

Some of these enzymes hydrolyse carbapenems very efficiently,

whereas others show weak activity against carbapenems. Some

include broad-spectrum cephalosporins in their hydrolytic

pattern, and some do not. Some have activity that may be

inhibited (at least partially) by b-lactamase inhibitors (such as

clavulanic acid and tazobactam), whereas most are not inhibited

by clinically available inhibitors. However, these significant

differences do not really explain the successful spread of specific

enzymes in specific countries or areas [1].

The main features related to the epidemiology of these

enzymes are as follows:

1. The first parameter is the primary reservoir. Indeed, it is very

likely that a specific enzymewill emerge in a given geographical

area where many favourable conditions exist, such as a

high-density population, poor hygiene, and high selective

pressure linked to overuse and misuse of antibiotics.

2. The second parameter concerns the genetics of the

carbapenemase gene, as some genetic structures are prone

to enhance gene plasticity and mobility. Some integron or

transposon structures and plasmids may indeed favour

horizontal gene transfer. Some plasmids possess a broad

host range for replication, and can therefore enhance

interspecies dissemination, whereas some others possess a

narrow host range. Some plasmids replicate very efficiently

and are self-conjugative, whereas others are not self-con-

jugative or conjugate at very low rate. The genetic

background of the strain harbouring the carbapenemase

gene may also play an important role, as the emergence of

one gene in a so-called successful clone (being, for instance,

more likely to disseminate from patient to patient, or more

able to survive on dry surfaces) can favour the initial spread

of a carbapenemase through the spread of the correspond-

ing bacterial host.
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3. The third main parameter concerns the level of human

population exchanges once a reservoir has been constituted.

If the emergence of a carbapenemase occurs in a geograph-

ical area where the population is mobile (an important

worldwide-located diaspora, tourism, or medical tourism),

then the likelihood of seeing that resistance determinant

emerging worldwide is high.

The spread of carbapenemase genes is explained by a

combination of these three parameters. Among the four

molecular classes according to the Ambler classification [2],

carbapenemases can be found in classes A, B, and D.

The Class A Carbapenem-hydrolysing

b-lactamases

The first carbapenemase (NmcA; non-metallo-carbapenemase

of class A) was identified >20 years ago in an Enterobacter

cloacae isolate. Since then, the SME enzymes (Serratia marces-

cens enzymes) have been identified in S. marcescens. This family

includes five variants (SME-1 to SME-5), all of which are

chromosomally encoded [3] and have been recovered spo-

radically throughout the USA and Canada [4–6] (M. Mulvey,

unpublished). The IMI enzymes (imipenem-hydrolysing b-lac-

tamases) have been detected in rare isolates of Enterobacter in

the USA [7], France [8], Croatia [9], Finland [10], and

Argentina[11], and, more recently, a colistin-resistant Enterob-

acter asburiae isolate was recovered in Ireland [12]. The genes

encoding these carbapenemases are mostly chromosomally

located and associated with AmpC-type regulation

(LysR-dependent), limiting their spread and their expression

at a high level. However, genes encoding the IMI-2 variant have

been found to be plasmid-located in environmental E. asburiae

strains recovered from several US rivers [13] and in a single

E. cloacae isolate in China [14].

The first variant of the GES family (for ‘Guiana

extended-spectrum b-lactamase’), i.e. GES-1, which is not a

carbapenemase, was reported in 2000. The GES family now

includes 24 variants (http://www.lahey.org/Studies/other.asp#

table 1) [15]. All GES variants possess the ability to hydrolyse

broad-spectrum cephalosporins, but, as a result of specific

amino acid substitutions inside the active site, extension of

their spectrum of activity towards carbapenems has been

identified for several variants [16]. Among these variants, GES-

2, GES-4, GES-5, GES-6, GES-11, GES-14 and GES-18 hydro-

lyse imipenem efficiently [17]. Although they are quite rare,

GES enzymes have been identified worldwide. Among those

GES variants for which significant carbapenemase activity has

been noted are the following: GES-2 identified in Pseudomonas

aeruginosa, with one clone being the cause of a nosocomial

outbreak in South Africa [18]; and GES-5 identified in

Enterobacteriaceae and P. aeruginosa, which has been widely

reported in South America (Brazil) [19,20], and for which

there are some scattered reports in Turkey [21] and South

Korea [22]. GES-11 and GES-14 have been identified only in

Acinetobacter baumannii [23], and GES-18 has been identified in

P. aeruginosa but not in Enterobacteriaceae [24].

It is noteworthy that this GES-5 variant possessing signif-

icant carbapenemase activity has disseminated quite widely,

being found not only in nosocomial settings but also in the

environment in South America [25], and being the main

carbapenem-hydrolysing GES-type enzyme identified in Entero-

bacteriaceae. The high rate of GES-5 producers in South

America and, in particular, in Brazil [26] might be a

consequence of the occurrence of the non-carbapenemase

GES-1 variant in the same geographical area [27]. It might be

speculated that selective pressure resulting from the use of

carbapenems has resulted in the emergence of GES-5.

KPC enzymes (Klebsiella pneumoniae carbapenemases) are

currently the most clinically significant enzymes among the

class A carbapenemases. They have been mainly identified in

K. pneumoniae, which is an important nosocomial pathogen, and

confer high levels of resistance not only to carbapenems but also

to most b-lactams, including broad-spectrum cephalosporins.

The first KPC producer (a KPC-2-positive K. pneumoniae) was

identified in 1996 on the eastern coast of the USA [28], and since

then a series of variants have been identified, even thoughKPC-2

remains the most commonly identified variant. There are now

19 KPC variants, all being point-mutant derivatives of a common

amino acid sequence.Within a few years, KPC producers spread

globally andwere identified inmanyGram-negative species, even

though KPC enzymes have been mostly identified in K. pneu-

moniae [29] (Fig. 1). In Latin America, KPC producers are

endemic in some areas, such as in Colombia and Argentina [29].

Some reports have also shown the occurrence of KPC

producers in Puerto Rico and Mexico [30,31] (Fig. 1).

In Europe, KPC producers have been found almost

everywhere, mostly being being linked to importation from

endemic areas [29]. Those endemic areas in Europe are

Greece and Italy, and probably Poland, where nosocomial

outbreaks caused by KPC-producing K. pneumoniae often

occur [32]. In Israel, endemicity of KPC producers has been

demonstrated by many studies, with a large number of

nosocomial reports, but also, noticeably, some cases occurring

in the community [29,33].

The extent of the diffusion of KPC in Southeast Asia is not

well known, even though China is considered to be a country

where some areas are facing endemic situations [29]. In India,
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there are very few reports on KPC-producing isolates, the

most commonly identified carbapenemases being NDM and

OXA-48-like enzymes (see below). However, there are some

reports showing that KPC producers are occurring in India

[34,35].

It is noteworthy that one specific KPC-2-producing or

KPC-3-producing K. pneumoniae clone (sequence type 258)

has been extensively identified worldwide [36], indicating that

it has significantly contributed to the spread of this resistance

trait.

The Class B Metallo-b-lactamases (MBLs)

MBLs, which are known to be intrinsic in many environmental

and opportunistic bacterial species, have been identified as

acquired enzymes since the early 1990s, either in Pseudomonas

or in Enterobacteriaceae [37]. The most common families of

acquired class B MBLs identified in Enterobacteriaceae include

the VIM and IMP groups [37], together with the emerging

NDM group (see below), whereas others, such as GIM-1 and

KHM-1, have been found only sporadically [38,39]. Although

they have been reported worldwide, the VIM producers

among Enterobacteriaceae are highly prevalent in the southern

part of Europe and around the Mediterranean Sea (first

reported in Italy by Cornaglia et al.), whereas the IMP

producers remain mostly located in Asia [37].

IMP-type b-lactamases were the first acquired MBLs to be

identified, and have been detected in a series of clinically

important Gram-negative bacilli, such as Enterobacteriaceae,

Pseudomonas, and Acinetobacter. Among Enterobacteriaceae,

IMP-1 was found in an S. marcescens isolate in Japan in 1991

[40]. So far, 48 IMP variants have been assigned, and IMP-type

carbapenemase producers have spread worldwide. However,

the frequency of IMP-producing isolates worldwide is much

less than that of KPC, VIM, NDM or OXA-48 producers. The

wide spread of IMP-type enzymes has been demonstrated

mainly in Japan, Taiwan, and eastern China, although there are

single reports from many other countries, and isolates

producing these enzymes have sometimes caused nosocomial

outbreaks. Another type of MBL corresponds to the VIM-type

enzymes (Verona integron-encoded MBLs). VIM-1 was first

identified in Italy in 1997 [41,42], and VIM-2 was then reported

in France in a P. aeruginosa isolate dating from 1996 [43].

Currently, the VIM family includes 41 variants, which have

been mainly identified in P. aeruginosa but also in enterobac-

terial isolates. VIM-2 is actually the most commonly reported

MBL worldwide [1], with endemic spread in southern Europe

(Greece, Spain, and Italy) and Southeast Asia (South Korea and

Taiwan), but has also caused outbreaks in Africa, in particular

in the Ivory Coast [44], South Africa [45], Tunisia [46], and

some European countries, such as Germany [47], The

Netherlands [48], and France [49,50]. These outbreaks have

mainly involved VIM-producing P. aeruginosa, and rarely

enterobacterial species. In Europe, Greece is known to be

endemic for VIM-1-producing Enterobacteriaceae. Many Greek

studies have reported the spread of VIM-1-producing K. pneu-

moniae at a national level, but this enzyme has also been

identified in Escherichia coli, Citrobacter freundii, Morganella

morganii, Serratia species, and Klebsiella oxytoca [51,52].

Recently, the KHM-1 b-lactamase was identified in Japan in a

single C. freundii clinical isolate that had been recovered in

1997 [39]. The GIM-1 MBL (which stands for ‘German

imipenemase’), which was first identified in a P. aeruginosa

isolate from Germany [38], has since been identified in other

P. aeruginosa isolates [53], and also in S. marcescens [54],

E. cloacae [55], and Acinetobacter pittii [56]. Worringly, GIM-1

was recently identified in many enterobacterial species,

Unknown distribution of KPC producers
Sporadic spread of KPC producers
Outbreaks caused by KPC producers
Endemicity of KPC producers 

FIG. 1. Geographical distribution of KPC

producers.
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including Escherichia coli, C. freundii, and K. oxytoca, always in

Germany [53]. The other described acquired MBLs include

SPM-1 [57], SIM-1 [58], DIM-1 [59], TMB-1 [60], and AIM-1

[61], but they have not been identified in Enterobacteriaceae,

being found either in Pseudomonas or Acinetobacter.

One of the most most clinically significant carbapenemase is

NDM-1 (New Delhi metallo-b-lactamase), which was

described in 2009, the corresponding K. pneumoniae and

Escherichia coli isolates being from a Swedish patient of Indian

origin hospitalized in €Orebro, Sweden, after a hospital stay in

New Delhi [62,63]. NDM-1 shares very little identity with

other MBLs, the most similar being VIM-1/VIM-2, with only

32.4% amino acid identity. NDM-1 efficiently hydrolyses a

broad range of b-lactams, including penicillins, cephalosporins,

and carbapenems, but sparing monobactams such as aztreo-

nam [62]. Since the first description of NDM-1, eight variants

of this enzyme have been published (NDM-1 to NDM-8), and

12 have been assigned (http://www.lahey.org); most of them

originated from Asia [64–66]. As compared with NDM-1, the

NDM-4, NDM-5 and NDM-7 variants possess increased

activity towards carbapenems [67–70]. A detailed analysis of

the resistance patterns shows their systematic association with

other antibiotic resistance determinants, such as plasmid-

mediated AmpC cephalosporinases, clavulanic acid-inhibited

expanded-spectrum b-lactamases, other types of carbapene-

mases (OXA-48, VIM and KPC types), and enzymes conferring

broad-spectrum resistance to aminoglycosides (16S RNA

methylases), to quinolones (Qnr), to macrolides (esterases),

to rifampicin (rifampicin-modifying enzymes), to chloramphe-

nicol, and to sulphamethoxazole [71,72]. Consequently, many

of the NDM-1 producers remain susceptible only to colistin,

fosfomycin, and tigecycline [73].

The main identified reservoir of NDM-producing Entero-

bacteriaceae is the Indian subcontinent (Pakistan, India, and Sri

Lanka) [63] (Fig. 2). The spread of NDM producers has been

extensively identified not only among patients from the Indian

subcontinent, but also in the soil [74,75]. Therefore, it is likely

that the environment is already heavily contaminated with

NDM producers. The prevalence of carriage is estimated to be

5–15% in that part of the world [76,77]. Significant spread of

NDM producers has also been identified in the UK, which has

close relationships with India and Pakistan [65]. Subsequently,

NDM producers among Enterobacteriaceae have been reported

in almost all of world, including many countries in Asia, Africa,

Australia, the Americas, and Europe [78]. NDM producers are

now on top of the list of carbapenemase producers in

European countries such as the UK and France [63,65].

Other particularly important sources of NDM producers

(or established secondary reservoirs) are the Balkan states

[79,80], the Arabian peninsula [81,82], and North African

countries [64]. The impact of intercontinental travel as a

source of spread of NDM producers has been extensively

reported. NDM producers have been extensively identified in

countries where many Indians and Pakistanis live, such as

Canada, the USA, the UK, Ireland, South Africa, Saudi Arabia,

the Gulf countries, and Australia. It is noteworthy that the

identification of NDM producers is not always associated with

an Indian subcontinental origin, supporting the hypothesis of

established secondary reservoirs [83–87].

All NDM-producing enterobacterial species have been

found to be involved in infections, but K. pneumoniae and

Escherichia coli are the main causes of hospital and commu-

nity-acquired infections, respectively. The frequent identifica-

tion of NDM-producing Escherichia coli is of concern,

considering that Escherichia coli is the main pathogen respon-

sible for urinary tract infections, community-acquired infec-

tions, and diarrhoea [88]. In fact, antibiotic resistance

occurring in community settings is, by definition, very difficult

to contain, and diarrhoea is the source of further spread of

NDM producers in the environment, at least in Southeast

Asia.

It may therefore be expected that outbreaks caused mostly

by NDM-producing K. pneumoniae will be increasingly

reported worldwide and, concomitantly, a slow but progres-

sive increase in the prevalence rate of NDM-producing

Escherichia coli will be observed, mirroring the spread of

CTX-M producers that we have observed in community

setttings since the 2000s. It is noteworthy that outbreaks

caused by NDM-1-producing Escherichia coli or E. cloacae have

been reported in Bulgaria and Turkey, respectively [89,90].

However, it is difficult to evaluate the time that it will take to

obtain prevalence rates of NDM-producing Escherichia coli

comparable to those observed for CTX-M producers (15–

70%, depending on the countries). Long-term persistence of

NDM producers in the human gut will contribute to further

human-to-human transfer [91], leading to some autochtho-

nous cases in non-endemic areas, as observed in France [92].

The Carbapenem-hydrolysing Class D

b-lactamases (CHDLs)

Class D b-lactamases, which are also named OXAs (for

‘oxacillinases’), now include >400 enzymes, among which only

some variants actually possess carbapenemase activity [93].

With the exception of rare OXA enzymes (such as OXA-163;

see below), the CHDLs do not hydrolyse (or very poorly

hydrolyse) expanded-spectrum cephalosporins. Notably, all

CHDLs possess weak carbapenemase activity, which does not

confer high-level resistance to carbapenems if it is not
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associated with other factors, such as permeability defects

[94].

Although most of the CHDL variants have been identified in

Acinetobacter, OXA-48 and its derivatives have been identified

in Enterobacteriaceae [95]. The first OXA-48 producer to be

identified was a K. pneumoniae isolate recovered in Turkey in

2003 [96]. Since then, OXA-48 producers have been exten-

sively reported in Turkey, often being the causes of nosoco-

mial outbreaks [96–99]. OXA-48-producing isolates have now

widely disseminated throughout European countries, and it is

highly probable that one of the main reservoirs, apart from

Turkey, corresponds to North African countries [95]. Indeed,

most countries in the Mediterranean area frequently report

the occurrence of OXA-48-producing Enterobacteriaceae [95].

Hospital outbreaks involving OXA-48-producing K. pneumo-

niae, Escherichia coli and E. cloacae have been reported in many

countries, including France, Germany, Switzerland, Spain, The

Netherlands, and the UK [100–105]. One of the main factors

sustaining the successful spread of the blaOXA-48 gene among a

variety of enterobacterial species is the high transfer efficiency

of the plasmid on which blaOXA-48 is located [106]. This

self-conjugative plasmid, which is considered to be epidemic,

does not carry any additional resistance determinants, and

conjugates at a very high frequency to any enterobacterial

species [107].

OXA-48-producing isolates have been reported in the

Middle East, in countries such as Lebanon, the Sultanate of

Oman, Saudi Arabia, and Kuwait [108–114] (Fig. 3). In Africa,

they have been mainly identified in the northern countries

(Morocco, Algeria, Tunisia, Egypt, and Libya) [101,115–126],

but OXA-48 producers have also been identified in Senegal

and South Africa [127,128] (Fig. 3).

The same OXA-48-producing K. pneumoniae isolate of

sequence type 395 has been identified in Morocco, France,

and The Netherlands, indicating clonal dissemination in some

instances [101]. It is noteworthy that the recently identified

occurrence of OXA-48 producers in Israel was demonstrated

to be linked with medical tourism, involving patients who had

been transferred from Georgia or Jordan [129]. Also notice-

able is the fact that OXA-48 is still considered to be almost

completely absent from the Americas, even though recent

reports have shown the emergence of OXA-48-producing

K. pneumoniae in the USA [30].

A point-mutant derivative of OXA-48, namely OXA-181,

sharing the same hydrolytic properties, has been identified in

enterobacterial isolates from India and from patients with a

link with the Indian subcontinent [130]. The genetic struc-

ture surrounding blaOXA-181 was found to be distinct from

that associated with blaOXA-48, indicating that the current

disseminations are not related to each other. The blaOXA-181

gene has been identified in different countries, such as

France, the UK, Norway, Romania, the Sultanate of Oman,

Canada, Australia, New Zealand, Singapore, and Sri Lanka,

and a link with India has been systematically observed

[95,128,131].

OXA-204 was recently identified in a series of K. pneumo-

niae isolates recovered from patients having a link with Algeria

or Tunisia. OXA-204 has two amino acid substitutions as

compared with OXA-48, and preliminary data indicate a

substrate profile that is very similar to that of OXA-48 [132].

OXA-232 has recently been identified in K. pneumoniae

isolates in France, from patients who had been transferred

from Mauritius or India [133]. It has five amino acid substi-

tutions as compared with OXA-48, but is just a point-mutant

derivative of OXA-181. OXA-232 possesses a weaker ability

to hydrolyse carbapenems than OXA-48, but was recently

found to be co-associated with NDM-1 in a carbapenem-resis-

tant K. pneumoniae isolate obtained very recently in the USA

from a patient who had been previously identified in India

[134].

Unknown distribu�on of NDM producers
Sporadic spread of NDM producers
Outbreaks caused by NDM producers
Endemicity of NDM producers 

FIG. 2. Geographical distribution of

NDM producers.
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Finally, another OXA-48-like enzyme, namely OXA-163,

has been recently identified in enterobacterial isolates recov-

ered in Argentina [135]. OXA-163 differs from OXA-48 by a

single amino acid substitution and a four amino acid deletion

[95,135]. Interestingly, although its carbapenemase activity is

lower than that of OXA-48, its substrate profile includes

broad-spectrum cephalosporins, and its activity is partially

inhibited by clavulanic acid, thus conferring on the corre-

sponding enterobacterial recipient strains a resistance pheno-

type very similar to that of an expanded-spectrum b-lactamase

producer. OXA-163 was originally identified in enterobacterial

isolates (E. cloacae and K. pneumoniae) recovered in Argentina

[135], and then in Egypt [136]. Other studies confirmed that

OXA-163 producers were frequently identified in Argentina

[30], and one single amino acid mutant (OXA-247) sharing the

same hydrolytic properties was identified in that country

[137].

Conclusion

Although the spread of carbapenemases appears to be quite

recent, the ‘big players’, which are NDM, KPC, and OXA-48,

are now widely distributed. Important reservoirs have been

identified: the Indian subcontinent for NDM, the USA, Israel,

Greece and Italy for KPC, and Turkey and North Africa for

OXA-48. The Indian subcontinent actually acts as a reservoir

of all three types of carbapenemases: KPC, NDM, and

OXA-181. KPC producers are still mostly identified in

nosocomial K. pneumoniae isolates. In contrast, NDM and

OXA-48 are being extensively identified in nosocomial and

community-acquired K. pneumoniae and Escherichia coli isolates,

respectively. Interestingly KPC and NDM have been identified

in unrelated Gram-negative species, whereas OXA-48 has

been identified only in enterobacterial species. However,

genetic analysis indicates that the OXA-48 gene has a

propensity to spread among enterobacterial species at a much

higher rate than KPC and NDM genes.

The important reservoirs of these carbapenemase produc-

ers that have been identified act as significant sources for their

dissemination worldwide. Indeed, it is extremely common to

see the occurrence of a carbapenemase-producing isolate in a

geographical area where there is no endemicity or an epidemic

situation linked to a patient who has a previous history of

hospitalization or a travel in an endemic area. This indicates

that very early identification of carbapenemase producers, at

least in hospital settings, may contribute to limitating their

spread. The use of rapid diagnostic techniques is key to their

diagnosis, and should be followed by the implementation of

strict hygiene measure to limit their spread.
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