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Abstract

In this paper we construct six-dimensional compact non-Kähler Hamiltonian circle manifolds which sat-
isfy the strong Lefschetz property themselves but nevertheless have a non-Lefschetz symplectic quotient.
This provides the first known counterexamples to the question whether the strong Lefschetz property de-
scends to the symplectic quotient. We also give examples of Hamiltonian strong Lefschetz circle manifolds
which have a non-Lefschetz fixed point submanifold. In addition, we establish a sufficient and necessary
condition for a finitely presentable group to be the fundamental group of a strong Lefschetz manifold. We
then use it to show the existence of Lefschetz four-manifolds with non-Lefschetz finite covering spaces.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Brylinski defined in [2] the notion of symplectic harmonic forms. He further conjectured that
on a compact symplectic manifold every cohomology class has a harmonic representative and
proved that this is the case for compact Kähler manifolds and certain other examples.

A symplectic manifold (M,ω) of dimension 2m is said to have the strong Lefschetz property
or equivalently to be a strong Lefschetz manifold if and only if for any 0 � k � m, the Lefschetz
type map

Lk[ω] :Hm−k(M) → Hm+k(M), [α] → [
α ∧ ωk

]
(1)
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is onto. Mathieu [13] proved the remarkable theorem that Brylinski conjecture is true for a sym-
plectic manifold (M,ω) if and only if it has the strong Lefschetz property. This result was
strengthened by Merkulov [16] and Guillemin [6], who independently established the sym-
plectic d,δ-lemma for compact symplectic manifolds with the strong Lefschetz property. As
a consequence of the symplectic d,δ-lemma, they showed that strong Lefschetz manifolds are
formal in a certain sense.

We obtained an equivariant version of the above results jointly with Sjamaar in [12]. In partic-
ular, it was proved in [12] that for a compact Hamiltonian G-manifold with the strong Lefschetz
property every cohomology class has a canonical equivariant extension. In a subsequent paper
[11] the author extended the main results in [12] to equivariant differential forms with general-
ized coefficients on Hamiltonian manifolds with the strong Lefschetz property.

Kaoru Ono and Reyer Sjamaar raised the question whether the strong Lefschetz property
descends to the symplectic quotient. Obviously, this question has an affirmative answer in the
category of equivariant Kähler geometry. It is then a very natural question to ask whether this is
still the case in the symplectic category.

The main result of this paper is first known counterexamples which show, in contrast with
the equivariant Kähler case, that the strong Lefschetz property does not survive symplectic re-
duction in general. The difficulty constructing such examples comes largely from the lack of
general examples of non-Kähler Hamiltonian symplectic manifolds which have the strong Lef-
schetz property. Historically, a lot of examples of non-Kähler symplectic manifolds have been
constructed. However, as the strong Lefschetz property is commonly used as a tool to detect the
existence of Kähler structure, not many known examples of non-Kähler symplectic manifolds
have the strong Lefschetz property.

By Mathieu’s theorem [13] for a symplectic manifold with the strong Lefschetz property the
symplectic harmonic groups always coincide with the de Rham cohomology groups. It is note-
worthy that Dong [4] showed that there exist compact symplectic four-manifolds which admit a
family ωt of symplectic forms such that the dimension of the third symplectic harmonic group
varies. Dong’s construction depends heavily on the following result in Gompf’s path-breaking
paper [5].

Theorem 1.1.1 [5] Let G be any finitely presentable group. Then there is a closed, symplectic
four-manifold (M,ω) such that

(1) π1(M) = G,
(2) the Lefschetz map L[ω] :H 1(M) → H 3(M) is trivial.

Our construction of counterexamples is inspired by the above-mentioned work of Dong
[4], and by Karshon’s example [9] of a Hamiltonian circle six-manifold with a non-log con-
cave Duistermaat–Heckman function, which in turn is a piece of a manifold constructed by
Mcduff [14]. Let us give a brief account of the main ideas of our construction here. First, we
show that any finitely presentable group G with a certain structure can be realized as the fun-
damental group of a four-manifold N which supports a family of symplectic forms ωt , t ∈ R,
such that (N,ω0) does not have the strong Lefschetz property. Second, we prove that for such a
manifold N there exists a six-dimensional strong Lefschetz compact Hamiltonian S1-manifold

1 The first assertion of Theorem 1.1 is contained in the statement of Theorem 4.1 of [5]; the second assertion follows
from the discussion following the proof of Observation 7.4 in the same paper.
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M which is fibred over N with the fibre S2; furthermore, the symplectic quotient of M taken
at a certain value will be exactly N with the reduced form ω0. As G varies, we actually obtain
infinitely many topologically inequivalent six-dimensional compact Hamiltonian S1-manifolds,
each of which has the strong Lefschetz property itself but nevertheless admits a non-Lefschetz
symplectic quotient. This also gives us new examples of compact non-Kähler Hamiltonian man-
ifolds. (Cf. [10,18].)

The same ideas also allow us to construct Hamiltonian strong Lefschetz manifolds which have
non-Lefschetz fixed point submanifold. For a compact Hamiltonian manifold, one interesting
question is what the relationship is between the symplectic harmonic theory of the manifold
itself and that of its fixed point submanifold. For instance it remains an open question whether a
compact Hamiltonian circle manifold with isolated fixed points has to satisfy the strong Lefschetz
property. And one may further ask whether the strong Lefschetz property for a Hamiltonian circle
manifold and its fixed point submanifolds will imply each other. Our examples give a negative
answer to the latter question.

As an aside, we give a sufficient and necessary condition for a finitely presentable group
to be the fundamental group of a compact symplectic four-manifold with the strong Lefschetz
property. It suggests that the fundamental groups of strong Lefschetz manifolds and that of Käh-
ler manifolds may have quite different behavior. In fact, it enables us to construct examples of
compact strong Lefschetz manifolds which have non-Lefschetz finite covering spaces.

It is an important question to which extent the symplectic manifolds are more general than
Kähler manifolds. The examples constructed in this paper show clearly that the category of strong
Lefschetz manifolds with Hamiltonian circle actions is much larger than the category of Kähler
manifolds with compatible Hamiltonian circle actions.

This paper is organized as follows. Section 2 modifies Dong Yan’s methods [4] to prove the
existence of the symplectic four-manifolds with certain properties we want. Section 3 records
a sufficient and necessary condition for a finitely presentable group G to be the fundamental
group of a compact strong Lefschetz four-manifold. As an immediate application of this obser-
vation, Section 3 also gives us examples of strong Lefschetz manifolds with non-Lefschetz finite
covering spaces. Section 4 shows how to construct compact Hamiltonian strong Lefschetz circle
manifolds with a non-Lefschetz symplectic quotient. In addition, Section 4 also explains how
to obtain examples of Hamiltonian strong Lefschetz circle manifolds with a non-Lefschetz fixed
point submanifold.

2. Symplectic four-manifolds with certain properties

In this section, we establish the existence of symplectic four-manifolds with certain properties
which we need in Section 4 for our construction of counterexamples. This is stated precisely in
Proposition 2.3, which has appeared in different guises in [4] and [5] and depends on an idea of
Johnson and Rees [8].

Definition 2.1. Let G be a discrete group. A non-degenerate skew structure on G is a non-
degenerate skew bilinear form

〈 , 〉 :H 1(G,R) × H 1(G,R) → R

which factors through the cup product, that is, there exists a linear functional σ :H 2(G,R) → R

so that 〈a, b〉 = σ(a ∪ b), for all a, b ∈ H 1(G,R).
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A finitely presentable group G is called a Kähler group if it is the fundamental group of a
closed Kähler manifold; otherwise it is a non-Kähler group. It was proved in [8] that any Kähler
group and any of its finite index subgroups must admit a non-degenerate skew structure.

Lemma 2.2. Let (N,ω) be a closed, symplectic four-manifold so that π1(N) is a finitely pre-
sentable group which admits a non-degenerate skew structure. Then there exists an integral class
c such that the map Lc :H 1(N) → H 3(N) is an isomorphism.

Proof. By elementary homotopy theory there is a natural map f :N → K(G,1) such that the
induced homomorphism

f ∗ :H ∗(G,R) → H ∗(N,R)

is an isomorphism in dimension 1 and injective in dimension 2. Let 〈 , 〉 be a non-degenerate
skew structure on G and σ be the corresponding functional on H 2(G,R). Since H 2(G,R) is
a subspace of H 2(N,R), σ extends to a functional σ̃ on H 2(N,R). By Poincaré duality, there
exists a class c such that

σ̃ (a) = (
a ∧ c, [N ]),

where a ∈ H 2(N,R) and [N ] is the fundamental class of N . Suppose x ∈ H 1(N,R) such
that Lc(x) = x ∧ c = 0 ∈ H 3(N,R). Then for any y ∈ H 1(N,R) we have σ̃ (y ∧ x) =
((y ∧ x) ∧ c, [N ]) = (y ∧ (x ∧ c), [N ]) = 0. Note σ̃ (y ∧ x) = σ(y ∧ x) = 〈y, x〉 we conclude
that 〈y, x〉 = 0 for any y ∈ H 1(N,R). It then follows from the non-degeneracy of 〈 , 〉 that x = 0.
This shows that Lc is injective. Then by Poincaré duality Lc must be an isomorphism indeed.
Finally note that the set

{
α ∈ H 2(N)

∣∣ Lα :H 1(N) → H 3(N) is an isomorphism
}

is an open subset of H 2(N). Without the loss of generality, we may assume that the class c we
obtained above is rational. Replace c by nc for some sufficiently large integer n if necessary, we
get an integral class c such that the map Lc :H 1(N) → H 3(N) is an isomorphism. �

Combining Lemma 2.2 and Theorem 1.1, we get the existence of symplectic four-manifolds
with the desired properties as stated in the following proposition.

Proposition 2.3. Let G be a finitely presentable group which admits a non-degenerate skew
structure. Then there is a closed, symplectic four-manifold (N,ω) with π1(N) = G such that the
following two conditions are satisfied:

(1) the Lefschetz map L[ω] :H 1(N) → H 3(N) is identically zero;
(2) there exists an integral class c ∈ H 2(N) such that the map Lc :H 1(N) → H 3(N) is an

isomorphism.
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3. A remark on the fundamental groups of strong Lefschetz four-manifolds

As an application of Proposition 2.3, we record in this section an interesting observation on
the fundamental groups of strong Lefschetz four-manifolds.

Using the hard Lefschetz theorem, Johnson and Rees proved in [8] that if a finitely presentable
group G is the fundamental group of a compact Kähler manifold, then G has to admit a non-
degenerate skew structure. We note that the fundamental groups of strong Lefschetz manifolds
also have to admit a non-degenerate skew structure, and Johnson and Rees’s argument applies
verbatim to our situation. On the other hand, if G is a finitely presentable group which supports
a non-degenerate skew structure, then by Proposition 2.3 there exists a compact symplectic four-
manifold (N,ω0) and a closed two-form c on N such that the Lefschetz map L[ω0] :H 1(N) →
H 3(N) is identically zero and such that the map Lc :H 1(N) → H 3(N) is an isomorphism. For
a sufficiently small constant ε > 0, set ω′ = ω0 + εc. It is easy to see that ω′ is symplectic and
satisfies the strong Lefschetz property. In summary we have the following result.

Theorem 3.1. Suppose G is a finitely presentable group. Then the following statements are equiv-
alent:

(i) G admits a non-degenerate skew structure.
(ii) G can be realized as the fundamental group of a compact strong Lefschetz four-manifold.

Theorem 3.1 raises a natural question whether there exist finitely presentable non-Kähler
groups which support a non-degenerate skew structure. This question is answered affirmatively in
Lemma 3.3. However, to prove this lemma we will need a non-trivial fact concerning non-Kähler
groups which is due to Johnson and Rees.

Theorem 3.2. [8] Let G1, G2 be groups which both have at least one non-trivial finite quotient,
and let H be any group. Assume that G = (G1 ∗G2)×H admits a non-degenerate skew structure.
Then G has a subgroup of finite index which does not support any non-degenerate skew structure,
and consequently is not a Kähler group itself.

Lemma 3.3. For any positive composite numbers m,n, the group Gm,n = (Zm ∗ Zn) × (Z × Z)

admits a non-degenerate skew structure; furthermore, Gm,n has a subgroup of finite index which
does not admit any non-degenerate skew structure, and therefore is not a Kähler group.

Proof. Since m,n are composite numbers, both Zm and Zn have non-trivial finite quotient. It
follows from Theorem 3.2 that the group Gm,n has a subgroup of finite index which does not
support any non-degenerate skew structure. Note that by Corollary 6.2.10 and Exercise 6.2.5
of [19], Hi(Zm ∗Zn,R) = Hi(Zn,R)⊕Hi(Zm,R) = 0 for i � 1. Then it follows from the Kün-
neth formula in group cohomology (see for instance Exercise 6.1.10 of [19]) that Hi(Gm,n,R) =
Hi(Z × Z,R) for i � 1. Since (Z × Z) is a Kähler group, (Z × Z) must have a non-degenerate
skew structure. It follows that Gm,n also has such a structure. �
Example 3.4. Let m,n be two composite natural numbers and let Gm,n be defined as in
Lemma 3.3. Since Gm,n does support a non-degenerate skew structure itself, by Theorem 3.1
it can be realized as the fundamental group of some symplectic four-manifold N . By Lemma 3.3
Gm,n must have a subgroup K of finite index which does not support any non-degenerate skew
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structure at all. Let Ñ be the finite covering space of N with fundamental group K . Then by
Theorem 3.1 again we have that Ñ does not support any symplectic form ω such that (Ñ,ω) has
the strong Lefschetz property.

Gompf proved in [5] the remarkable result that any finitely presentable group can be real-
ized as the fundamental group of a symplectic four-manifold. In contrast, Theorem 3.1 imposes
a rather stringent restriction on the fundamental groups of compact strong Lefschetz four-
manifolds. For example, any non-trivial finitely presentable free group cannot be the fundamental
group of a compact strong Lefschetz four-manifold. (Cf. pages 592–593 of [5].) In addition, The-
orem 3.1 also asserts that, different from the fundamental groups of compact Kähler manifolds to
which far more rich restrictions apply (see, e.g., [1]), the fundamental groups of compact strong
Lefschetz four-manifolds have only one restriction as we stated in Theorem 3.1. Therefore, as
suggested by Example 3.4, fundamental groups may serve as effective tools to distinguish strong
Lefschetz manifolds from Kähler manifolds.

4. Examples that the strong Lefschetz property is not preserved by symplectic reduction

Since in this section we are going to make an extensive use of the Leray–Hirsch theorem, we
first give its precise statement here and refer to [3] for details.

Theorem 4.1 (Leray–Hirsch theorem). Let E be a fiber bundle over M with fiber F . Suppose
M has a finite good cover.2 If there are global cohomology classes e1, e2, . . . , er which when
restricted to each fiber freely generate the cohomology of the fiber, then H ∗(E) is a free module
over H ∗(M) with basis {e1, e2, . . . , er}, i.e.,

H ∗(E) � H ∗(M) ⊗ R{e1, e2, . . . , er} � H ∗(M) ⊗ H ∗(F ).

The following proposition enables us to construct six-dimensional Hamiltonian symplectic
manifolds which have the strong Lefschetz property from the symplectic four-manifolds with
properties stated in Proposition 2.3.

Proposition 4.2. Suppose (N,ω0) is a four-dimensional compact symplectic manifold such that:

(i) the Lefschetz map L[ω0] :H 1(N) → H 3(N) is not an isomorphism;
(ii) there exists an integral cohomology class [c] ∈ H 2(N) such that the map L[c] :H 1(N) →

H 3(N) is an isomorphism.

Then there exists a S2 bundle πM :M → N which satisfies the following conditions:

(i) there is a symplectic form ω on M such that (M,ω) has the strong Lefschetz property;
(ii) there is an S1 action on M such that (M,ω,S1) is a compact Hamiltonian manifold which

has a non-Lefschetz symplectic quotient.

2 An open cover {Uα}α∈Λ of an n-dimensional manifold M is called a good cover if all non-empty finite intersection
Uα0 ∩ · · · ∩ Uαp is diffeomorphic to R

n. It is well known that every compact manifold has a finite good cover. See,
e.g., [3].
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Proof. Let S2 be the set of unit vectors in R3. In cylindrical polar coordinates (θ,h) away from
the poles, where 0 � θ < 2π , −1 � h � 1, the standard symplectic form on S2 is the area form
given by σ = θ ∧ dh. The circle S1 acts on (S2, σ ) by rotations

eit (θ, h) = (θ + t, h).

This action is Hamiltonian with the moment map given by μ = h, i.e., the height function.
Let πP :P → N be the principle S1-bundle with Euler class [c], let Θ be the connection one-

form such that dΘ = π∗
P c, and let M be the associated bundle P ×S1 S2. Then πM :M → N is

a symplectic fibration over the compact symplectic four-manifold N . The standard symplectic
form σ on S2 gives rise to a symplectic form σx on each fibre π−1

M (x), where x ∈ N . The S1-
action on S2 that we described above induces a fibrewise S1-action on M . Furthermore, there
is a globally defined function H on M such that the restriction of H to each fiber S2 is just the
height function h.

Next, we resort to minimal coupling construction to get a closed two-form η on M which
restricts to the forms σx on the fibres. Let us give a sketch of this construction here and refer to
[7,17,20] for technical details. Consider the closed two-form −d(tΘ) = −tdΘ −dt ∧Θ defined
on P × R. It is easy to see the S1-action on P × R given by

eit (p, t) = (
eitp, t

)

is Hamiltonian with the moment map t . Thus the diagonal action of S1 on (P × R) × S2 is also
Hamiltonian, and M is just the reduced space of (P × R) × S2 at the zero level. Moreover, the
closed two-form (−d(tΘ) + σ)|zero level descends to a closed two-form η on M with the desired
property.

It is useful to have the following explicit description of η. Observe that θ − Θ is a basic form
on (P × R) × S2. Its restriction to the zero level of (P × R) × S2 descends to a one form θ̃

on M whose restriction to each fibre S2 is just θ . It is easy to see that on the associated bundle
P ×S1 (S2 − {two poles}) we actually have η = Hπ∗

Mc + dH ∧ θ̃ .
For any real number t0, note that the restriction of η− t0π

∗
Mc to fibres are symplectic forms σx .

By an argument due to Thurston [15], for sufficiently large constant K > 0 the form Kπ∗
Mω0 −

t0π
∗
Mc + η is symplectic. Equivalently, define ω = π∗

Mω0 − εt0π
∗
Mc + εη for sufficiently small

constant ε > 0. Then ω is a symplectic form on M ; furthermore, the fibrewise S1-action on
(M,ω) is Hamiltonian with the moment map H :M → R.

Choose some minx∈M H(x) < t0 < maxx∈M H(x) and have it fixed. If we perform symplectic
reduction at H = t0, the symplectic reduced space is N with the reduced form ω0. Clearly,
(N,ω0) does not satisfy the strong Lefschetz property since the Lefschetz map L[ω0] :H 1(N) →
H 3(N) is not an isomorphism.

It remains to check that for sufficiently small constant ε > 0, (M,ω) has the strong Lefschetz
property.

Consider the closed two-form η on M . Its restriction to each fibre S2 generates the second
cohomology group H 2(S2). Write H(S2) = R[x]/(x2), where R[x] is the real polynomial ring
and (x2) is the ideal of R[x] generated by the quadratic polynomial x2. By the Leray–Hirsch
theorem there is an additive isomorphism

H(N) ⊗ R[x]/(x2) → H(M), [α] ⊗ xi → [
π∗

Mα ∧ ηi
]
, i = 0,1.
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As a result we have [η2] = [π∗
Mβ2 ∧ η] + [π∗

Mβ4], where β2 and β4 are closed forms on N of
degree two and four, respectively.

Choose an ε > 0 which is sufficiently small such that

[ω0 − t0εc]2 = −ε2[β4] + ε
[
(ω0 − t0εc) ∧ β2

]
. (2)

We claim for the ε chosen above, the symplectic manifold (M,π∗
Mω0 −εt0π

∗
Mc+εη) will satisfy

the strong Lefschetz property. By Poincaré duality it suffices to show the two Lefschetz maps

L2[ω] :H 1(M) → H 5(M), (3)

L[ω] :H 2(M) → H 4(M) (4)

are injective. We will give a proof in two steps below.

(i) It follows from the Leray–Hirsch theorem that

H 1(N)
�
π∗

M

H 1(M).

Thus to show map (3) is injective we need only to show for any [λ] ∈ H 1(N) if
L2[ω](π∗

M [λ]) = 0 then we have [λ] = 0. Since ω = π∗
M(ω0 − t0εc)+εη, [η2] = [π∗

Mβ2 ∧η]+
[π∗

Mβ4] and any forms on N with degree greater than 4 vanishes, we have

0 = L2[ω]
([π∗λ]) = π∗

M

(
2ε[ω0 − t0εc] + ε2[β2]

) ∧ [
π∗

Mλ
] ∧ [η]. (5)

Since by the Leray–Hirsch theorem H(M) is free over 1 and [η], we get that

0 = π∗
M

(
2ε[ω0] − 2t0ε

2[c] + ε2[β2]
) ∧ π∗

M [λ]
= π∗

M

(([
2εω0 − 2t0ε

2c + ε2β2
]) ∧ [λ]).

Since L[c] :H 1(N) → H 3(N) is an isomorphism, the determinant of the linear map
L[2εω0−2t0ε

2c+ε2β2] :H 1(N) → H 3(N) is a polynomial in t0 of positive degree. Therefore
L[2εω0−2t0ε

2c+ε2β2] :H 1(N) → H 3(N) is an isomorphism except for finitely many possible
values of t0. If necessary, replace H and t0 by H + C and t0 + C respectively for some
suitable small constant C > 0. We conclude that map (3) is an isomorphism.

(ii) By the Leray–Hirsch theorem, to show that map (4) is injective it suffices to show if
L[ω](π∗

M [ϕ] + k[η]) = 0 for arbitrarily chosen scalar k and second cohomology class
[ϕ] ∈ H 2(N), then we have [ϕ] = 0 and k = 0. Since ω = π∗

M(ω0 − t0εc) + εη and
[η2] = [π∗

Mβ2 ∧ η] + [π∗
Mβ4], we have

0 = L[ω]
(
π∗

M [ϕ] + k[η])

= (
π∗

M

[
(ω0 − t0εc) ∧ ϕ

] + εkπ∗
M [β4]

)

+ (
kπ∗

M [ω0 − t0εc] + επ∗
M [ϕ] + εkπ∗

M [β2]
) ∧ η. (6)
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By the Leray–Hirsch theorem H(M) is a free module over 1 and [η]. So we have that

π∗
M

[
(ω0 − t0εc) ∧ ϕ

] + εkπ∗
M [β4] = 0, (7)

kπ∗
M [ω0 − t0εc] + επ∗

M [ϕ] + εkπ∗
M [β2] = 0. (8)

If k = 0, it follows easily from Eq. (8) that [ϕ] = 0. Assume k = 0. Substitute π∗
M [ϕ] =

− 1
ε
kπ∗

M [ω0 − t0εc] − kπ∗
M [β2] into Eq. (7) we get

π∗
M [ω0 − t0εc] ∧ (−kπ∗

M [ω0 − t0εc] − εkπ∗
M [β2]

) + ε2kπ∗
M [β4] = 0.

Since k = 0, we get

π∗
M

([ω0 − t0εc]
)2 = −ε2π∗

M [β4] + επ∗
M

[
(ω0 − t0εc) ∧ β2

]
.

This contradicts Eq. (2). �
Now we are in a position to construct examples that the strong Lefschetz property does not

survive symplectic reduction.

Example 4.3. Since the torus is a Kähler manifold, G = Z×Z is a Kähler group and thus admits
a non-degenerate skew structure. Clearly, by Proposition 2.3 there is a closed, symplectic four-
manifold (N,ω0) which satisfies the following conditions:

(i) π1(N) = Z × Z.
(ii) The Lefschetz map L[ω] :H 1(N) → H 3(N) is trivial.

(iii) There is an integral class [c] ∈ H 2(N) such that the map L[c] :H 1(N) → H 3(N) is an
isomorphism.

Then it follows easily from Proposition 4.2 that there exists a compact six-dimensional Hamil-
tonian circle manifold (M,ω) which has the strong Lefschetz property itself but admits a non-
Lefschetz symplectic quotient.

Since the six-dimensional Hamiltonian S1-manifold (M,ω) constructed in Example 4.3 has
a non-Lefschetz symplectic quotient, ω cannot be an invariant Kähler form. But in general we
do not know whether M supports any Kähler form or not. To get examples which do not admit
any Kähler structure, we observe that by our construction M → N is a fibration with fiber S2

and so π1(M) = π1(N). Instead of choosing G = Z × Z, we may well choose G = Gm,n, where
m,n are any composite numbers and Gm,n is defined as in Lemma 3.3. For any such a group G,
the corresponding Hamiltonian manifold M has a non-Kähler fundamental group and therefore
is not homotopy equivalent to any compact Kähler manifold. Thus we have proved the following
theorem:

Theorem 4.4. There exist infinitely many topologically inequivalent six-dimensional compact
Hamiltonian symplectic S1-manifolds which satisfy the following conditions:

(i) the strong Lefschetz property,
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(ii) admitting a non-Lefschetz symplectic quotient,
(iii) not homotopy equivalent to any compact Kähler manifold.

Finally we observe that the fixed point set of the Hamiltonian symplectic manifold (M,ω,S1)

constructed in Proposition 4.2 has two components on which the moment map takes maximum
and minimum, respectively; furthermore, in the proof of Proposition 4.2, if we choose t0 to be the
minimum value of the moment map, then the minimal component as a symplectic submanifold
can be identified with (N,ω0) which clearly does not have the strong Lefschetz property. This
observation, together with Lemma 3.3, leads to the following result.

Theorem 4.5. There exist infinitely many topologically inequivalent six-dimensional compact
Hamiltonian symplectic S1-manifolds which satisfy the following conditions:

(i) the strong Lefschetz property,
(ii) admitting a non-Lefschetz fixed point submanifold,

(iii) not homotopy equivalent to any compact Kähler manifold.
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