
Theoretical Computer Science 363 (2006) 257–265
www.elsevier.com/locate/tcs

Improved algorithms for two single machine scheduling problems�

Yong He, Weiya Zhong∗, Huikun Gu
Department of Mathematics, State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, PR China

Abstract

In this paper, we investigate two single machine scheduling problems. The first problem addresses a class of the two-stage
scheduling problems in which the first stage is job production and the second stage is job delivery. For the case that jobs are
processed on a single machine and delivered by a single vehicle to one customer area, with the objective of minimizing the time
when all jobs are completed and delivered to the customer area and the vehicle returns to the machine, an approximation algorithm
with a worst-case ratio of 5

3 is known and no approximation can have a worst-case of 3
2 unless P = NP. We present an improved

approximation algorithm with a worst-case ratio of 53
35 , which only leaves a gap of 1

70 . The second problem is a single machine
scheduling problem subject to a period of maintenance. The objective is to minimize the total completion time. The best known
approximation algorithm has a worst-case ratio of 20

17 . We present a polynomial time approximation scheme.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Scheduling; Delivery; Worst-case ratio

1. Introduction

In this paper, we consider two single machine scheduling problems, which have strong background in supply chain
management and manufacture management.

The first problem is a scheduling problem with job delivery coordination, which is first proposed by Chang and Lee
[2], and can be described as follows: We are given n jobs N = {J1, J2, . . . , Jn} which must be first non-preemptively
processed in a manufacturing system and then delivered to respective customers. Job Jj , j = 1, 2, . . . , n needs a
processing time of pj in the manufacturing system, and has a size sj which represents the physical space Jj occupies
when this job is loaded in the vehicle. One vehicle is available to deliver finished jobs in batches, and has a capacity
z which means that finished jobs can be arranged to fit in the physical space provided by the vehicle as long as their
total size does not exceed z. The vehicle is initially located at the manufacturing facility. All jobs delivered together in
one shipment are defined as a delivery batch. A transportation time depending on customer area is associated with each
delivery batch. Furthermore, we define a one customer area as a location where a group of customers are located in
close proximity to each other. The goal is to find a schedule for processing jobs in manufacturing system and delivering
finished jobs to the corresponding customers such that the time required for all jobs in N to be processed and delivered
to the respective customer(s) is minimized. To evaluate this goal, we define the makespan of a schedule, denoted by

� Research supported by National Natural Science Foundation of China (10271110, 60021201).
∗ Corresponding author.

E-mail address: zhongcherry@163.com (W. Zhong).

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.04.014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82567564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:zhongcherry@163.com

258 Y. He et al. / Theoretical Computer Science 363 (2006) 257 –265

Cmax, as the time when the vehicle finishes delivering the last batch to the customer site(s) and returns to the machine(s).
Then the problem is to find a schedule to minimize the makespan.

As we know, coordination of activities among different stages in the supply chain has become one of the most
important topic in production and operations management research in last decade. For the research on the coordination
of production and delivery schedule, one may refer to [2]. Different from traditional scheduling problems which
implicitly assume that there are infinitely many vehicles for delivering finished products to their destinations so that
finished products can be transported to customers without delay, the above problem incorporates the delivery plan of a
vehicle into a manufacturing system. It models a class of the two-stage scheduling problem in which the first stage is
job production and the second stage is job delivery. The focus is on the study of the integration of production scheduling
with delivery of finished products to customers, which measures the customer service level.

Three strongly NP-hard cases of the above problem are considered in [2]: for the case that the manufacturing system
consists of a single machine and there is one customer area, Chang and Lee presented a polynomial time algorithm H1
with a worst-case ratio of 5

3 , while no polynomial time algorithm can have a worst-case ratio of smaller than 3
2 unless

P = NP. For the case that the manufacturing system consists of two identical machines and there is one customer
area, they presented a polynomial time algorithm H2 with a worst-case ratio of 2. For the case that the manufacturing
system consists of a single machine and there are two customer areas, they presented a polynomial time algorithm H3
with a worst-case ratio of 2, too.

In this paper, we revisit the first case of the above problem, which is denoted by 1 → D, k = 1|v = 1, c = z|Cmax.
Here “1 → D, k = 1” means that jobs are first processed on a single machine and then delivered to customer(s) who
are located in one area. “v = 1, c = z” means that there is only one vehicle with capacity z. We will present a modified
algorithm MH1 with a worst-case ratio of 3

2 + 1
70 = 53

35 , which greatly improves the known upper bound of 5
3 and is

quite close to the lower bound of 3
2 .

The second considered problem in this paper is a single machine scheduling problem with a machine availability
constraint, which can be described as follows: we are given n jobs N = {J1, J2, . . . , Jn} which must be processed on
a single machine. Job Jj has a processing time pj , j = 1, 2, . . . , n. All jobs are available at time zero, whereas the
machine has a maintenance period during the processing of jobs, i.e., the machine cannot process any job during the
given time window [R, R + L]. Preemptions are not allowed. Hence a job that is preempted due to the maintenance
must be restarted after the machine is repaired. The objective is to find a schedule such that the total completion time
is minimized. This problem is denoted by 1, h1|| ∑ Ci [6].

Adiri et al. [1] and Lee and Liman [5] showed that the problem 1, h1|| ∑ Ci is NP-hard. They also studied algorithm
SPT (shortest processing time) as an approximation algorithm solving this problem. Lee and Liman [5] proved that the
worst-case ratio of SPT is 9

7 . Recently, Sadfi et al. [6] proposed a modified algorithm MSPT with a worst-case ratio of
20
17 . This algorithm is based on a post-optimization of the SPT algorithm by applying a 2-OPT procedure. In this paper,
we will extend this idea to a general k, k-exchange procedure. Then we will propose a polynomial time approximation
scheme (PTAS) based on this new procedure. Hence our result greatly improves the known result.

2. Problem 1 → D, k = 1|v = 1, c = z|Cmax

This section considers the two-stage scheduling problem with a single machine and one customer area: 1 → D, k =
1|v = 1, c = z|Cmax. Let P be the total processing time of all the jobs. Let t be the one-way transportation time
between the machine and the customer, therefore, each delivery has the same transportation time T = 2t .

2.1. Preliminaries and algorithm description

Property 1 (Chang and Lee [2]). There exists an optimal schedule for the problem 1 → D, k = 1|v = 1, c = z|Cmax
that satisfies the following conditions:
(1) Jobs are processed on the machine without idle time.
(2) Jobs assigned to one batch are processed consecutively on the machine.
(3) Jobs assigned to one batch can be processed on the machine in any order.
(4) Batches are delivered in non-decreasing order of the total processing time of jobs in each batch.

Y. He et al. / Theoretical Computer Science 363 (2006) 257 –265 259

Therefore, only schedules satisfying the above properties are considered further. Also, batches will be indexed and
delivered in non-decreasing order of the total processing time of the jobs in each batch.

Lemma 1 (Chang and Lee [2]). For any schedule satisfying Property 1, if Cmax > P + T , then P1 < T and Cmax =
P1 + KT , in which P1 denotes the total processing time of the jobs in the first batch and K denotes the number of
batches in the schedule.

Since different jobs with different sizes can be delivered in one batch, the packing step can be viewed as a bin-packing
problem.Algorithms FF (first fit) and FFD (first fit decreasing) are two classical algorithms for the bin-packing problem.
We will apply them as sub-procedures for solving our problem. Note that algorithms FF and FFD are based on the job
sizes and the vehicle capacity z in this paper.

Lemma 2. For an instance I of the bin-packing problem, let OPT(I), FF(I), FFD(I) be the numbers of used bins in
an optimal solution, the solutions yielded by FF and FFD, respectively. We have

(1) (Simchi-Levi [7]) FF(I)� 7
4 OPT(I);

(2) (Yue [8]) FFD(I)� 11
9 OPT(I) + 1.

The following algorithm H1 was proposed by Chang and Lee [2] for solving 1 → D, k = 1|v = 1, c = z|Cmax.

Algorithm H1. (1) Assign jobs to batches by algorithm FFD. Let the total number of resulting batches be b1.
(2) Define Pk as the total processing time of the jobs in the kth batch, k = 1, 2, . . . , b1. Reindex these batches such

that P1 �P2 � · · · �Pb1 , and denote the kth batch as Bk .
(3) Starting with B1, assign jobs in Bk to the machine, for k = 1, 2, . . . , b1. Jobs within each batch can be sequenced

in an arbitrary order.
(4) Dispatch each finished but undelivered batch whenever the vehicle becomes available. If multiple batches have

been completed when the vehicle becomes available, dispatch the batch with the smallest index.

It is clear that the time complexity of H1 is O(n log n). It is shown in [2] that the worst-case ratio of H1 is 5
3 .

Furthermore, since the bin-packing problem is a special case of our problem, it is impossible to have a polynomial time
approximation algorithm with a worst-case ratio of 3

2 unless P = NP.
Note that there is a point which prevents the worst-case ratio of H1 to be better: H1 assigns jobs to batches by

FFD, which does not take the processing times of jobs into consideration. The total processing time of jobs in the
first batch may be much larger than that in the optimal solution. Our improved algorithm applies a fully polynomial
time approximation scheme (FPTAS) of the knapsack problem, which enables the vehicle to start delivering jobs
earlier. Recall that for any instance of the knapsack problem, we are given n items, each with a profit and a size,
and a knapsack with limited capacity. We wish to put items into the knapsack such that the total size of the selected
items is not greater than the knapsack capacity and the total profit of the selected items is maximized. For this NP-
hard problem, among others, Lawler [4] proposed an FPTAS with a time complexity of O(n log(1/�) + 1/�4), where
1 − � is the worst-case ratio; and Kellerer and Pferschy [3] also proposed an FPTAS with a time complexity of
O(n min{log n, log(1/�)} + (1/�2) min{n, (1/�) log(1/�)}).

Now we are ready to present our improved algorithm.

Algorithm MH1. (1) Run algorithm H1. Let the obtained schedule be �1 with makespan C1. If b1 �= 3, stop; Else, go
to Step 2.

(2) Construct an instance of the knapsack problem as follows: for each job Jj , j = 1, 2, . . . , n, construct an
item with profit pj and size sj , and let the knapsack capacity be z. Run any FPTAS for the knapsack problem
with � = 2

35 , and denote by N1 the set of items put into the knapsack. Reindex all jobs such that N1 is at the
head.

(3) Assign jobs to batches by algorithm FF. Let the total number of resulting batches be b2.
(4) Run Steps 2–4 of algorithm H1 except that denote by B ′

k the kth batch, and by P
′
k the total processing times of

B ′
k , k = 1, 2, . . . , b2. Let the obtained schedule be �2 with makespan C2.
(5) Compare C1 and C2. Select the smaller one as output.

260 Y. He et al. / Theoretical Computer Science 363 (2006) 257 –265

Remark 3. The jobs corresponding to the items in N1 are assigned to the same batch by algorithm FF in Step 3 of
algorithm MH1.

When analyzing our algorithm, we use the following:
b∗
L is the number of batches if the jobs are assigned to batches by an optimal algorithm of the bin-packing problem;

b∗ the number of batches in the optimal schedule for our problem, P ∗ the optimal value of the instance of the knapsack
problem constructed in Step 2, C∗ the optimal makespan for our problem, CMH1 the makespan produced by MH1, y
the total processing time of jobs in the first batch in the optimal solution.

Lemma 4. If there are only two batches in the optimal schedule, P − y�P ∗.

Proof. Since jobs in each batch constitutes a feasible solution for the instance of the knapsack problem, and P − y is
the total processing time of the second batch in the optimal schedule, we have P − y�P ∗. �

Lemma 5. P ′
b2

� 33
35P ∗, in which P ′

b2
denotes the total processing time of jobs in the last batch of �2 (if exists).

Proof. From Remark 3, we know that there exists k, 1�k�b2, such that P
′
k � 33

35P ∗. Since P ′
1 �P ′

2 � · · · �P ′
b2

,

P ′
b2

�P ′
k � 33

35P ∗. �

2.2. Worst-case analysis of algorithm MH1

Lemma 6. If b1 �= 3, CMH1/C
∗ < 53

35 .

Proof. In this case, algorithm MH1 is just H1, hence CMH1 = C1. Chang and Lee [2] proved that C1/C
∗ � 5

3 . In order
to obtain C1/C

∗ < 53
35 , more careful analysis are necessary.

From Lemma 1, we have

C∗ = max{y + b∗T , P + T }. (1)

If C1 = P + T , we have C1 = C∗ clearly, and we are done. Hence, we suppose that C1 > P + T in the following.
Then by Lemma 1,

C1 = P1 + b1T and P1 < T. (2)

It is obvious that b∗ �2. Otherwise, b1 = b∗ = 1 and MH1 yields an optimal solution. If b1 �b∗, by (1) and (2), we
have

C1

C∗ � P1 + b1T

y + b∗T
<

P1 + b∗T
b∗T

= 1 + P1

T
· 1

b∗ < 1 + 1

b∗ � 3

2
<

53

35
. (3)

Hence, we only need to consider the case that b1 > b∗.
Noting that the jobs are assigned to batches according to algorithm FFD in H1, by Lemma 2(2), we have

b1 � 11

9
b∗
L + 1� 11

9
b∗ + 1. (4)

If b∗ = 2, then b1 � 31
9 < 4. From b1 > b∗ we know b1 = 3, contradicting the Lemma’s assumption b1 �= 3.

Therefore, we suppose b∗ �3 in the following. To obtain the desired worst-case ratio, we distinguish two cases according
to (1).

Y. He et al. / Theoretical Computer Science 363 (2006) 257 –265 261

Case 1: C∗ = y +b∗T . Then (1) implies y +b∗T �P +T , i.e., P �y + (b∗ − 1)T . Recall that P1 �P2 � · · · �Pb1 .
We establish that P1 �P/b1 �(y + (b∗ − 1)T)/b1, and thus

C1

C∗ = P1 + b1T

y + b∗T
� ((y + (b∗ − 1)T)/b1) + b1T

y + b∗T

= 1

b1
· y + b∗T + (b2

1 − 1)T

y + b∗T

= 1

b1
+ 1

b1
· (b2

1 − 1)T

y + b∗T

<
1

b1
+ 1

b1
· b2

1 − 1

b∗ . (5)

If b∗ = 3, (4) states that b1 � 42
9 < 5. Combing it with b1 > b∗, we have b1 = 4. Then from (5), it follows that

C1/C
∗ < 3

2 .
Similarly, if b∗ = 4, then b1 = 5 and thus C1/C

∗ < 7
5 ; if b∗ = 5, then b1 = 6, 7 and thus C1/C

∗ < 4
3 (for b1 = 6)

or C1/C
∗ < 53

35 (for b1 = 7); if b∗ = 6, then b1 = 7, 8, and thus C1/C
∗ < 9

7 (for b1 = 7) or C1/C
∗ < 23

16 (for b1 = 8).

If b∗ �7, (4) implies that b∗ �(9(b1 − 1))/11. Substituting it into (5), we obtain

C1

C∗ <
1

b1
+ 1

b1
· (b2

1 − 1)

9(b1 − 1)/11
= 11

9
+ 20

9b1
<

11

9
+ 20

9
· 1

8
= 3

2
, (6)

where the last inequality is from b1 > b∗ �7.
Case 2: C∗ = P + T . Then (1) implies C∗ = P + T �y + b∗T > b∗T . Combining it with (4), we have P >

(b∗ − 1)T �(9
11b1 − 20

11)T . As P1 �P/b1, we conclude that

C1

C∗ = P1 + b1T

P + T
� (P/b1) + b1T

P + T

= 1

b1
· P + T + (b2

1 − 1)T

P + T

= 1

b1
+ b2

1 − 1

b1
· T

P + T
<

1

b1
+ b2

1 − 1

b1
· T

b∗T

= 1

b1
+ b2

1 − 1

b1
· 1

b∗ . (7)

Note that (7) is the same as (5). Therefore, the same arguments as those in Case 1 can complete the proof. �

Lemma 7. If b1 = 3, CMH1/C
∗ < 53

35 .

Proof. Similarly, we can suppose that b∗ �2. If C1 = P + T or C2 = P + T , then min{C1, C2} = C∗ by (1). Hence,
we suppose that C1 > P + T and C2 > P + T . Then by Lemma 1, P1 < T and P ′

1 < T , where P1 and P ′
1 are the

total processing times of jobs in the first batches in �1 and �2, respectively.
If b1 �b∗, we have shown in Lemma 6 that C1/C

∗ < 3
2 (see the proof of (3)). Hence, we suppose b1 > b∗. Then

b∗ = 2. Hence, by Lemma 2(1), we have b2 � 7
4 ∗ 2 = 7

2 , that is, b2 �3. If further b2 �b∗, by similar arguments to
show (3) in the proof of Lemma 6, we can obtain C2/C

∗ � 3
2 . Hence, we suppose b2 > b∗. Combining it with b2 �3

and b∗ = 2, we know that b2 = 3.
b∗ = 2 and (1) states that C∗ = max{y + 2T , P + T }. Two cases are considered as follows.
Case 1: C∗ = y+2T . Then y+2T �P +T , and thus P �y+T . From Lemmas 4 and 5, we get P ′

3 � 33
35P ∗ � 33

35 (P −y).
Noting that P ′

1 �P ′
2 �P ′

3, we obtain

P ′
1 � P − P ′

3

2
� P − (33/35)(P − y)

2
= 2P + 33y

70
� 2(y + T) + 33y

70
= y

2
+ T

35
. (8)

262 Y. He et al. / Theoretical Computer Science 363 (2006) 257 –265

Therefore,

C2

C∗ = P ′
1 + 3T

y + 2T
� y/2 + (T /35) + 3T

y + 2T
= (1/2)(y + 2T) + (2 + 1/35)T

y + 2T
<

1

2
+ (2 + 1/35)T

2T
= 53

35
. (9)

Case 2: C∗ = P + T . Then P + T �y + 2T , and thus P �y + T . From Lemmas 4 and 5, we know P ′
3 � 33

35P ∗ � 33
35

(P − y) > 33
35T . By P ′

1 �P ′
2 �P ′

3 and P = ∑3
i=1 P ′

i , we have P ′
1 � 1

2 (P − P ′
3) < 1

2 (P − 33
35T). Therefore,

C2

C∗ = P ′
1 + 3T

P + T
<

(1/2)(P − (33/35)T) + 3T

P + T

= (1/2)(P + T) + (5/2 − (33/70))T

P + T

<
1

2
+ (5/2 − (33/70))T

2T
= 53

35
. �

Theorem 8. CMH1/C
∗ < 53

35 .

Proof. This is a direct conclusion of Lemmas 6 and 7. �

Since both FFD, FF and H1 run in time O(n log n), and the FPTAS of Lawler or Kellerer and Pferschy for the
knapsack problem runs in time O(n) when we take � = 2

35 , the time complexity of MH1 is O(n log n), the same as that
of H1.

3. Problem 1, h1|| ∑ Ci

This section addresses the problem 1, h1|| ∑ Ci . To present our improved algorithm, we will propose a local search
procedure, called k, k-exchange procedure, which is an extension of 2-OPT procedure proposed in [6].

Using the same notations as those in [5,6], denote by S∗ and S an optimal schedule and the schedule yielded by
algorithm SPT (shortest processing time first), respectively. Denote by B the set of the jobs scheduled before the
maintenance period in S, and by A the set of the remaining jobs scheduled after it. Denote by X the set consisting of
the |B| jobs scheduled first in S∗, and by Y the set of the remaining |A| jobs scheduled last. Denote by �∗ and � the
idle times on the machine before the maintenance period, respectively, in the schedules S∗ and S.

Definition 9. Let ā� |A|, b̄� |B| and k are positive integers satisfying k� b̄� ā. An k, k-exchange procedure is an

exchange of ā jobs in A with b̄ jobs of B in the schedule S, under the constraint that the total processing times of b̄

jobs in B plus � is no less than the total processing times of ā jobs in A. After exchange, the jobs are reordered before
and after the maintenance in non-decreasing order of their processing times.

Obviously an k, k-exchange procedure is essentially a post-optimization of the SPT schedule using local search
method. With this procedure, our improved algorithm, denoted by SPTE can be formulated as follows.

Algorithm SPTE. (1) Process all the jobs according to the SPT rule.
(2) For a given positive integer k, try all k, k-exchange procedures to generate new schedules.
(3) Choose the best one from the schedules generated in Steps 1 and 2 as output.
Clearly, by setting k = 1, the above algorithm becomes MSPT, which was proposed in [6]. Hence SPTE is a

generalization of MSPT. Sadfi et al. showed that MSPT has a worst-case ratio of 20
17 . Hence we assume that k�2 in

the following. We will show that SPTE is a PTAS. It shows that local search method is powerful for the considered
problem.

Denote by S′ the schedule yielded by algorithm SPTE. With straightforward notation, B ′ and A′ represent the job
partition of S′. Finally, we denote by Ci, C

′
i and C∗

i the completion times of job Ji in schedules S, S′ and S∗, respectively.
The following Lemmas 10 and 11 are cited from in [6], and Lemma 12 is parallel to Lemma 4 of that paper which

can be shown similarly.

Y. He et al. / Theoretical Computer Science 363 (2006) 257 –265 263

Lemma 10 (Sadfi et al. [6]). ���∗.

Lemma 11 (Sadfi [6]). If (at least) one job of X is scheduled after the maintenance period in the optimal solution,
then

n∑
i=1

C′
i �

n∑
i=1

C∗
i + (|Y | − 2)(� − �∗). (10)

Lemma 12. If (at least) k + 1 jobs of B are scheduled after the maintenance period in the optimal solution, then

n∑
i=1

C∗
i �

(|Y |(|Y | + 1)

2
+ k + 1

)
(� − �∗). (11)

Theorem 13. For any given integer k�2, algorithm SPTE has a worst-case ratio of at most 1 + 2/(5 + 2
√

2k + 8),
and runs in O(n2k+1). Therefore, SPTE is a PTAS for the problem 1, h1|| ∑ Ci .

Proof. We first prove (10) and (11). Two cases are considered as follows.

Case 1: No k, k-exchange procedure exists. Then the number of jobs from A should be no less than the number of
B, and S′ = S. If B = X, SPT schedule is optimal. If B �= X, in order to process some job(s) from A before the
maintenance period, we have to remove at least k + 1 jobs from B. Hence if S is not optimal, then at least one job from
X is processed after the maintenance period in S∗. Hence the condition of Lemma 11 is satisfied, and thus (10) is true.
Furthermore, at least k + 1 jobs from B are processed after the maintenance period in S∗, which states the condition
of Lemma 12 is satisfied. It follows that (11) is true.

Case 2: k, k-exchange procedures generate new schedules. Without loss of generality, we suppose that S∗ cannot be
generated by these procedures.

Suppose that the optimal schedule S∗ can be generated by exchanging b′ jobs from B with a′ jobs from A, where
|A|�a′ �1 and |B|�b′. Since S∗ cannot be generated by any k, k-exchange procedure, we have b′ > k. It states that
the condition of Lemma 12 is satisfied. Hence, (11) is true.

Since the processing time of any job from A is no less than that of any job from B, b′ �a′. We distinguish two
subcases according to this inequality.

Subcase 1: b′ > a′. Since S∗ can be generated by exchanging b′ jobs from B with a′ jobs from A, the number of
jobs processed before the maintenance period in S∗ must be |B| − b′ + a′ < |B|. Since |X| = |B|, we conclude that
at least one job from X is scheduled after the maintenance period in S∗. Eq. (10) follows.

Subcase 2: b′ = a′. Then a′ > k�2. For this subcase, the condition of Lemma 11 may not be satisfied, but we show
that (10) is still true assuming all jobs in X are processed before the maintenance period.

Let qA and qB be the total processing time of the biggest k jobs from A in X and the total processing time of
the biggest k jobs from B in Y , respectively. Let WA and WB be the sets of the other a′ − k jobs of X ∩ A and
Y ∩ B, respectively. Moreover, let pA and pB be the sums of their processing times. Note that pA �pB by the
construction of the schedule S. Now we construct a schedule S′′ from S∗ by exchanging the jobs of WA and WB

and processing jobs in SPT order before and after the maintenance period. Let �′′ be the idle time on the machine
before the maintenance period, X′′ be the set consisting of the |B| jobs scheduled first in S′′, and Y ′′ be the set of
the remaining |A| jobs scheduled last. Let � = pA − pB �0 for short. Denote by C′′

i the completion times of job
Ji in S′′.

By comparing schedules S′′ and S∗ (see Figs. 1 and 2), we have

C∗
i �C′′

i , 1� i� |B| − k,

and

C∗
i �C′′

i + �, |B| − k + 1� i� |B|,

264 Y. He et al. / Theoretical Computer Science 363 (2006) 257 –265

X �*

pB qB

WBWA

pA qA

Y

Fig. 1. Schedule S∗.

X'' �*

qB pA

WAWB

pB qA

Y''

Fig. 2. Schedule S′′.

where C∗
i and C′′

i are the completion times of jobs at position i in S∗ and S′′, respectively. It follows that

|B|∑
i=1

C′′
i �

|B|∑
i=1

C∗
i − k�. (12)

On the other hand,

C′′
|B|+a′ − C∗

|B|+a′ = (R + L + qB + pA) − (R + L + pB + qB) = �.

It implies that

C′′
i �C∗

i + �, |B| + 1� i� |B| + a′ − 1. (13)

and

C′′
i = C∗

i + �, |B| + a′ + 1� i�n. (14)

Summing (12)–(14), and by |Y | = n − |B|, we obtain

n∑
i=1

C′′
i �

n∑
i=1

C∗
i + (|Y | − k)��

n∑
i=1

C∗
i + (|Y | − 2)�.

Since pA + qA + �∗ = pB + qA + �′′, we have � = �′′ − �∗ �� − �∗ (due to �′′ ��). Hence

n∑
i=1

C′′
i �

n∑
i=1

C∗
i + (|Y | − 2)(� − �∗).

Since SPTE outputs the best schedule among all k, k-exchange procedures and S′′ can be generated by an k, k-exchange
procedure, we have

n∑
i=1

C′
i �

n∑
i=1

C∗
i + (|Y | − 2)(� − �∗),

which is just (10).
Now we are ready to get the worst-case ratio. By (10) and (11), we obtain

∑n
i=1 C′

i − ∑n
i=1 C∗

i∑n
i=1 C∗

i

� 2(|Y | − 2)

|Y |(|Y | + 1) + 2k + 2
.

Y. He et al. / Theoretical Computer Science 363 (2006) 257 –265 265

Define

f (|Y |) = 2(|Y | − 2)

|Y |(|Y | + 1) + 2k + 2
, |Y | > 0.

By taking a derivation of f (|Y |), we can see that it is increasing for |Y |�2 + √
2k + 8 and is decreasing for |Y |�2 +√

2k + 8 and hence reaches a maximum at |Y | = 2 + √
2k + 8 with

f (2 + √
2k + 8) = 2

5 + 2
√

2k + 8
.

Hence, the worst-case ratio of SPTE is at most 1 + 2/(5 + 2
√

2k + 8).
It is obvious that there are at most O(n2k) k, k-exchange procedures, and computing the objective function value of

a schedule takes O(n) time. Hence SPTE runs in time O(n2k+1), and is a PTAS for 1, h1|| ∑ Ci . �

References

[1] I. Adiri, J. Bruno, E. Frostig, A.H.G. Rinnooy Kan, Single machine flow-time scheduling with a single breakdown, Acta Inform. 26 (1989)
679–696.

[2] Y.C. Chang, C.Y. Lee, Machine scheduling with job delivery coordination, European J. Oper. Res. 158 (2004) 470–487.
[3] H. Kellerer, U. Pferschy, A New Fully Polynomial Approximation Scheme for the Knapsack Problem, Lecture Notes in Computer Science,

Vol. 1444, 1998, 123–134.
[4] E. Lawler, Fast approximation algorithms for knapsack problems, Math. Oper. Res. 4 (1979) 339–356.
[5] C.Y. Lee, S.D. Liman, Single machine flow-time scheduling with scheduled maintance, Acta Inform. 29 (1992) 375–382.
[6] C. Sadfi, B. Penz, C. Rapine, J. Błazewicz, P. Formanowicz, An improved approximation algorithm for the single machine total completion time

scheduling problem with availability constraints, European J. Oper. Res. 161 (2005) 3–10.
[7] D. Simchi-Levi, 1994, New worst-case results for the bin packing problem, Naval Res. Logist. 41 (1994) 579–585.
[8] M. Yue, A simple proof of the inequality FFD(L)� 11

9 OPT(L) + 1 ∀L, for the FFD bin-packing algorithm, Acta Math. Appl. Sin. 7 (1991)
321–331.

