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Abstract--A comparative study of multidimensional classifiers based on the goodness-of-fit cri- 
teria w~ and multilayer perceptrons (MLP) has been carried out. It is shown that MLP exhibits 
the "instantaneous" learning effect and improves the quality of recognition in the case of input data 
represented in the form of variational series. The reasons are analyzed that underlie these effects. 
Recommendations for joint usage of the w~ criteria and of MLPs are given. 

Key~vords--Multivariate classifiers, Goodness-of-fit criteria, Neural network, Variational series. 

1. I N T R O D U C T I O N  

The primary goal of experimental data processing consists in identification of the feature events 
among all the events obtained in the experiment. When an event is characterized by more than 
one variable, the procedure applied for constructing a multidimensional classifier is not trivial. 
In [1], new nonparametric w~-statistics were investigated, and goodness-of-fit criteria were con- 
structed. On their basis, a method was developed for extracting low probability multidimensional 
events from a background of predominant processes [2]. 

Artificial neural networks (ANN) for the classification of multidimensional events have been 
widely used in physical experiments [3]. One such problem consists of classifying individual 
events represented by empirical samples of finite volumes pertaining to one of the different partial 
distributions composing the distribution analyzed. 

In the present paper a brief description of multidimensional classifiers based on w~-criteria and 
ANN is presented, a comparative analysis of their powers is performed, and recommendations on 
their joint usage are given. The results of a MLP training are analyzed for various representations 
of the input data, and the reasons are investigated that lead to an "instantaneous" learning effect 
exhibited by the neural network and to enhancement of its power, when the data are input in 
the form of a variational series; reduction of the number of neurons in a hidden layer without 
deterioration of the recognition accuracy is discussed. 

2. w~-CRITERIA AND ANN 

The w~-criteria are usually applied for testing the correspondence of each individual sample 
(event) to the distribution known a priori.  For practical purposes it is convenient to use the 

This work has been supported by the Commission of the European Community within the framework of the 
EU-RUSSIA Collaboration, in accordance with ESPRIT CONTRACT P9282-ACTCS. 

Typeset by .,,4,~TEX 

677 



678 A. Yu. BONUSHKINA et al. 

algebraic form of the wk-statistics: 

i----1 n 
(1) 

where F(x) is the theoretical distribution function of x, xl < x2 < . . .  < xn is an ordered sample, 
and n is the sample size [1,2]. 

The following procedure for extracting feature events was developed in [2] on the basis of the 
wk-criteria: 

(a) the spectra to be analyzed are transformed, so that the contributions of dominant distribu- 
tions (in most cases these are distributions of background events) from different detectors 
are described by a sole distribution function Fb(X); 

(b) each sample, composed of values pertaining to the different transformed spectra, is tested 
with the aid of the w~-criterion for correspondence to the Fb(X) hypothesis; in this process 
the feature events, which do not comply with the null-hypothesis, correspond to large 
absolute values of w k, resulting in their clustering in the critical region; 

(c) events that happen to be in the critical region are further subjected to a second test 
in accordance with items (a) and (b), only with the difference that now it is precisely 
the feature events that are collected in the admissible region; this results in additional 
suppression of background events in the spectra being studied. 

The procedure for data handling, described above, was applied for extracting rare events in 
analyzing the information obtained in several experiments [2,4]. 

ANNs present a new paradigm of distributed parallel calculations based on the simulation of 
characteristic features of live neural networks. A feed-forward multilayer network (multilayer 
perceptron) is a convenient tool for constructing multidimensional classifiers [3], although its 
power of recognition depends critically on the choice of input data. 

Such network involves an input layer corresponding to the data analyzed, an output layer 
dealing with the results and, also, hidden layers. A network architecture is presented in Figure 1. 
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Figure 1. Architecture of multilayer perceptron wi th  one hidden layer. 

Here xk, hj and yi denote the input, hidden and output neurons, respectively; wjk are the 
weights of connections between the input neurons and the hidden layer, and w~j are t h e  weights 
of connections between the hidden and the output neurons. The signals aj = ~-]~k WjkXk and 
ai = ~ j  wijhj are fed to the inputs of hidden and output neurons, respectively. The output signals 
from these neurons are determined by the expressions hj = g[(aj +Oj)/T] and y~ = g[(a~ +Oi)/T], 
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where g(a, T) is a transfer function, T is the %emperature," determining its slope, ~ is the 
threshold of the corresponding node. Typically, g(a, T) is a sigmoid, for example, of the form 

g(a ,T)=tanh( ; ) .  (2) 

The training procedure consists in minimization of the following error functional with respect to 
weights: 

1 [if(p) ~.(p)] 2 E = ~ E  - , 
P 

where p = 1, 2 , . . . ,  Ytrain is the number of training patterns, and ~'(P) is the desired value of the 
output signal. 

3.  D A T A  A N A L Y S I S  U S I N G  w ~ - C R I T E R I O N  A N D  M L P  

Comparison of the powers of the indicated classifiers was carried out for the problem in which 
multidimensional events were generated using the Monte-Carlo method. The problem of sepa- 
rating cosmic protons and pions at energies of over 100 GeV was considered [5]. The ionization 
losses were generated for different kinds of particles traversing several detectors of an experimental 
setup. 

The simulation of events, each of which was represented by a set of random values, namely, the 
energy losses experienced by the pions or by the protons in the detectors, was performed as follows. 
First, the kind of particle was generated, and the ratio of the pion and proton contributions was 
assumed to be lr + : p = 1 : 4 (see [5]). Then, n random values AE~, i = 1,2, . . .  ,n (n was the 
number of detectors, taken to be equal to 6) were generated in accordance with the distribution 
of ionization losses for the selected kind of particle. The total number of generated events was 
set to 10000. The result of such a simulation for a single detector is presented in Figure 2; the 
separate contributions from protons and pious are indicated. 
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Figure 2. The resultant distribution of ionization energy losses (in KeV) for 100 GeV 
protons and pions in a single detector; the separate contributions from protons and 
pions are indicated. 

The Landau distribution function was taken as the null-hypothesis in applying the w~-criterion. 
The following A values were used as elements of the empirical sample: 

AEi - AE~p 
~, = , i = 1 , 2 , . . . , n ,  (3) 

where AE~ is the energy loss in the ith counter, AE~p us the transformed value of the most 
probable energy loss (see [2, Chapter 2]), ~ ~, (1/4) FWHM for the distribution of ionization 
losses of protons in a single counter. 
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The application of one-sided criteria is preferable in the case of the problem considered, and 
since a rise in k results in an enhancement of the power of the corresponding criterion [1], the 
values of wn k were calculated for each event by formula (1) for the maximum degree k = 5, for 
which tables of percentage points were available [1]. 

The distribution of the random variable w65 resulting from the processing of generated events 
is presented in Figure 3. The "empty" histogram is formed by proton events; the distribution for 
the pions is cross-hatched and is mainly located in the region of large w65. 
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Figure 3. The distribution of the random 
variable w 5, resulting from the processing 
of generated events (see text). 
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Figure 4. The dmtribution of energy 
losses for protons and pio~us in a single 
detector for selected events. 

It  is obviously convenient to choose the critical limit to be such that  a minimum number of pion 
events be lost and that  the contribution of proton events in the critical region be not too great. 
The joint distribution of energy losses for protons and pions in a single detector is presented 
in Figure 4 for events with w 5 _> 0.045 and A E  > 33.5 KeV; the respective contributions from 
protons and from pions are cross-hatched. The errors of the first and second kinds, now, amounted 
to 6.6% and 6.4%, respectively, which practically coincided with the result of [2] obtained by 
utilizing the ratio of likelihood functions, which is actually the most powerful method known in 

the case of simple hypotheses. 
A neural network containing six (in accordance with the number of detectors) input neurons, 

a hidden layer of 16 neurons and one output  neuron was used. All the neurons had the same 
transfer function (2). The target signal at the network output  was set equal to - 1  for proton 
events and to +1 for pion events. An at tempt  to use a sample of generated energy losses AE~, 
i = 1 , . . . ,  n as input data  gave no positive result. Therefore, an ordered sample of Ai, i = 1 , . . . ,  n 
values, calculated in accordance with expression (3), was adopted as the input data  for the neural 
network, as well as for the wS-criterion. 

All the generated events--approximately 2000 pion and 8000 proton events together with their 
respective target values--were mixed and divided into two equal (in number of events) groups. 
The first group was used for training the network and the second one for estimating its recognition 
efficiency. The identification of events was based on the value of the output  signal: if it did not 
exceed a certain critical value, the event examined was treated as a proton event, and in the 
opposite case as a pion event. 

For testing the network, a mixture of particles was used as input data. The spectra of output  
signals resulting from the processing of the generated events are presented in Figure 5: the 
"empty" histogram corresponds to proton events, the cross-hatched histogram to pion events. 
The probability for recognizing different particles in a mixture was also calculated and amounted 
to 93.5% (when the critical point was set equal to 0). The probabilities for recognizing proton 
and pion events were also calculated versus the value yg, like in the case of the wS-criterion. 
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The cumulative probabili ty F(y) = Pr{y < yg} for pion events and the 1 - F(y) dependence 
for proton events are presented in Figure 6. The probabilities of errors of the first and second 

kinds at  the intersection point of the two curves are equal to 6.8% and 6.9%, respectively, which 
is close to what  is obtained using the w65-criterion. 
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Figure 5. The spectra of output signals of 
the neural network: "empty" histogram-- 
proton events; cross-hatched histogram-- 
pion events. 
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Figure 6. The cumulative probability 
F(y) = Pr{y < yg} for pion and 1 -  
F(y) dependence for proton events: neu- 
ral network. 

The  results may be summed up as follows: 1 

1. The  presentation of input da ta  for the MLP in the form of variational series leads to an "in- 
stantaneous" learning effect and to enhancement of its power. For passing from the source 
sample to the new variables, knowledge is required only of the parameters  of the domi- 

nant  distribution. However, at the stage of the neural network training, the information is 
required on the various distributions forming the experimental spectrum. 

2. When only the parameters  of the dominant distribution are known, goodness-of-fit criteria 

wn k serve as a convenient tool for recognizing events corresponding to different distributions. 
It must be noted that their usage is substantiated quantitatively, while the results yielded by 
MLP are only qualitative. 

3. The  wnk-criteria are convenient in tha t  their repeated application permits extraction of the 
contributions of any number of partial distributions from the resultant spectrum observed 
in an experiment.  This makes possible, for instance, upon estimation of the parameters  of 
the consti tuent distributions, to additionally make use, if necessary, of a neural network. 

4 .  T H E  " I N S T A N T A N E O U S "  L E A R N I N G  E F F E C T  

Now, let us deal with the problem of classifying events represented by samples x~, i = 1 . . . .  , n 

of volumes from n = 2 to 9 pertaining to Gaussian distributions with coinciding mean values 
N(0,  1) and N(0,  0.3). 2 We shall consider events belonging to the distribution N(0 ,1)  to be of 

type I and events from N(0, 0.3) to be of type II. 

For classifying the events we applied the feed-forward network, which involves n input neurons, 
a hidden layer of 16 neurons and a single output  neuron. All the neurons have the same transit ion 
function of the form (2). In training the MLP, the output  signal of the network was set equal 
to - 1  for events of type I and +1 for events of type II. A total  of 8000 type I events and of 2000 

1The example examined is typical for certain problems in experimental intermediate and high energy particle 
physics (see, for instance, [2,4-6]). 
2N(a, a) denotes the Gaussian distribution with mean value # and variance a 2. 
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Figure 7. Total distribution for mixture of samples from the two distributions N(0,1)  
and N(0,  0.3); the individual contributions from distributions I and II are, respec- 
tively, marked by appropriate shadings. 

type II events were subjected to classification. The total distribution .for the mixture of samples 
from both distributions is shown in Figure 7. 

Event identification was made by the amplitude of the output signal y: if it did not exceed the 
given threshold value of Yt, the event examined was considered to be of type I; otherwise it was 
assigned to type II. In each case, the number of training cycles (epochs) required for adjustment 
to the actual problem being solved was realized. Here, the input data to the network were the 
same for each cycle, while upon its completion, correction was performed of the weights of the 
intemeuron connections. 

Now, consider the case when samples of random quantities xi are input to the neural network. 
For a sample of volume n = 2 the network starts distinguishing events belonging to different 
distributions only after 485 epochs. As n increases, fewer and fewer training cycles are required 
for achieving a good level of recognition. Figure 8a presents an example of event recognition 
probability versus the number of training cycles for n = 5. 
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Figure 8. Probability of event recognition by the neural network versus the number 
of training cycles for n = 5, when the input data are represented: (a) by samples of 
random quantities, (b) by samples reduced to variational series. 
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We now pass from the initial sample to the ordered sample 5:i (variational series) composed of 
the elements xi (i = 1 , . . . ,  n) : 5:1 < 5:2 < . . .  < 5:n. Figure 8b presents the corresponding proba- 
bility curve for event recognition, when ordered samples (n = 5) are input to the network. The 
nature of the curve indicates that  training of the network practically takes place instantaneously. 
Comparison of the dependencies presented in Figures 8a and 8b reveals that  the probability of 
event recognition being successful after completion of the training process turns out to be higher 
for the version involving the ordered sample. 

Thus, when a variational series is utilized as the input data for the MLP, the learning time of 
the network is significantly reduced and its power is enhanced. 

5. A N A L Y S I S  O F  R E A S O N S  O F  " I N S T A N T A N E O U S "  L E A R N I N G  
A N D  I M P R O V E M E N T  O F  R E C O G N I T I O N  

In the case of Bayesian classification involving a minimum error level, separation of v classes wj, 
j = 1, 2 , . . . ,  v of events, pertaining to multidimensional Gaussian distributions with respective 
covariance matrices Ej and vectors of mean values fij, is performed with the aid of separating 
functions of the following form (see, for example, [7]): 

1 . 1 In IZ~l + lnP(w/),  transpose, gj(~) = _~(~  _ ~ j ) t z ; l ( ~ _  ~j) _ ~ ,t ,  (4) 

where P(wj) are the a priori probabilities reflecting the initial knowledge of the relationship 
between the classes being identified, IEjl is the determinant of the covariance matrix. 

Two classes, Wl and w2, correspond to the problem dealt with in the present work. For 
simplicity we shall consider P(wl) = P(w2), meaning the ratio between the classes to be 1:1 and 
permitting the term In P(wj) in expression (4) to be neglected. Moreover, the covariance matrices 
=. for the problem under consideration are assumed to have a diagonal structure, i.e., Ej = a2I, ~3 

j = 1, 2, where I is the unit matrix. 
The surface of solutions satisfying the condition gl (~) = g2 (g), is determined by the equation 

n 

2 x, + 2 x,b,  + c = 0, (5) 
i = l  i = l  

where 

, c =  - 

Equation (5) defines a hypersphere with its centre at the point ( - b l , - b 2 , . . . , - b n )  and of radius 
n 2 R = X/-iAII, where IAI[ = -~_,i=lbi +c. In the plane case (n = 2) with fii = 0, i = 1,2, the 

resolving surface assumes the form of a circle with its centre at (0, 0) and of radius 

S In (alia2) ]1/2 
R--2 i 2t J " (6) 

Figure 9 presents the regions comprising 95% of the events composed of random samples of 
volume n = 2 pertaining to the distributions N(0, 1) and N(0, 0.3). The resolving circle of radius 
R = 0.6901 calculated by formula (6) for at  = 1 and a2 = 0.3 is also indicated. Classification 
with respect to this boundary yields a limit recognition level of 0.8586. 

Let us now consider what happens to the Bayesian boundary in the case of n -- 2, when 
transition is performed from the random to the ordered sample. Ordering reduces to points 
Xl > x2 being transferred symmetrically about the straight line x2 -- xt.  In this case, the density 
probability of the resultant two-dimensional distribution in the region x2 > Xl becomes a doubled 
Gaussian density. Therefore, the expression for the resolving function does not change, and the 



684 A. Yu. BONUSHKINA et al. 

-~2 

Figure 0. Confidence regions (95%) for two- 
dimensional distributions comprised of random 
samples of volume n = 2 from N(0,1) and 
N(0, 0.3) (see text). 
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Figure 10. Confidence regions (95%) for two- 
dimensional distributions comprised of ordered 
samples of volume n -- 2 from N(0 ,1 )  and 
N(0, 0.3) (see text). 

boundary is a semicircle of the same radius R (Figure 10). In both figures, the regions pertaining 
to different classes of event are shaded. 

The transformation considered above results in the resolving boundary no longer being closed, 

and this significantly simplifies searching for the minimum of the corresponding functional in the 

course of the network training, thus enhancing the actual speed of learning. Another factor is the 
reduction of the "area" enclosed by the boundary, which leads to a decrease in the error during 
training of the network. 

We now consider how the situation changes statistically in the case of transition from random 
to ordered samples. In this case, the elements xm of the variational series 2;1 <~ :r2 ( "'" < 

xm < ... < xn correspond to different distributions with density function described by the 
expression [8]: 

[B(m, - + 1)I [1 - 

where F(x)  is the distribution to which the empirical sample belongs, and .f(x) is its density, 
while the B are binomial coefficients. 

Figure 10 schematically presents the density functions for the elements of ordered samples 
(m = 1, 2) pertaining to the distributions N(0, 1) and N(0,  0.3), in accordance with which events 
of the classes being separated are input to the neuron network. These distributions can be clearly 
seen to exhibit noticeable shifts with respect to the mean. These shifts can be calculated making 
use of the expressions for the central moments  of distribution, given in [9]. 

For the case displayed in Figure 10, the quantities sent to the first input of the network belong 

to a distribution with the respective parameters  #11 = -0.5477, ~11 -- 0.7477 and/z12 = -0.1643, 
q12 = 0.2243, and the quantities sent to the second input correspond to #21 = 0.5477, (z21 = 
0.7477 and #22 = 0.1643, ~22 = 0.2243. Thus, the distributions sent to each of the inputs exhibit 
shifts of their means by d = 0.3834. When transition is performed to large samples n, the value of 
d increases, and moreover, the divergence between the mean values of the resultant n-dimensional 
distributions also increases. 

Thus, in the case of ordered samples, well-separated distributions are sent to the mth input 
of the network (m -- 1, 2 . . . .  , n). 3 This feature of the transformation under s tudy is one more 

Sin the case of disordered samples, the distributions with coinciding mean values for both classes are sent to each 
input of the network. 
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reason for the network to exhibit a significantly higher speed in "establishing" the sought resolving 
boundary. 

It must be noted that reduction of the "area" of the separating hypersurface, besides enhancing 
the learning speed and the quality of recognition, also results in another important consequence 
consisting of the fact that the number of neurons in the hidden layer required for achieving 
approximately the same level of recognition is significantly lower in the case of an ordered sample. 
This fact becomes comprehensible if one takes advantage of the simplified model of a network 
involving a steplike transition function, in accordance with which each neuron corresponds to an 
individual hyperplane approximating part of the resolving boundary. 

The resolving boundary was shown above to be a hypersphere of definite radius, when a random 
sample is input to the network. It can be readily shown that in the case of an ordered sample, 
the indicated boundary is part of the same sphere with an area n[ times smaller, signifying 
therefore that in the limit case of a sufficiently large number of approximating hypersurfaces, the 
number of neurons in the hidden layer, determined by the ratio between the areas of the resolving 
boundaries, is also n! times smaller. 

6. C O N C L U S I O N  

A comparative study of multidimensional classifiers based on the goodness-of-fit criteria Wn k 
and multilayer perceptrons has been carried out for distributions representing simultaneous mea- 
surements of the same physical values in several detectors of an experimental setup. It has been 
shown that transformation of the data, input to a MLP, into a variational series leads to sig- 
nificant acceleration of the network training process and, also, to improvement of the quality of 
recognition. Moreover, the representation of the data in such a form permits reducing the number 
of neurons in the hidden layer without loss of precision in the classification. Recommendations 
for joint usage of the wn k criteria of MLPs are given. 
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