
Cell Reports

Report
Asymmetric Reprogramming Capacity
of Parental Pronuclei in Mouse Zygotes
Wenqiang Liu,1,2,3 Jiqing Yin,2,3 Xiaochen Kou,2,3 Yonghua Jiang,2 Haibo Gao,2 Yanhong Zhao,2,3 Bo Huang,2

Wenteng He,2,3 Hong Wang,3 Zhiming Han,4,* and Shaorong Gao2,3,*
1College of Biological Sciences, China Agricultural University, Beijing 100094, China
2National Institute of Biological Sciences, NIBS, Beijing 102206, China
3School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
4State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
*Correspondence: hanzm@ioz.ac.cn (Z.H.), gaoshaorong@tongji.edu.cn (S.G.)

http://dx.doi.org/10.1016/j.celrep.2014.02.018

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
SUMMARY

It has been demonstrated that reprogramming
factors are sequestered in the pronuclei of zygotes
after fertilization, because zygotes enucleated at
the M phase instead of interphase of the first mitosis
can support the development of cloned embryos.
However, the contribution of the parental pronucleus
derived from either the sperm or the oocyte in
reprogramming remains elusive. Here, we demon-
strate that the parental pronuclei have asymmetric
reprogramming capacities and that the reprogram-
ming factors reside predominantly in themale pronu-
cleus. As a result, only female pronucleus-depleted
(FPD) mouse zygotes can reprogram somatic cells
to a pluripotent state and support the full-term
development of cloned embryos; male pronucleus-
depleted (MPD) zygotes fail to support somatic cell
reprogramming. We further demonstrate that fusion
of an additional male pronucleus into a zygote greatly
enhances reprogramming efficiency. Our data pro-
vide a clue to further identify critical reprogramming
factors in the male pronucleus.
INTRODUCTION

Somatic cell nuclear transfer (SCNT) experiments have revealed

that molecules within oocytes at the metaphase II stage can

reprogram somatic cells (Kato et al., 1998; Wakayama et al.,

1998; Wilmut et al., 1997). Following fertilization, the reprogram-

ming factors are believed to translocate from the cytoplasm into

the pronuclei of zygotes, as zygotes that are enucleated at M

phase instead of interphase retain the ability to reprogram

somatic cells (Egli et al., 2007).

During fertilization, the parental genomes undergo differential

epigenetic reprogramming to form a totipotent zygote. Immedi-

ately after fertilization, protamine is quickly released from the

paternal genome and the decondensed sperm DNA is repack-

aged by maternal nucleosomal histones (McLay and Clarke,

2003). The active histone methylation marker H3K4me3 can
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be detected in the male pronucleus, but repressive histone

methylation markers, including H3K9me2-3, H3K27me3, and

H4K20me3, are mostly absent (Lepikhov et al., 2010). In

contrast, all of these histone methylation markers can be

detected in the female pronucleus. In addition to histone modifi-

cations, it is widely known that the paternal genome undergoes

genome-wide DNA demethylation around the PN3 stage,

whereas the DNA methylation state of the maternal genome

seems to maintain a constant level (Mayer et al., 2000; Wossidlo

et al., 2010).

Although the epigenetic modifications appear to differ

between the male and female pronucleus, it remains unknown

whether the parental pronuclei play distinct roles in reprogram-

ming of somatic cells. In the present study, we designed serial

nuclear transplantation experiments to address whether the

parental pronuclei contribute equally to reprogramming. Inter-

estingly, we found that the reprogramming factors seem to

sequester asymmetrically in the parental pronuclei and the

critical reprogramming factors reside predominantly in the

male pronucleus. As a result, cloned offspring and nuclear trans-

fer embryonic stem cell (ntESC) lines could only be generated

from female pronucleus-depleted (FPD) zygotes, and male pro-

nucleus-depleted (MPD) zygotes failed to support somatic cell

reprogramming. We further demonstrated that the distinct

epigenetic modifications of parental pronuclei might contribute

directly to the developmental differences observed among

somatic cell cloned embryos. More importantly, we found that

fusion of an extra male pronucleus can significantly increase

the efficiency of zygotic reprogramming, which may be informa-

tive for deriving human ntESC lines by using clinically discarded

multipronuclei zygotes.
RESULTS

FPD Zygotes Enucleated in Mitosis Can Support
Full-Term Development of ESC Cloned Embryos
To determine the reprogramming capacity of the parental pronu-

cleus, we used FPD orMPD zygotes that had been enucleated at

M phase as the recipient cytoplasm. Zygotes that had been

enucleated at M phase or interphase were used as positive

and negative controls, respectively (Figure 1A). As shown in Fig-

ure 1B, the female andmale pronuclei of themouse zygote could
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be clearly distinguished based on their distance from the second

polar body and their distinct size (Adenot et al., 1997). Immuno-

cytochemistry staining of 5-hydroxymethylcytosine (5hmC) and

5mC further confirmed this observation (Figure 1E) (Gu et al.,

2011; Wossidlo et al., 2010). The removal of either pronucleus

was performed by piezo-drill-assisted micromanipulation and

was further confirmed by 5mC and 5hmC staining (Figures 1C–

1G). The preimplantation developmental efficiency of the resul-

tant haploid androgenetic or gynogenetic embryos was similar

to previously reported results (Table S1) (Modli�nski, 1975;

Yang et al., 2012).

FPD zygotes, MPD zygotes, and control intact zygotes were

cultured in embryo culture medium containing demecolcine

(DC) to prevent the progression of mitosis and to limit spindle

formation at metaphase (Gasparrini et al., 2003). After themitotic

zygotes were released from DC exposure, they were transferred

to medium containing MG-132, a proteasome inhibitor, for

25 min to allow assembly of the mitotic spindle (Riaz et al.,

2011), which can be visualized by light microscopy (Figure 1H).

Subsequently, the spindle was removed by micromanipulation,

and staining with the DNA dye Hoechst 33342 confirmed the

successful removal of chromosomes (Figure 1I). To compare

the developmental potential of cloned embryos reconstituted

with the different recipient cytoplasts, we used both OG2

(Oct4-GFP transgenic) ESCs (Figure S1A) andmouse embryonic

fibroblasts (MEFs) arrested at M phase as donor cells for

chromosome transfer experiments. The M-phase spindle-

chromosome complexes were then microinjected into the

aforementioned recipient cytoplasts to reconstitute cloned

embryos (Figure 1J). After chromosome transfer and release

from MG-132 exposure, segregation of the chromosomes and

cytokinesis of the cloned embryos were observed within 2 hr

(Figure 1K).

When ESCs were used as donors, 58 of 64 cloned embryos

reconstructed using a zygote enucleated at M phase of mitosis

cleaved, and 53% of the cleaved embryos developed to the

blastocyst stage (Figure 1N), which is consistent with a previous

report (Egli et al., 2007). When FPD zygotes were used for

ESC chromosome transfer, 16% of the cloned embryos

developed to the blastocyst stage. Albeit with low efficiency,

10% of the cloned embryos reconstructed using MPD

zygotes developed to the blastocyst stage (Figures 1L–1N).

When cloned embryos developed to the 4-cell stage, the

differences between the FPD and MPD groups were significant

(52% versus 30%) (Figure 1N). Serving as the negative control,

nuclear transfer into zygotes at interphase led to development

failure (Figure 1N).

We next evaluated the in vivo developmental potential of

ESC cloned embryos reconstructed using either FPD or MPD

zygotes by transferring 2-cell-stage cloned embryos into the

oviducts of pseudo-pregnant females (Figures 2A and S1B).

We evaluated the embryonic development of these cloned em-

bryos, which were reconstituted using two different recipient

cytoplasts, at embryonic day 10.5 (E10.5) and E14.5 and at

full-term development, E19.5 (Table S2). One E10.5 embryo

and one E14.5 embryo were recovered from the 215 transferred

OG2-ESC cloned embryos reconstructed using FPD zygotes

by cesarean section (Figures S1D–S1G). Oct4-GFP-positive
Ce
cells could be visualized in the gonads of the E10.5 and

E14.5 cloned embryos (Figures S1D and S1F). In contrast, no

OG2-ESC cloned embryos reconstructed using MPD zygotes

developed to the E10.5 stage (Figure S1C). Next, we used

CMV-GFP ESCs as donor cells for chromosome transfer to

easily observe cell origin. For this purpose, 2-cell-stage cloned

embryos with GFP were produced and transferred to pseudo-

pregnant females (Figure 2B). Three living pups were success-

fully recovered by cesarean section at E19.5 from 561 CMV-

GFP ESC cloned embryos reconstructed using FPD zygotes

(Figures 2C and 2D). All three of the cloned pups exhibited

regular respiration, but one was killed because of a midline

closure defect and one was rejected by the foster mother.

One pup survived to adulthood and proceeded to produce F1

pups after mating with normal ICR mice (Figure 2C). The cloned

pup was GFP positive, and PCR analysis of polymorphic

markers verified that they were the same as those of the

ESCs (Figures 2D and 2E). Consistent with previous reports

(Eggan et al., 2001; Gao et al., 2003; Wakayama et al., 1999),

the placental weight of the ESC cloned pups was found to be

significantly higher than that of control placentas (Figure 2F).

In striking contrast, no cloned pups were obtained from the

308 transferred CMV-GFP ESC cloned embryos reconstructed

using MPD zygotes.

The experiments described thus far demonstrated that ESC

chromosomes can be successfully transferred into either FPD

or MPD zygotes to reconstruct cloned embryos. However, the

developmental potential of the ESC cloned embryos recon-

structed using FPD zygotes appeared to be better than that of

the cloned embryos reconstructed using MPD zygotes.

FPD Zygotes, but Not MPD Zygotes, Can Support
Preimplantation Development of Somatic Cloned
Embryos
We next sought to investigate whether and to what extent the

FPD or MPD zygotes could support somatic cell reprogram-

ming. OG2 MEFs were used as donor cells for chromosome

transfer, and reactivation of Oct4 in the cloned embryos served

as a hallmark of successful reprogramming (Figure 3A). We per-

formed 16 experiments using FPD zygotes (n = 1,030), and

consistently obtained somatic cloned blastocysts in 14 of

them. In contrast, a total of nine experiments using MPD zy-

gotes were performed, and no cloned blastocyst was obtained.

In addition, we also compared the percentages of 4-cell embryo

and morulae development between the FPD versus MPD

groups, and the difference appeared significant (40% versus

16%) (Figure 1N). Overall, our results demonstrated that only

somatic cell cloned embryos reconstructed using FPD zygotes

can develop to the blastocyst stage. Moreover, expression of

the Oct4-GFP transgene was observed only in the cloned em-

bryos reconstructed using FPD zygotes. Oct4-GFP expression

in the cloned embryos was detectable in late-cleavage-stage

embryos and was strong in cloned blastocysts (Figures 3B

and S2A–S2C), similar to previously reported results (Riaz

et al., 2011; Yoshimizu et al., 1999). We further demonstrated

that this asymmetric reprogramming capacity is likely not

caused by the size difference between the parental pronuclei,

because depletion of the male pronucleus at the earlier stage
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Figure 1. Chromosome Transfer into FPD or MPD Zygotes Enucleated at M Phase of Mitosis

(A) Schematics of chromosome transfer into FPD or MPD zygotes. Following fertilization, factors that are required for reprogramming and development are

hypothesized to sequester equally or selectively in the male or female pronucleus. After removal of the female or male pronucleus at the PN3-PN4 stage,

(legend continued on next page)
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Figure 2. In Vivo Developmental Potential of

Cloned EmbryosReconstructed Using ESCs

(A) Diagram of ESC chromosome transfer into an

enucleated FPD zygote for mouse cloning.

(B) Two-cell-stage embryos reconstructed using

CMV-GFP ESCs. Green fluorescence indicates

that the CMV-GFP transgene has been expressed.

(C) A live cloned pup with an enlarged placenta,

and an adult cloned mouse with germline trans-

mission ability.

(D) The CMV-GFP ESC-cloned pup exhibits green

fluorescence, whereas the control does not.

(E) DNA genotyping of the cloned pups confirmed

their ESC origin.

(F) Body and placental weights of the cloned pups

at birth. Control pups were from untreated normal

embryos. DC, DC treatment 28–33 hr after human

chorionic gonadotropin (hCG) injection; MG, 2 mM

MG-132 treatment 33–33.5 hr after injection with

hCG. Data are mean ± SD.

See also Figure S1 and Table S2.
(PN2), when no size difference was distinguished between

parental pronuclei, showed no beneficial effects on somatic

cell reprogramming (Table S3). In addition, we also evaluated

the postimplantation development of somatic cloned embryos

reconstructed with FPD zygotes. Unfortunately, no live cloned

mice were obtained, although some degenerated embryos

could be observed (Table S4).

Fully Pluripotent ESC Lines Established from Somatic
Cloned Embryos Reconstructed by Chromosome
Transfer into FPD Zygotes
To investigate whether chromosome transfer ESC (ctESC)

lines can be successfully established from somatic cloned

embryos reconstructed using FPD zygotes, we individually
manipulated zygotes underwent nuclear envelope breakdown (NEBD) and entered mitosis. Mitotic donor cel

MPD zygotes to reconstitute cloned embryos.

(B) Mouse zygote with two pronuclei at interphase.

(C) FPD zygote in interphase.

(D) MPD zygote in interphase.

(E–G) Immunofluorescent staining of 5hmC (green) and 5mC (red) in a normal zygote (E), FPD zygote (F), andM

pronucleus, respectively. PB, polar body.

(H) FPD zygote at M phase in the presence of MG-132.

(I) The spindle was removed from the FPD zygote at M phase.

(J) ESC spindle-chromosome complex was injected into the enucleated FPD zygote.

(K) Chromosome segregation and cytokinesis occurred in the reconstructed embryo within 2 hr after transfe

(L and M) Blastocyst-stage cloned embryos reconstructed by ESC chromosome transfer into male-pronucl

(N) Developmental potency of cloned embryos reconstructed using ESCs or somatic cells. Zyg., zygote. _Zy

interphase. Data are mean ± SEM. The values with different superscript letters indicate significant differenc

compared separately (p < 0.05). *Blastocyst rate based on the number of blastocysts at E3.5.

See also Table S1.
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plated the cloned blastocysts in 96-well

plates. Four ctESC lines (referred to as

_M-1 to _M-4) expressing Oct4-GFP

were ultimately established from 24

cultured cloned blastocysts (Figure 3C).

As a control, one ctESC line exhibiting

pluripotency was established from the
somatic cloned embryo reconstructed using fibroblast chro-

mosome transfer into a zygote enucleated at M phase

(Figure S3).

The characteristics of these four ctESC lines were evaluated.

Karyotyping analysis revealed the presence of the normal 40

chromosomes in one female cell line and three male cell lines

(Figure 3D). The expression of pluripotent ESC markers, such

as Oct4, Sox2, Nanog, and SSEA1, was observed by staining

(Figure 3E). Bisulfite sequencing analysis indicated that suc-

cessful demethylation occurred in the promoters of Oct4 and

Nanog in the ctESC lines (Figure 3F). The global gene-expression

profile of the ctESC lines clustered closely with normal R1 ESCs

(Figure 3G). The in vivo differentiation potential of these

ctESC lines was also confirmed by a teratoma assay following
ls were then transferred into the enucleated FPD or

PD zygote (G)._ and \ indicate themale and female

r.

eus-depleted zygotes.

g., FPD zygote. \Zyg., MPD zygote. M, M phase; I,

es in the same column. Different donor cells were
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Figure 3. Derivation of ctESC Lines from Somatic Cell Chromosome Transfer-Derived Cloned Blastocysts

(A) Schematics of ctESC derivation from cloned embryos reconstructed by somatic cell chromosome transfer (SCCT) into enucleated FPD zygotes, and clonal

mice production through tetraploid complementation.

(B) Cloned blastocysts produced by SCCT into enucleated FPD zygotes.

(C) ctESC line produced from the cloned blastocysts.

(D) Karyotype of the ctESC line.

(E) Immunostaining of the pluripotent markers Oct4, Sox2, Nanog, and SSEA1. Scale bar, 20 mm.

(F) Methylation analysis of MEFs and ctESCs. Open and closed circles indicate unmethylated and methylated CpGs, respectively.

(G) Gene-expression analysis of ctESC lines, zygote-derived ESC lines, MEFs, and R1 cells.

(H) ctESCs possessed multiple-differentiation potential, as shown in teratoma sections.

(I) A female chimera and its germline offspring.

(J) Full-term all-ctESC (clonal) mice produced from the ctESC lines through tetraploid complementation. Green fluorescence indicates that both female (upper

row) and male (lower row) clonal mice carry the Oct4-GFP transgene, and the oocytes and seminiferous tubules are GFP positive.

(K) DNA genotyping of the clonal mice confirms their ctESC origin.

See also Figures S2–S4 and Tables S3–S6.
injection into immunocompromised severe combined immuno-

deficiency (SCID) mice. Cell types representing all three germ

layers were observed (Figure 3H).
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All four ctESC lines possessed a high degree of germline

chimerism, as judged by the green fluorescence of E13.5

chimeric embryos generated by injecting ctESCs into normal



blastocysts (Table S5). When allowed to develop to term, the

postnatal chimeric mice also displayed a high degree of agouti

coat-color chimerism and germline transmission (Figure 3I).

To further investigate the level of pluripotency of the ctESC

lines derived from the somatic cloned embryos reconstructed

using FPD zygotes, we performed tetraploid complementation,

the most stringent test of pluripotency. In total, 36 full-term

all-ctESC mice were obtained from three of the four ctESC

lines with high efficiency (Figure 3J; Table S6). Polymorphic

marker analysis using PCR verified that the all-ctESC mice

were indeed derived from the ctESC lines (Figure 3K). Further-

more, the all-ctESC mice exhibited Oct4-GFP transgene

expression in the germinal vesicle (GV) oocytes or seminiferous

tubules (Figure 3J). Moreover, the all-ctESC mice produced

using tetraploid complementation grew to adulthood and pro-

duced F1 pups after mating with normal ICR mice (Figures

S4A–S4C). Most importantly, the oocytes collected from

the female F1 mice exhibited Oct4-GFP positivity (Figures

S4D and S4E).

These results demonstrated that the FPD zygotes could

successfully reprogram somatic cells to full pluripotency. In

striking contrast, theMPD zygotes were incapable of reprogram-

ming somatic cells, which indicates that the parental pronuclei

have asymmetric reprogramming capacities.

Distinct Epigenetic Reprogramming Ability of Parental
Pronuclei in Somatic Cloned Embryos
To better understand the underlying mechanism of the reprog-

ramming asymmetry of the parental pronuclei, we analyzed the

major epigenetic modifications that occurred in the somatic

cloned embryos reconstructed with either the FPD or MPD

zygotes. Since most somatic cloned embryos reconstructed

using MPD zygotes were arrested at the 2-cell stage, we used

2-cell-stage cloned embryos for the analysis. The intensity of

H3K4me3 staining did not differ between the two types of cloned

embryos (Figures 4A and 4B). However, staining for H3K9 acet-

ylation, H3K9me3, 5hmC, and 5mC revealed dramatic differ-

ences between the two types of cloned embryos (Figures 4A

and 4B). The staining intensity of the gene-silencing markers

H3K9me3 and 5mC (Bui et al., 2008; Chen et al., 2013; Wang

et al., 2007; Wossidlo et al., 2010, 2011) in the cloned embryos

reconstructed using MPD zygotes was much higher than that

in the cloned embryos reconstructed using FPD zygotes. In

contrast, the staining intensity of the putative gene-activating

markers H3K9 acetylation and 5hmC (Lennartsson and Ekwall,

2009; Weinberger et al., 2012) in cloned embryos reconstructed

using MPD zygotes was significantly lower than that in the

cloned embryos reconstructed using FPD zygotes (Figures 4A

and 4B). Furthermore, bisulfite sequencing analysis indicated

that successful demethylation occurred in the promoter of

Oct4 in the 2-cell-stage cloned embryos reconstructed using

FPD zygotes. In contrast, the promoter of Oct4 remained highly

methylated in the 2-cell-stage cloned embryos reconstructed

using MPD zygotes (Figure 4C). Taken together, these results

indicate that the genes that are important for development might

not be properly activated in the cloned embryos reconstructed

using MPD zygotes, which would cause their developmental

arrest.
Ce
Fusion of an Extra Male Pronucleus into the Zygote Can
Significantly Improve the Zygotic Reprogramming
Ability
As noted above, although FPD zygotes can reprogram somatic

cells to a pluripotent state and produce full-term cloned

embryos, the cloned embryos still have a lower developmental

efficiency than those reconstructed with zygotes enucleated at

M phase. We therefore attempted to ask whether the develop-

mental potential of cloned embryos could be improved by

introducing an extra male pronucleus into the FPD zygotes or

normal zygotes. We obtained two-male-pronuclei zygotes

by fusing an extra male pronucleus with the FPD zygotes

(Figure 4D). The fusion of an extra male pronucleus with the

FPD zygotes significantly improved the reprogramming process.

The cloned embryos reconstructed using two-male-pronuclei

zygotes had a significantly higher blastocyst development

efficiency than the single-pronucleus zygotes (19% versus 4%;

Figure 4E). Most interestingly, the fusion of an extra male pro-

nucleus with mouse zygotes significantly increased the reprog-

ramming efficiency to a level even higher than that observed in

oocytes (Figures 4F and 4G; Table S7).

DISCUSSION

In summary, our present study clearly demonstrates that the

parental pronuclei of themouse zygote have asymmetric reprog-

ramming capacities. Our study indicates that the reprogramming

factors preferentially translocate into the male pronucleus

following fertilization, and thus provides a fundamental basis

for characterizing candidate reprogramming factors in the future.

Some well-studied factors might correlate with this reprogram-

ming asymmetry. It was previously shown that Parp1 is localized

mainly in the male pronucleus, and the overexpression of Parp1

can effectively promote induced pluripotent stem cell (iPSC)

induction (Chiou et al., 2013; Wossidlo et al., 2010). Moreover,

we found that Parp1 was localized mainly in the male pronucleus

at distinct pronuclear stages (PN1–PN5) and Parp1 dissociated

from chromatin during mitosis (Figure S4F). Similarly, DNA diox-

ygenase Tet3 localizes mainly in the male pronucleus following

fertilization, and oocytes lacking Tet3 have a reduced ability to

reprogram somatic cells (Gu et al., 2011). Furthermore,

H3K9me3 has been found to serve as a barrier during somatic

cell reprogramming into iPSCs (Chen et al., 2013), and in our ex-

periments, we noticed that the removal of somatic H3K9me3

could only be observed in cloned embryos reconstructed with

FPD zygotes.

The cytoplasm of an oocyte is evolutionally designed to repro-

gram the sperm. It is well accepted that the sperm is more differ-

entiated, as the paternal genome of mouse sperm contains

higher levels of genome-wide DNA methylation than the oocyte

(Smallwood et al., 2011), and therefore more reprogramming

factors are required. This might explain why the critical reprog-

ramming factors selectively translocate into themale pronucleus

during fertilization.

We recently demonstrated that ntESCs exhibit enhanced

telomere rejuvenation and improved mitochondrial function rela-

tive to iPSCs (Le et al., 2014). However, the cloning procedure

needs to be further optimized because the cloning efficiency
ll Reports 6, 1008–1016, March 27, 2014 ª2014 The Authors 1013
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remains very low at present. One possible explanation for this

low efficiency is that the reprogramming factors within an oocyte

are insufficient for reprogramming a somatic cell, but attempts to

remedy this by adding additional cytoplasm showed no sig-

nificant effect (Sayaka et al., 2008). Given the fact that the

reprogramming capacity of zygotes is inferior to that of oocytes,

it is very important to search for a new approach to improve the

reprogramming capacity of zygotes. Our study demonstrates

that the fusion of an extra male pronucleus can dramatically

improve the reprogramming capacity of zygotes. It is informative

regarding the derivation of human ntESC lines using multi-

pronuclei zygotes instead of oocytes (Tachibana et al., 2013),

because multi-pronuclei zygotes are generally discarded in

human in vitro fertilization clinics, and the use of these discarded

embryos for the derivation of patient-specific ntESC lines no

longer poses ethical issues.
EXPERIMENTAL PROCEDURES

Mice

All mice used in this study were housed in the animal facility of the National

Institute of Biological Sciences. Our study procedures were consistent with

the National Institute of Biological Sciences guidelines.

Chromosome Transfer

Chromosome transfer was conducted as previously described (Egli et al.,

2007). Female or male pronuclei were removed using a piezo-drill micromanip-

ulator. After treatment with DC and MG-132, the spindle-chromosome com-

plexes of the mitosis-arrested haploid zygotes were removed, and mitotic

donor cell chromosomes were then transferred into the enucleated zygotes.

The reconstructed embryos were cultured and allowed to develop to the

blastocyst stage.

Immunofluorescence Staining

ESCs and reconstructed and normal early embryos were stained according to

previously described protocols (Gao et al., 2013; Wang et al., 2007). Stained

cells were observed with an LSM 510 META microscope (Zeiss).

Microarray Analysis

Total RNA was extracted using Trizol reagent (Invitrogen) in two separate

experiments. Analysis with the Mouse Gene 1.0 ST array (Affymetrix) was

performed at CapitalBio in Beijing.
ACCESSION NUMBERS

The microarray data have been deposited in the GEO database under acces-

sion number GSE49148.
Figure 4. Fusion of an Extra Male Pronucleus into the Zygote Can Sign

(A) Immunofluorescence images of reconstructed 2-cell embryos after SCCT int

were stained for H3K4me3, H3K9ac, 5hmC/5mC, and H3K9me3. _SCCT, SCC

enucleated at M phase. Scale bar, 20 mm.

(B) Quantitative analysis of H3K4me3, H3K9ac, 5hmC, and H3K9me3 fluorescenc

the level of the green signal relative to the PI (5hmC relative to DAPI) staining int

(C) Bisulfite sequencing analysis of Oct4 demethylation in 2-cell-stage cloned em

and normal 2-cell-stage embryos were used as controls. IVC, in vitro cultured.

(D) Immunofluorescent staining of 5hmC (green) and 5mC (red) in a __zygote (__

(E) Developmental potency of cloned embryos reconstructed with or without an

(F and G) Developmental potency of cloned embryos reconstructed with a zygote

SEM. *p < 0.05; **p < 0.01.

See also Table S7.
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