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a b s t r a c t

The three-level explicit scheme is efficient for numerical approximation of the second-
order wave equations. By employing a fourth-order accurate scheme to approximate the
solution at first time level, it is shown that the discrete solution is conditionally convergent
in the maximum normwith the convergence order of two. Since the asymptotic expansion
of the difference solution consists of odd powers of the mesh parameters (time step
and spacings), an unusual Richardson extrapolation formula is needed in promoting the
second-order solution to fourth-order accuracy. Extensions of our technique to the classical
ADI scheme also yield the maximum norm error estimate of the discrete solution and its
extrapolation. Numerical experiments are presented to support our theoretical results.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, much attention has been paid to the development and analysis of efficient methods that directly
discretizes the second order system for numerical approximations of second-order hyperbolic equations, see [1–7].Mohanty
et al. [6,7] developed new three-level ADI schemes for two- and three-dimensional linear hyperbolic equations. Dehghan
et al. [1,2] applied the radial basis functions method and the collocation method to wave equations.

For approximating wave problems, explicit schemes [5,8–10] are popular because the solution at each mesh point is
updated by combining information from its near neighbours at previous time levels without the need of solving a large
system of algebraic equations. Standard Fourier analysis for second-order explicit schemes shows that the maximum stable
time-step size is directly proportional to the space mesh size. But this restriction is not so bad since optimal results are
obtained when the space and time resolution are comparable. Once implicit schemes are necessary, the ADI approaches
[11–14] are preferable in various applications because they reduce the solution of a multi-dimensional problem to a
set of independent one-dimensional problems and thus are more efficient than implicit schemes. To achieve high-order
accuracy, global Richardson extrapolations are practical computational methods, see e.g. [15,13,16–20]. They obtain high-
order resolutions by using certain linear combinations of discrete solutions with different grid parameters (time step and
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spacings). The main advantage of the global extrapolations is that they preserve the stability of lower order methods used
initially.

To measure computational error especially the phase error of numerical solutions, maximum norm error is preferable in
practice or numerical analysis. By the standard H1 energy analysis, it is not difficult to prove that the difference solutions
for linear hyperbolic problems are convergent in the H1 norm, see e.g. [9]. But the H1 error estimate does not imply the
maximum norm estimate. In our previous work [16], maximum norm error estimates of ADI and compact ADI solutions
together with their extrapolations for solving parabolic equations were obtained by using an H2 energy technique. We now
apply the technique to deal with the second-order hyperbolic problems. Although the idea is similar, a lot of difference are
seen since we consider here the three-level schemes. Typically, consider the following equation in two space dimensions

utt −∆u = f (x, y, t), (x, y) ∈ Ω, 0 < t ≤ T , (1.1)
u(x, y, t) = α(x, y, t), (x, y) ∈ ∂Ω, 0 < t ≤ T , (1.2)

u(x, y, 0) = ϕ(x, y), ut(x, y, 0) = ψ(x, y), (x, y) ∈ Ω̄, (1.3)

where∆ is the Laplacian operator,Ω = (0, 1)2, ∂Ω is the boundary and Ω̄ = Ω ∪ ∂Ω . Assume that the initial values ϕ and
ψ , the boundary value α and exterior force f are regular enough, and satisfy the initial-boundary compatibility conditions

α(x, y, 0) = ϕ(x, y), αt(x, y, 0) = ψ(x, y), (x, y) ∈ ∂Ω,

αtt(x, y, 0) = ∆ϕ(x, y)+ f (x, y, 0), αttt(x, y, 0) = ∆ψ(x, y)+ ft(x, y, 0), (x, y) ∈ ∂Ω

such that the initial-boundary value problem (1.1)–(1.3) admits a smooth solution.
We show that numerical solutions and their Richardson extrapolations of two efficient methods, including the second-

order explicit and ADI schemes, are convergent in the maximum norm. For nonhomogeneous boundary conditions, a
fourth-order accurate approximation of the solution at first time level is necessary for the second-order convergence in the
maximum norm. Although the explicit and ADI schemes are central difference discretizations, two-grid based extrapolation
formula would not promote the second-order methods to fourth-order accuracy. Actually, since the asymptotic expansions
of the difference solutions consist of odd powers of the mesh parameters, a three-grid based Richardson extrapolation
formula will be needed.

The content will be organized as follows. In the next section, some notations and auxiliary lemmas are presented.
Section 3 devotes to the error analysis of the second-order explicit solution and its extrapolation. Theoretical considerations
of the ADI scheme is addressed in Section 4. Numerical experiments are presented in Section 5 to support our analysis. Some
comments including the three-dimensional extensions are presented in the concluding section.

2. Notation and auxiliary lemmas

Let τ = T/N for a positive integer N; tn = nτ , 0 ≤ n ≤ N; and tn− 1
2

= (tn + tn−1)/2, 1 ≤ n ≤ N . Given mesh function

wτ = {wn
| 0 ≤ n ≤ N}, denotewn− 1

2 = (wn
+ wn−1)/2, δtwn− 1

2 = (wn
− wn−1)/τ ,

δ2t w
n

= (δtw
n+ 1

2 − δtw
n− 1

2 )/τ , Dtw
n

= (wn+1
− wn−1)/(2τ).

For spatial approximation, let h1 = 1/M1, h2 = 1/M2 for positive integersM1,M2; h = max{h1, h2}; xi = ih1, 0 ≤ i ≤ M1;
and yj = jh2, 0 ≤ j ≤ M2. The discrete gridΩh = {(xi, yj)| 1 ≤ i ≤ M1 −1, 1 ≤ j ≤ M2 −1}, ∂Ωh is the discrete boundary of
Ωh, ∂Ωh = {(xi, yj)| i = 0 or i = M1 or j = 0 or j = M2}, and Ω̄h = Ωh ∪ ∂Ωh. For any grid function vh = {vij| (xi, yj) ∈ Ω̄h},
let δxvi− 1

2 ,j
= (vij − vi−1,j)/h1, δ2xvij =


δxvi+ 1

2 ,j
− δxvi− 1

2 ,j


/h1,

δyδxvi− 1
2 ,j−

1
2

=

δxvi− 1

2 ,j
− δxvi− 1

2 ,j−1


/h2, δyδ

2
xvi,j− 1

2
=


δ2xvij − δ2xvi,j−1


/h2.

Similar notations δyvi,j− 1
2
, δ2yvij, δxδyvi− 1

2 ,j−
1
2
, δxδ2yvi− 1

2 ,j
, δ2x δ

2
yvij can also be defined and the discrete Laplacian operator

∆hvij = (δ2x + δ2y )vij.We also denote

‖v‖ =

h1h2

M1−1−
i=1

M2−1−
j=1

|vij|2,
δxv =

h1h2

M1−
i=1

M2−1−
j=1

δxvi− 1
2 ,j

2,
δ2xv =

h1h2

M1−1−
i=1

M2−1−
j=1

δ2xvij2, δxδyv =

h1h2

M1−
i=1

M2−
j=1

δxδyvi− 1
2 ,j−

1
2

2,
δyδ2xv =

h1h2

M1−1−
i=1

M2−
j=1

δyδ2xvi,j− 1
2

2, ∆hv
 =

h1h2

M1−1−
i=1

M2−1−
j=1

∆hvij
2
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and
δyv, δ2yv, δyδxv, δxδ2yv similarly. For any grid function

v ∈ Vh =


v

v =

vij|(xi, yj) ∈ Ω̄h


and vij = 0 if (xi, yj) ∈ ∂Ωh


,

we introduce

|v|1 =

δxv2
+

δyv2
, |δxδyv|1 =

δyδ2xv2
+

δxδ2yv2
, ‖v‖∞ = max

0≤i≤M1
0≤j≤M2

vij.
To obtain the error estimate in themaximum norm, we need the following lemmas. Throughout this paper c or c(u)will de-
note a generic positive constant, not necessarily the same at different occurrences, whichmay be dependent on the solution
and the given data but independent of the time-step size τ and the grid spacings h1, h2.

Lemma 2.1 ([16]). For any grid function v ∈ Vh,
v

∞
≤ c‖∆hv‖.

Lemma 2.2. For any grid function v ∈ Vh, it holds that ‖∆hv‖
2

≤ 4(h−2
1 + h−2

2 )|v|
2
1.

Proof. Using the Chauchy–Schwarz inequality, we have

‖∆hv‖
2

= h1h2

M1−1−
i=1

M2−1−
j=1

(δ2xvij + δ2yvij)
2

= h1h2

M1−1−
i=1

M2−1−
j=1

(h−1
1 · h1δ

2
xvij + h−1

2 · h2δ
2
yvij)

2

≤ h1h2

M1−1−
i=1

M2−1−
j=1

(h−2
1 + h−2

2 )

(h1δ

2
xvij)

2
+ (h2δ

2
yvij)

2
= (h−2

1 + h−2
2 ) · h1h2

M1−1−
i=1

M2−1−
j=1


(δxvi+ 1

2 ,j
− δxvi− 1

2 ,j
)2 + (δyvi,j+ 1

2
− δyvi,j− 1

2
)2


≤ 2(h−2

1 + h−2
2 ) · h1h2

M1−1−
i=1

M2−1−
j=1


(δxvi+ 1

2 ,j
)2 + (δxvi− 1

2 ,j
)2 + (δyvi,j+ 1

2
)2 + (δyvi,j− 1

2
)2


≤ 4(h−2

1 + h−2
2 )|v|

2
1. �

Lemma 2.3. For time sequences

w0, w1, . . . , wN


and


g0, g1, . . . , gN


,

2τ
k−

l=1

g l(Dtw
l) ≤

1
ϵ


(w

1
2 )2 + τ

k−1−
l=1

(wl+ 1
2 )2 + (wk+ 1

2 )2


+ ϵ


(g1)2 + τ

k−1−
l=1


δtg l+ 1

2

2
+ (gk)2


,

for any ϵ > 0.

Proof. Note that

2τ
k−

l=1

g l(Dtw
l) =

k−
l=1

g l(wl+1
− wl−1) =

k−
l=1

g l(wl+1
− wl)+

k−
l=1

g l(wl
− wl−1)

= −g1w1
− τ

k−1−
l=1


δtg l+ 1

2


wl+1

+ gkwk+1
− g1w0

− τ

k−1−
l=1


δtg l+ 1

2


wl

+ gkwk

= −2g1w
1
2 − 2τ

k−1−
l=1


δtg l+ 1

2


wl+ 1

2 + 2gkwk+ 1
2 .

Thus, with the ϵ-inequality [9] 2ab ≤
1
ϵ
a2 + ϵb2, it is easy to get the claimed result. �

3. Error analysis of the explicit solution and its extrapolation

3.1. Construction of the explicit method and a priori estimation

Define the grid function Un
ij = u(xi, yj, tn) for (xi, yj) ∈ Ω̄h and 0 ≤ n ≤ N. Utilizing the Taylor expansion with integral

remainder (see e.g. [16]), one has

utt(xi, yj, tn) = δ2t U
n
ij − (Rt)

n
ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1, (3.1)

−uxx(xi, yj, tn) = −δ2xU
n
ij + (Rx)

n
ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1, (3.2)

−uyy(xi, yj, tn) = −δ2yU
n
ij + (Ry)

n
ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1, (3.3)
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where the truncation errors

(Rt)
n
ij =

τ 2

6

∫ 1

0

[
∂4u(xi, yj, tn − sτ)

∂t4
+
∂4u(xi, yj, tn + sτ)

∂t4

]
(1 − s)3ds,

(Rx)
n
ij =

h2
1

6

∫ 1

0

[
∂4u(xi − λh1, yj, tn)

∂x4
+
∂4u(xi + λh1, yj, tn)

∂x4

]
(1 − λ)3dλ,

(Ry)
n
ij =

h2
2

6

∫ 1

0

[
∂4u(xi, yj − λh2, tn)

∂y4
+
∂4u(xi, yj + λh2, tn)

∂y4

]
(1 − λ)3dλ.

Adding up the Eqs. (3.1)–(3.3) and using the following equality

utt(xi, yj, tn)−∆u(xi, yj, tn) = f (xi, yj, tn), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1,

we have

δ2t U
n
ij −∆hUn

ij = f (xi, yj, tn)+ Rn
ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1, (3.4)

where the truncation error

Rn
ij = (Rt)

n
ij − (Rx)

n
ij − (Ry)

n
ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1.

From the boundary and initial conditions (1.2)–(1.3), one has

Un
ij = α(xi, yj, tn), (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N, (3.5)

U0
ij = ϕ(xi, yj), (xi, yj) ∈ Ωh. (3.6)

To find the solution at first time level, we derive from the wave equation (1.1) that

utt(xi, yj, t0) = ∆u(xi, yj, t0)+ f (xi, yj, t0), (xi, yj) ∈ Ωh,

uttt(xi, yj, t0) = ∆ut(xi, yj, t0)+ ft(xi, yj, t0), (xi, yj) ∈ Ωh.

Let

ωij =
τ 4

6

∫ 1

0

∂4u(xi, yj, sτ)
∂t4

(1 − s)3ds, (xi, yj) ∈ Ωh.

Thus using the method of Taylor expansion and the initial conditions (1.3), we get

U1
ij = u(xi, yj, t0)+ τut(xi, yj, t0)+

τ 2

2
utt(xi, yj, t0)+

τ 3

6
uttt(xi, yj, t0)+ ωij

= ϕ1(xi, yj, τ )+ ωij, (xi, yj) ∈ Ωh, (3.7)

where ϕ1(x, y, τ ) = ϕ(x, y)+ τψ(x, y)+ τ2

2 [∆ϕ(x, y)+ f (x, y, t0)]+ τ3

6 [∆ψ(x, y)+ ft(x, y, t0)]. Omitting the small terms
Rn
ij and ωij, and replacing Un

ij with its numerical approximation un
ij in the Eqs. (3.4)–(3.7), one gets the following explicit

difference scheme

δ2t u
n
ij −∆hun

ij = f (xi, yj, tn), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1, (3.8)

un
ij = α(xi, yj, tn), (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N, (3.9)

u0
ij = ϕ(xi, yj), (xi, yj) ∈ Ωh, (3.10)

u1
ij = ϕ1(xi, yj, τ ), (xi, yj) ∈ Ωh. (3.11)

Compared with the classical approach, we consider a fourth-order accurate procedure (3.11) to compute the solution at the
first time level. Traditionally, it is approximated by the following third-order accurate difference scheme, see e.g. [9],

u1
ij = ϕ(xi, yj)+ τψ(xi, yj)+

τ 2

2


∆ϕ(xi, yj)+ f (xi, yj, t0)


, (xi, yj) ∈ Ωh. (3.12)

Now we turn to the theoretical consideration of the explicit scheme (3.8)–(3.11). We prove firstly the following lemma
of a priori estimation. To simplify the notation, we define

gn

Σ(δ)

=

g1
2

+ τ

n−1−
l=1

δtg l+ 1
2
2

+
gn

2
.
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Lemma 3.1. Let function {wn
ij|(xi, yj) ∈ Ω̄h, 0 ≤ n ≤ N} be the solution of the following explicit difference system

δ2t w
n
ij −∆hw

n
ij = gn

ij , (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1, (3.13)

wn
ij = 0, (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N, (3.14)

w0
ij = ϕij, w1

ij = ψij, (xi, yj) ∈ Ωh. (3.15)

Then under the condition σ ≡

(τ/h1)2 + (τ/h2)2 < 1, it holds that

(1 − σ 2)
δtwn+ 1

2
2
1 +

∆hw
n+ 1

2
2

≤ En
≤ etn


3E0

+ 4
gn

2
Σ(δ)


, 0 ≤ n ≤ N − 1,

where the energy norm

En
=

δtwn+ 1
2
2
1 + h1h2

M1−1−
i=1

M2−1−
j=1


∆hw

n+1
ij

 
∆hw

n
ij


, 0 ≤ n ≤ N − 1.

Proof. Multiplying (3.13) by −2τh1h2Dt∆hw
n
ij and summing i, j for (xi, yj) ∈ Ωh, we have

En
− En−1

= −2τh1h2

M1−1−
i=1

M2−1−
j=1

gn
ij


Dt∆hw

n
ij


, 1 ≤ n ≤ N − 1,

where the discrete Green’s first inequality together with the zero-valued boundary condition (3.14) is applied. Summing
the above equation for n from 1 to k, and then replacing kwith n, one gets

En
= E0

− 2τh1h2

n−
l=1

M1−1−
i=1

M2−1−
j=1

g l
ij


Dt∆hw

l
ij


≤ E0

+
1
2

∆hw
1
2
2

+
τ

2

n−1−
l=1

∆hw
l+ 1

2
2

+
1
2

∆hw
n+ 1

2
2

+ 2
gn

2
Σ(δ)

, 1 ≤ n ≤ N − 1, (3.16)

where Lemma 2.3 with ϵ = 2 is used (by multiplying the two sides of the inequality with h1h2, summing i from 1 toM1 − 1
and summing j from 1 toM2 − 1). By using Lemma 2.2, we obtain

En
=

δtwn+ 1
2
2
1 +

∆hw
n+ 1

2
2

− h1h2

M1−1−
i=1

M2−1−
j=1


(∆hwij

n+ 1
2 )2 − (∆hw

n+1
ij )(∆hw

n
ij)


=

δtwn+ 1
2
2
1 +

∆hw
n+ 1

2
2

−
τ 2

4

∆hδtw
n+ 1

2
2

≥
δtwn+ 1

2
2
1 +

∆hw
n+ 1

2
2

− τ 2(h−2
1 + h−2

2 )
δtwn+ 1

2
2
1

= (1 − σ 2)
δtwn+ 1

2
2
1 +

∆hw
n+ 1

2
2
, 0 ≤ n ≤ N − 1. (3.17)

Thus the energy norm En is positive definite if σ < 1. Consequently, the inequality (3.16) becomes

En
≤ 3E0

+ τ

n−1−
l=1

E l
+ 4

gn
2
Σ(δ)

, 1 ≤ n ≤ N − 1.

Thus the well-known discrete Gronwall inequality [21] yields the claimed second inequality. It completes the proof. �

Lemma 3.2. Let function {wn
ij|(xi, yj) ∈ Ω̄h, 0 ≤ n ≤ N} be the solution of the difference system (3.13)–(3.15). Then under the

condition σ < 1, it holds thatwn+1
2

∞
≤

c2etn

1 − σ 2


3
δtw 1

2
2
1 + 3h1h2

M1−1−
i=1

M2−1−
j=1


∆hw

1
ij

 
∆hw

0
ij


+ 4

gn
2
Σ(δ)


, 0 ≤ n ≤ N − 1.

Proof. Noticing

∆hw
n+1
ij = ∆hwij

n+ 1
2 +

τ

2
δt∆hwij

n+ 1
2 ,
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we apply the ϵ-inequality and Lemma 2.2 to find that∆hw
n+1

2
=

∆hw
n+ 1

2 +
τ

2
δt∆hw

n+ 1
2

2
≤ (1 + ϵ)

∆hw
n+ 1

2

2
+


1 +

1
ϵ

 τ
2
δt∆hw

n+ 1
2

2

= (1 + ϵ)

∆hw
n+ 1

2

2
+


1 +

1
ϵ


τ 2

4

δt∆hw
n+ 1

2

2

≤ (1 + ϵ)

∆hw
n+ 1

2

2
+


1 +

1
ϵ


τ 2(h−2

1 + h−2
2 )

δtwn+ 1
2

2
1

= (1 + ϵ)

∆hw
n+ 1

2

2
+


1 +

1
ϵ


σ 2

δtwn+ 1
2

2
1
.

Taking ϵ =
σ 2

1−σ 2 in the above inequality, we get

∆hw
n+1

2
≤

1
1 − σ 2

∆hw
n+ 1

2
2

+ (1 − σ 2)
δtwn+ 1

2
2
1


≤

En

1 − σ 2
,

where the inequality (3.17) is used for σ < 1. Thus it follows from Lemma 2.1 thatwn+1
2

∞
≤ c2

∆hw
n+1

2
≤

c2En

1 − σ 2
.

Then Lemma 3.1 yields the claimed inequality. The proof is completed. �

3.2. Convergence and stability of the explicit method

Now we present the error analysis of smooth solutions.

Theorem 3.1. Let u(x, y, t) ∈ C(4,5)(Ω̄ × [0, T ]) be the exact solution of the hyperbolic problem (1.1)–(1.3). Then, under
the restriction σ < 1, the numerical solution of the second-order explicit scheme (3.8)–(3.11) is convergent with an order of
O(τ 2 + h2

1 + h2
2) in the maximum norm.

Proof. Let the solution error ũn
ij = Un

ij − un
ij. Subtracting (3.8)–(3.11) from (3.4)–(3.7) respectively, one has the error system

δ2t ũ
n
ij −∆hũn

ij = Rn
ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1, (3.18)

ũn
ij = 0, (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N, (3.19)

ũ0
ij = 0, ũ1

ij = ωij, (xi, yj) ∈ Ωh. (3.20)

Under the condition σ < 1, one has ũ0
ij = 0 for (xi, yj) ∈ Ω̄h, andδxδt ũ 1

2
 ≤ c(u)τ 3h−1

1 ≤ c(u)τ 2,
δyδt ũ 1

2
 ≤ c(u)τ 3h−1

2 ≤ c(u)τ 2,

where the integral formulation of ωij is applied. Therefore we have

∆hũ0
ij = 0, (xi, yj) ∈ Ωh,

δt ũ 1
2

1 ≤ c(u)τ 2.

Hence, Lemma 3.2 gives

ũn+1
2

∞
≤

c2etn

1 − σ 2


3c(u)τ 4 + 4

Rn
2
Σ(δ)


, 0 ≤ n ≤ N − 1. (3.21)

From the integral formulation of the truncation error Rn
ij, one obtainsRn

 ≤ c(u)(τ 2 + h2
1 + h2

2), 1 ≤ n ≤ N − 1.

We now need to evaluate
δtRn+ 1

2
 for 1 ≤ n ≤ N − 2. Note that

δtRij
n+ 1

2 = δt(Rt)ij
n+ 1

2 − δt(Rx)ij
n+ 1

2 − δt(Ry)ij
n+ 1

2 , (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 2.
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Recalling the integral formula of (Rt)
n
ij, we derive

δt(Rt)ij
n+ 1

2 =
1
τ


(Rt)

n+1
ij − (Rt)

n
ij


=
τ

6

∫ 1

0

[
∂4u(xi, yj, tn+1 − sτ)

∂t4
−
∂4u(xi, yj, tn − sτ)

∂t4

]
(1 − s)3ds

+
τ

6

∫ 1

0

[
∂4u(xi, yj, tn+1 + sτ)

∂t4
−
∂4u(xi, yj, tn + sτ)

∂t4

]
(1 − s)3ds

=
τ 2

6

∫ 1

0

∫ 1

0

[
∂5u(xi, yj, tn − sτ + µτ)

∂t5
+
∂5u(xi, yj, tn + sτ + µτ)

∂t5

]
(1 − s)3dµds.

Then we have
δt(Rt)

n+ 1
2
 ≤ c(u)τ 2 for 1 ≤ n ≤ N − 2. Similarly, it follows thatδt(Rx)

n+ 1
2
 ≤ c(u)h2

1,
δt(Ry)

n+ 1
2
 ≤ c(u)h2

2, 1 ≤ n ≤ N − 2.

Thus, utilizing the triangle inequality we get
δtRn+ 1

2
 ≤ c(u)(τ 2 + h2

1 + h2
2), and thenRn


Σ(δ)

≤ c(u)(τ 2 + h2
1 + h2

2), 1 ≤ n ≤ N − 1.

Combining it with (3.21), we have
ũn


∞

= O(τ 2 + h2
1 + h2

2). It completes the proof. �

When the condition (1.2) is zero-valued, i.e., α(x, y, t) = 0, we can obtain the same result by replacing the fourth-order
approximation of u(xi, yj, τ )with the third-order scheme (3.12).

Theorem 3.2. Let function u(x, y, t) ∈ C(4,5)(Ω̄ × [0, T ]) be the exact solution of the hyperbolic problem (1.1)–(1.3) with
α(x, y, t) = 0. Then, under the restriction σ < 1, the numerical solution of the explicit scheme (3.8)–(3.10) together with the
third-order accurate approximation (3.12) is convergent with an order of O(τ 2 + h2

1 + h2
2) in the maximum norm.

Proof. The zero-valued boundary conditions and the initial-boundary compatibility conditions imply that u1
ij vanishes along

the boundary ∂Ωh. Noticing the third-order approximation (3.12) of u(xi, yj, τ ), one can rewrite the error system (3.18)–
(3.20) as

δ2t ũ
n
ij −∆hũn

ij = Rn
ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1,

ũn
ij = 0, (xi, yj) ∈ ∂Ωh, 2 ≤ n ≤ N,

ũ0
ij = 0, ũ1

ij =
τ 3

2

∫ 1

0

∂3u(xi, yj, sτ)
∂t3

(1 − s)2ds, (xi, yj) ∈ Ω̄h.

A similar presentation of the proof for Theorem 3.1 will yield our claim. �

Obviously, Lemma 3.2 implies the conditional stability of the explicit scheme (3.8)–(3.11).

Theorem 3.3. Let {un
ij|(xi, yj) ∈ Ω̄h, 0 ≤ n ≤ N} be the solution of the explicit scheme (3.8)–(3.11) with α(x, y, t) ≡ 0. Then

under the condition σ < 1, it holds that,un+1
2

∞
≤

c2etn

1 − σ 2


3
δtu 1

2
2
1 + 3h1h2

M1−1−
i=1

M2−1−
j=1


∆hu1

ij

 
∆hu0

ij


+ 4

f n2
Σ(δ)


, 0 ≤ n ≤ N − 1.

3.3. Richardson extrapolation of the explicit solution

This subsection is devoted to the Richardson extrapolation of the discrete solution generated by the explicit scheme
(3.8)–(3.11).

Theorem 3.4. Let u(x, y, t) be the smooth solution of the hyperbolic problem (1.1)–(1.3) and un
ij(τ , h1, h2) be the solution of the

explicit scheme (3.8)–(3.11). If σ < 1, it holds thatUn
− (uE)

n


∞
= O(τ 4 + h4

1 + h4
2 + τ 2h2

1 + τ 2h2
2 + h2

1h
2
2), 1 ≤ n ≤ N,

where the extrapolation solution

(uE)
n
ij =

32
21

u4n
4i,4j


τ

4
,
h1

4
,
h2

4


−

12
21

u2n
2i,2j


τ

2
,
h1

2
,
h2

2


+

1
21

un
i,j (τ , h1, h2) .
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Proof. We define the following auxiliary functions

fp(x, y, t) =
1
12
∂4u
∂t4

, fq(x, y, t) = −
1
12
∂4u
∂x4

, fr(x, y, t) = −
1
12
∂4u
∂y4

, ψw(x, y) =
1

120
∂5u
∂t5


t=0
.

From the derivation of the scheme (3.8)–(3.11) described above, it is not difficult to know that

Rn
ij = τ 2fp(xi, yj, tn)+ h2

1fq(xi, yj, tn)+ h2
2fr(xi, yj, tn)+Rn

ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1,

ωij =
τ 4

2
fp(xi, yj, t0)+ τ 5ψw(xi, yj)+ ωij, (xi, yj) ∈ Ωh,

whereRn
ij = (Rt)

n
ij − (Rx)

n
ij − (Ry)

n
ij, and

(Rt)
n
ij =

τ 4

5!

∫ 1

0

[
∂6u(xi, yj, tn − sτ)

∂t6
+
∂6u(xi, yj, tn + sτ)

∂t6

]
(1 − s)5ds,

(Rx)
n
ij =

h4
1

5!

∫ 1

0

[
∂6u(xi − λh1, yj, tn)

∂x6
+
∂6u(xi + λh1, yj, tn)

∂x6

]
(1 − λ)5dλ,

(Ry)
n
ij =

h4
2

5!

∫ 1

0

[
∂6u(xi, yj − λh2, tn)

∂y6
+
∂6u(xi, yj + λh2, tn)

∂y6

]
(1 − λ)5dλ,

ωij =
τ 6

5!

∫ 1

0

∂6u(xi, yj, sτ)
∂t6

(1 − s)5ds.

Thus the error system (3.18)–(3.20) can be rewritten as

δ2t ũ
n
ij −∆hũn

ij = fp(xi, yj, tn)τ 2 + fq(xi, yj, tn)h2
1 + fr(xi, yj, tn)h2

2 +Rn
ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1,

ũn
ij = 0, (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N, (3.22)

ũ0
ij = 0, ũ1

ij =
τ 4

2
fp(xi, yj, t0)+ τ 5ψw(xi, yj)+ ωij, (xi, yj) ∈ Ωh.

We consider the following nonhomogeneous problems with homogeneous initial and boundary conditions:
ptt −∆p = fp(x, y, t), (x, y) ∈ Ω, 0 < t ≤ T ,
p(x, y, t) = 0, (x, y) ∈ ∂Ω, 0 < t ≤ T ,
p(x, y, 0) = 0, pt(x, y, 0) = 0, (x, y) ∈ Ω̄;

(3.23)


qtt −∆q = fq(x, y, t), (x, y) ∈ Ω, 0 < t ≤ T ,
q(x, y, t) = 0, (x, y) ∈ ∂Ω, 0 < t ≤ T ,
q(x, y, 0) = 0, qt(x, y, 0) = 0, (x, y) ∈ Ω̄;

(3.24)


rtt −∆r = fr(x, y, t), (x, y) ∈ Ω, 0 < t ≤ T ,
r(x, y, t) = 0, (x, y) ∈ ∂Ω, 0 < t ≤ T ,
r(x, y, 0) = 0, rt(x, y, 0) = 0, (x, y) ∈ Ω̄.

(3.25)

It is easy to develop the following explicit schemes to approximate the problems (3.23)–(3.25), respectively,
δ2t p

n
ij −∆hpnij = fp(xi, yj, tn), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1,

pnij = 0, (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N − 1,

p0ij = 0, p1ij =
τ 2

2
fp(xi, yj, t0), (xi, yj) ∈ Ωh;

(3.26)


δ2t q

n
ij −∆hqnij = fq(xi, yj, tn), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1,

qnij = 0, (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N − 1,

q0ij = 0, q1ij =
τ 2

2
fq(xi, yj, t0), (xi, yj) ∈ Ωh;

(3.27)
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δ2t r

n
ij −∆hrnij = fr(xi, yj, tn), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1,

rnij = 0, (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N − 1,

r0ij = 0, r1ij =
τ 2

2
fr(xi, yj, t0), (xi, yj) ∈ Ωh.

(3.28)

Theorem 3.2 shows that

p(xi, yj, tn)− pnij = O(τ 2 + h2
1 + h2

2), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N, (3.29)

q(xi, yj, tn)− qnij = O(τ 2 + h2
1 + h2

2), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N, (3.30)

r(xi, yj, tn)− rnij = O(τ 2 + h2
1 + h2

2), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N. (3.31)

Next, we consider the following homogeneous problems with zero boundary conditions and nonhomogeneous initial
conditions:

q̂tt −∆q̂ = 0, (x, y) ∈ Ω, 0 < t ≤ T ,
q̂(x, y, t) = 0, (x, y) ∈ ∂Ω, 0 < t ≤ T ,

q̂(x, y, 0) = 0, q̂t(x, y, 0) = −
1
2
fq(x, y, 0), (x, y) ∈ Ω̄;

(3.32)


r̂tt −∆r̂ = 0, (x, y) ∈ Ω, 0 < t ≤ T ,
r̂(x, y, t) = 0, (x, y) ∈ ∂Ω, 0 < t ≤ T ,

r̂(x, y, 0) = 0, r̂t(x, y, 0) = −
1
2
fr(x, y, 0), (x, y) ∈ Ω̄;

(3.33)

wtt −∆w = 0, (x, y) ∈ Ω, 0 < t ≤ T ,
w(x, y, t) = 0, (x, y) ∈ ∂Ω, 0 < t ≤ T ,
w(x, y, 0) = 0, wt(x, y, 0) = ψw(x, y), (x, y) ∈ Ω̄

(3.34)

One can construct the following explicit difference schemes to solve the second-order hyperbolic problems (3.32)–(3.34):
δ2t q̂

n
ij −∆hq̂nij = 0, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1,

q̂nij = 0, (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N − 1,

q̂0ij = 0, q̂1ij = −
τ

2
fq(x, y, 0), (xi, yj) ∈ Ωh;

(3.35)


δ2t r̂

n
ij −∆h r̂nij = 0, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1,

r̂nij = 0, (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N − 1,

r̂0ij = 0, r̂1ij = −
τ

2
fr(x, y, 0), (xi, yj) ∈ Ωh;

(3.36)


δ2t w

n
ij −∆hw

n
ij = 0, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1,

wn
ij = 0, (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N − 1,

w0
ij = 0, w1

ij = τψw(xi, yj), (xi, yj) ∈ Ωh.

(3.37)

Also, Theorem 3.2 shows that

q̂(xi, yj, tn)− q̂nij = O(τ 2 + h2
1 + h2

2), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N, (3.38)

r̂(xi, yj, tn)− r̂nij = O(τ 2 + h2
1 + h2

2), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N, (3.39)

w(xi, yj, tn)− wn
ij = O(τ 2 + h2

1 + h2
2), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N. (3.40)

Define grid function

enij = ũn
ij − τ 2pnij − h2

1q
n
ij − h2

2r
n
ij − τh2

1q̂
n
ij − τh2

2 r̂
n
ij − τ 4wn

ij, (xi, yj) ∈ Ω̄h, 0 ≤ n ≤ N.

Multiplying the difference systems (3.26)–(3.28) and (3.35)–(3.37) by τ 2, h2
1, h

2
2, τh

2
1, τh

2
2 and τ

4 respectively, and subtracting
the resulting systems from (3.22), we find that the grid function {enij} satisfies

δ2t e
n
ij −∆henij =Rn

ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1,

enij = 0, (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N, (3.41)

e0ij = 0, e1ij = ωij, (xi, yj) ∈ Ωh.



2226 H.-l. Liao, Z.-z. Sun / Journal of Computational and Applied Mathematics 235 (2011) 2217–2233

Applying the technique in the proof of Theorem 3.1, we know thatRn− 1
2

Σ(δ)

≤ c(u)(τ 4 + h4
1 + h4

2), 1 ≤ n ≤ N − 2.

Thus applying Theorem 3.3 to the error system (3.41), we get

ũn
ij − τ 2pnij − h2

1q
n
ij − h2

2r
n
ij − τh2

1q̂
n
ij − τh2

2 r̂
n
ij − τ 4wn

ij = O(τ 4 + h4
1 + h4

2).

Inserting the equalities (3.29)–(3.31) and (3.38)–(3.40) into the equality above, we have

un
ij(τ , h1, h2) = u(xi, yj, tn)−


τ 2p(xi, yj, tn)+ h2

1q(xi, yj, tn)+ h2
2r(xi, yj, tn)


−


τh2

1q̂(xi, yj, tn)+ τh2
2 r̂(xi, yj, tn)


+O(τ 4 + h4

1 + h4
2 + τ 2h2

1 + τ 2h2
2 + h2

1h
2
2), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N. (3.42)

Similarly,

u2n
2i,2j


τ

2
,
h1

2
,
h2

2


= u(xi, yj, tn)−

τ
2

2
p(xi, yj, tn)+


h1

2

2

q(xi, yj, tn)+


h2

2

2

r(xi, yj, tn)



−


τ

2


h1

2

2

q̂(xi, yj, tn)+
τ

2


h2

2

2

r̂(xi, yj, tn)


+O(τ 4 + h4

1 + h4
2 + τ 2h2

1 + τ 2h2
2 + h2

1h
2
2), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N, (3.43)

u4n
4i,4j


τ

4
,
h1

4
,
h2

4


= u(xi, yj, tn)−

τ
4

2
p(xi, yj, tn)+


h1

4

2

q(xi, yj, tn)+


h2

4

2

r(xi, yj, tn)



−


τ

4


h1

4

2

q̂(xi, yj, tn)+
τ

4


h2

4

2

r̂(xi, yj, tn)


+O(τ 4 + h4

1 + h4
2 + τ 2h2

1 + τ 2h2
2 + h2

1h
2
2), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N. (3.44)

Multiplying the equalities (3.42)–(3.44) by 1/21, −12/21 and 32/21, respectively, and adding up the resulting equalities,
we find

u(xi, yj, tn)− (uE)
n
ij = O(τ 4 + h4

1 + h4
2 + τ 2h2

1 + τ 2h2
2 + h2

1h
2
2), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N.

Thus the proof is completed. �

4. Error analysis of the ADI solution and its extrapolation

Utilizing the Taylor expansion with integral remainder, one has

utt(xi, yj, tn) = δ2t U
n
ij − (Rt)

n
ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1, (4.1)

−uxx(xi, yj, tn) = −δ2x
Un+1
ij + Un−1

ij

2
+ (Rx)

n
ij + (Rtx)

n
ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1, (4.2)

−uyy(xi, yj, tn) = −δ2y
Un+1
ij + Un−1

ij

2
+ (Ry)

n
ij + (Rty)

n
ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1, (4.3)

0 =
τ 4

4
δ2x δ

2
yδ

2
t U

n
ij − (Rtxy)

n
ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1, (4.4)

where the errors (Rt)
n
ij, (Rx)

n
ij, (Ry)

n
ij are defined in the above section, and

(Rtx)
n
ij =

τ 2

2

∫ 1

0
δ2x

[
∂2u(xi, yj, tn − sτ)

∂t2
+
∂2u(xi, yj, tn + sτ)

∂t2

]
(1 − s)ds,

(Rty)
n
ij =

τ 2

2

∫ 1

0
δ2y

[
∂2u(xi, yj, tn − sτ)

∂t2
+
∂2u(xi, yj, tn + sτ)

∂t2

]
(1 − s)ds,

(Rtxy)
n
ij =

τ 4

4

∫ 1

0
δ2x δ

2
y

[
∂2u(xi, yj, tn − sτ)

∂t2
+
∂2u(xi, yj, tn + sτ)

∂t2

]
(1 − s)ds.

Adding up the Eqs. (4.1)–(4.4) and using the following equality

utt(xi, yj, tn)−∆u(xi, yj, tn) = f (xi, yj, tn), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1,
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we have

δ2t U
n
ij −∆h

Un+1
ij + Un−1

ij

2
+
τ 4

4
δ2x δ

2
yδ

2
t U

n
ij = f (xi, yj, tn)+ Snij , (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1, (4.5)

where the truncation error

Snij = (Rt)
n
ij − (Rx)

n
ij − (Rtx)

n
ij − (Ry)

n
ij − (Rty)

n
ij + (Rtxy)

n
ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1.

Omitting the small terms Snij and ωij, and replacing Un
ij with its numerical approximation un

ij in the Eqs. (4.5) and (3.5)–(3.7),
one gets the following approximate factorization scheme

δ2t u
n
ij −∆h

un+1
ij + un−1

ij

2
+
τ 4

4
δ2x δ

2
yδ

2
t u

n
ij = f (xi, yj, tn), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1, (4.6)

un
ij = α(xi, yj, tn), (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N, (4.7)

u0
ij = ϕ(xi, yj), (xi, yj) ∈ Ωh, (4.8)

u1
ij = ϕ1(xi, yj, τ ), (xi, yj) ∈ Ωh. (4.9)

This scheme can be split into various ADImethods such as the Douglas [22] scheme or the Douglas–Gunn [11] scheme. Using
the identical operator I and the following equality

1
2
(un+1

ij + un−1
ij ) = un

ij +
τ 2

2
δ2t u

n
ij,

we can write the interior scheme (4.6) as
I −

τ 2

2
δ2x

 
I −

τ 2

2
δ2y


δ2t u

n
ij = ∆hun

ij + f (xi, yj, tn).

By introducing intermediate variables

u∗

ij =


I −

τ 2

2
δ2y


δ2t u

n
ij, 0 ≤ i ≤ M1, 1 ≤ j ≤ M2 − 1,

the above scheme is decomposed into an ADI scheme of the Douglas–Gunn type

I −

τ 2

2
δ2x


u∗

ij = ∆hun
ij + f (xi, yj, tn),

I −
τ 2

2
δ2y


δ2t u

n
ij = u∗

ij.

To find the unknown solution

un+1
ij |(xi, yj) ∈ Ωh


, we can run the x-sweep and y-sweep procedures to get


u∗

ij|(xi, yj) ∈ Ωh


and

δ2t u

n
ij|(xi, yj) ∈ Ωh


respectively, then compute the wanted solution by

un+1
ij = 2un

ij − un−1
ij + τ 2δ2t u

n
ij, (xi, yj) ∈ Ωh.

Now we consider the following lemma of a priori estimation.

Lemma 4.1. Let grid function {wn
ij|(xi, yj) ∈ Ω̄h, 0 ≤ n ≤ N} be the discrete solution of the following implicit difference system

δ2t w
n
ij −∆h

wn+1
ij + wn−1

ij

2
+
τ 4

4
δ2x δ

2
yδ

2
t w

n
ij = gn

ij , (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1, (4.10)

wn
ij = 0, (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N, (4.11)

w0
ij = ϕij, w1

ij = ψij, (xi, yj) ∈ Ωh. (4.12)

Then it holds that

F n
≤ etn


3F 0

+ 4
gn

2
Σ(δ)


, 0 ≤ n ≤ N − 1,

where the energy norm

F n
=

δtwn+ 1
2
2
1 +

1
2

∆hw
n+1

2
+

∆hw
n
2


+
τ 4

4

δyδxδtwn+ 1
2
2
1, 0 ≤ n ≤ N − 1.
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Proof. Multiplying (4.10) by −2τh1h2Dt∆hw
n
ij and summing i, j for (xi, yj) ∈ Ωh, we have

F n
− F n−1

= −2τh1h2

M1−1−
i=1

M2−1−
j=1

gn
ij


Dt∆hw

n
ij


, 1 ≤ n ≤ N − 1,

where the discrete Green’s first inequality is applied. Summing the above equation for n from 1 to k, and then replacing k
with n, one gets

F n
= F 0

− 2τh1h2

n−
l=1

M1−1−
i=1

M2−1−
j=1

g l
ij


Dt∆hw

l
ij


≤ F 0

+
1
2

∆hw
1
2
2

+
τ

2

n−1−
l=1

∆hw
l+ 1

2
2

+
1
2

∆hw
n+ 1

2
2

+ 2
gn

2
Σ(δ)

, 1 ≤ n ≤ N − 1,

where Lemma 2.3 with ϵ = 2 is used. Using the inequality∆hw
n+ 1

2
2

≤
1
2

∆hw
n+1

2
+

∆hw
n
2


≤ F n, 0 ≤ n ≤ N − 1,

one can obtain that

F n
≤ 3F 0

+ τ

n−1−
l=1

F l
+ 4

gn
2
Σ(δ)

, 1 ≤ n ≤ N − 1.

Thus the Gronwall inequality [21] yields the claimed inequality. It completes the proof. �

It is to present the error analysis for the smooth solution. It is easy to find that the solution error of the ADI scheme
(4.6)–(4.9) satisfies

δ2t ũ
n
ij −∆h

ũn+1
ij + ũn−1

ij

2
+
τ 4

4
δ2x δ

2
yδ

2
t ũ

n
ij = Snij , (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1,

ũn
ij = 0, (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N,

ũ0
ij = 0, ũ1

ij = ωij, (xi, yj) ∈ Ωh.

Under the condition τ ≤ ch, it is easy to get that
∆hũ0

 = 0,
∆hũ1

 ≤ c(u)τ 2, andδt ũ 1
2

1 ≤ c(u)τ 2,

δyδ2x δt ũ 1
2
 ≤ c(u),

δxδ2yδt ũ 1
2
 ≤ c(u).

The same arguments in the proof of Theorem 3.1 show thatSn
Σ(δ)

≤ c(u)(τ 2 + h2
1 + h2

2), 1 ≤ n ≤ N − 1.

Then we obtain from Lemmas 4.1 and 2.1 thatũn+1


∞
≤ c

∆hũn+1
 ≤ c(u)(τ 2 + h2

1 + h2
2), 0 ≤ n ≤ N − 1. �

Therefore one has the following theorem.

Theorem 4.1. Let u(x, y, t) ∈ C(4,5)(Ω̄ × [0, T ]) be the solution of the wave problem (1.1)–(1.3). Then the solution of the ADI
scheme (4.6)–(4.9) is convergent with an order of O(τ 2 + h2

1 + h2
2) in the maximum norm provided the maximum spacing h is

sufficiently small and the time-step size τ = O(h). Further, it is also valid for the difference scheme with the third-order accurate
approximation (3.12) of u(xi, yj, τ ) if the boundary conditions are zero-valued, i.e., α(x, y, t) = 0.

Obviously, Lemma 4.1 implies the unconditional stability of the ADI scheme.

Theorem 4.2. Let {un
ij|(xi, yj) ∈ Ω̄h, 0 ≤ n ≤ N} be the solution of the approximate factorization scheme (4.6)–(4.9) with

α(x, y, t) ≡ 0. Then,

F n(u) ≤ etn

3F 0(u)+ 4

f n2
Σ(δ)


, 0 ≤ n ≤ N − 1,

where F n(u) =
δtun+ 1

2
2
1 +

1
2

∆hun+1
2

+
∆hun

2


+
τ4

4

δyδxδtun+ 1
2
2
1.

We also consider the fourth order extrapolation of the discrete solution.
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Theorem 4.3. Let function u(x, y, t) be the smooth solution of the wave problem (1.1)–(1.3) and un
ij(τ , h1, h2) be the numerical

solution of the ADI scheme (4.6)–(4.9). Then it holds thatUn
− (uE)

n


∞
= O


τ 4 + h4

1 + h4
2 + τ 2h2

1 + τ 2h2
2 + h2

1h
2
2


, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N,

where the extrapolation solution

(uE)
n
ij =

32
21

u4n
4i,4j


τ

4
,
h1

4
,
h2

4


−

12
21

u2n
2i,2j


τ

2
,
h1

2
,
h2

2


+

1
21

un
i,j (τ , h1, h2) .

Proof. We define the following smooth functions

Fp1(x, y, t) =
1
12
∂4u
∂t4

, Fp2(x, y, t) = −
1
2
∂4u
∂x2∂t2

−
1
2
∂4u
∂y2∂t2

,

Fq(x, y, t) = −
1
12
∂4u(x, y, t)

∂x4
, Fr(x, y, t) = −

1
12
∂4u(x, y, t)

∂y4
, Ψw(x, y) =

1
120

∂5u
∂t5


t=0
.

From the derivation of the ADI scheme (4.6)–(4.9), it is not difficult to know that

Snij = Fp1(xi, yj, tn)τ 2 + Fp2(xi, yj, tn)τ 2 + Fq(xi, yj, tn)h2
1 + Fr(xi, yj, tn)h2

2 +Snij ,
ωij =

τ 4

2
Fp1(x, y, 0)+ τ 5Ψw(xi, yj)+ ωij,

whereSnij = (Rt)
n
ij − (Rx)

n
ij − (Rtx)

n
ij − (Ry)

n
ij − (Rty)

n
ij + (Rtxy)

n
ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1.

The small terms (Rt)
n
ij, (Rx)

n
ij, (Ry)

n
ij are defined in the proof of Theorem 3.4, and

(Rtx)
n
ij =

τ 4

2 · 3!

∫ 1

0
δ2x

[
∂4u(xi, yj, tn − sτ)

∂t4
+
∂4u(xi, yj, tn + sτ)

∂t4

]
(1 − s)3ds

+
τ 2h2

1

2 · 3!

∫ 1

0

[
∂6u(xi − λh1, yj, tn)

∂x4∂t2
+
∂6u(xi + λh1, yj, tn)

∂x4∂t2

]
(1 − λ)3dλ

(Rty)
n
ij =

τ 4

2 · 3!

∫ 1

0
δ2y

[
∂4u(xi, yj, tn − sτ)

∂t4
+
∂4u(xi, yj, tn + sτ)

∂t4

]
(1 − s)3ds

+
τ 2h2

2

2 · 3!

∫ 1

0

[
∂6u(xi, yj − λh2, tn)

∂y4∂t2
+
∂6u(xi, yj + λh2, tn)

∂y4∂t2

]
(1 − λ)3dλ.

Then, with the aid of Theorems 4.1 and 4.2 together with Lemma 2.1, one can get the claimed result by presenting similar
arguments for Theorem 3.4. �

5. Numerical experiments

To verify our theory, we solve the hyperbolic problem (1.1)–(1.3) numerically by the explicit scheme (3.8)–(3.11) and
the ADI method (4.6)–(4.9). In the runs, we use the same spacing h in each spatial direction, h1 = h2 = h. All experiments
were carried out on a PC with 1024 RAM using the student version of MATLAB.

The explicit scheme (3.8)–(3.11) updates the solution at time level tn+1 by the explicit formula

un+1
ij = 2un

ij − un−1
ij + τ 2


∆hun

ij + f (xi, yj, tn)

, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1;

but the time step is restricted by τ < h/
√
2. The ADI method (4.6)–(4.9) can use a larger time-step size, but it computes

the solution at time level tn+1 by solving tridiagonal linear systems. In the x-sweep, one would run the well-known Thomas
algorithm to solve

Au∗

j = bj, 1 ≤ j ≤ M − 1,

where

A =


1 + 2σ 2

−σ 2

−σ 2 1 + 2σ 2
−σ 2

. . .
. . .

. . .

−σ 2 1 + 2σ 2
−σ 2

−σ 2 1 + 2σ 2


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Table 1
Computational cost of explicit and ADI solutions with time-step τ = h/2.

h τ Explicit method ADI method
e(τ , h) CPU time (s) e(τ , h) CPU time (s)

1/160 1/320 1.37e−06 5.484 9.78e−07 29.89
1/320 1/640 3.42e−07 45.94 2.45e−07 157.0
1/640 1/1280 8.56e−08 375.0 6.12e−08 1003

Table 2
Convergence of explicit solution using the fourth-order start with time-step τ = h/2.

h τ e(τ , h) Rate γ eE(τ , h) Rate γE

1/4 1/8 2.11e−03 – 3.38e−06 –
1/8 1/16 5.35e−04 1.98 2.36e−07 3.84
1/16 1/32 1.36e−04 1.97 1.50e−08 3.97
1/32 1/64 3.42e−05 2.00 9.26e−10 4.02
1/64 1/128 8.56e−06 2.00 – –
1/128 1/256 2.14e−06 2.00 – –

u∗

j =


u∗

1j
u∗

2j
...

u∗

M−2,j
u∗

M−1,j

 , b∗

j =



∆hun
1j + f (x1, yj, tn)+ σ 2


I −

τ 2

2
δ2y


δ2t u

n
0j

∆hun
2j + f (x2, yj, tn)

...
∆hun

M−2,j + f (xM−2, yj, tn)

∆hun
M−1,j + f (xM−1, yj, tn)+ σ 2


I −

τ 2

2
δ2y


δ2t u

n
Mj


.

In the y-sweep, one would run the Thomas algorithm to solve

Awi = u∗

i , 1 ≤ i ≤ M − 1,

where

wi =


wi1
wi2
...

wi,M−2
wi,M−1

 , u∗

i =


u∗

i1 + σ 2δ2t u
n
i0

u∗

i2
...

u∗

i,M−2
u∗

i,M−1 + σ 2δ2t u
n
iM

 .
Then the solution at time level tn+1 is obtained by

un+1
ij = 2un

ij − un−1
ij + τ 2wn

ij, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N − 1.

We see that, to compute the solution at time level tn+1, the ADI method sweeps the spatial grids three times while the
explicit method needs one sweep only. It is to be expected that the ADI scheme would be computationally more expensive
than the explicit scheme on the same grids. With an exact solution u(x, y, t) = ex+y sin t , we compute the maximum norm
error of the discrete solution, e(τ , h) = max1≤n≤N ‖Un

− un‖∞, on the space–time domainΩ × (0, 1]. Table 1 reports the
CPU cost of the explicit and ADI method on the halving grids with the coarsest grid (h = 1/160, τ = 1/320). We observe
that the ADI method is accurate as the same as the explicit method for this example, but the CPU cost is much more than
that of the explicit scheme.

Now we examine the numerical accuracy of the explicit and ADI schemes with the solution u(x, y, t) = ex+y sin t . On
the space–time domain Ω × (0, 1], the maximum norm errors of the discrete solution and its Richardson extrapolation
eE(τ , h) = max1≤n≤N ‖Un

− (uE)
n‖∞ are computed. For our comparisons, two different approximations of solution

u(xi, yj, τ ), including the fourth-order scheme (3.11) and the third-order scheme (3.12), are considered to start the two
difference methods. Succinctly, the former is called the fourth-order start and the latter the third-order start.

In Tables 2 and 3, the solutions are approximated by the explicit method, using the fourth-order start and the third-order
start respectively, on the halving grids. Setting time step size τ = h/2, the experimental rate (listed as Rate in the tables) of
convergence, in h, is computed by observing that e(τ , h) ≈ chγ , eE(τ , h) ≈ chγE and utilizing γ ≈ log2 (e(2τ , 2h)/e(τ , h)),
γE ≈ log2 (eE(2τ , 2h)/eE(τ , h)). We observe that, as predicted by Theorems 3.1 and 3.4, the explicit scheme (3.8)–(3.11)
generates a second order accurate solution and one Richardson extrapolation produces a fourth order approximation. The
solution of the explicit method using the third-order start is also second-order convergent but the extrapolated solution is
only approximately third-order accurate.
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Table 3
Convergence of explicit solution using the third-order start with time-step τ = h/2.

h τ e(τ , h) Rate γ eE(τ , h) Rate γE

1/4 1/8 3.03e−03 – 1.03e−04 –
1/8 1/16 8.91e−04 1.77 1.36e−05 2.92
1/16 1/32 2.42e−04 1.88 2.21e−06 2.62
1/32 1/64 6.35e−05 1.93 3.35e−07 2.72
1/64 1/128 1.63e−05 1.96 – –
1/128 1/256 4.15e−06 1.98 – –

Table 4
Convergence of ADI solution using the fourth-order start with time-step τ = h.

h τ e(τ , h) Rate γ eE(τ , h) Rate γE

1/8 1/8 3.42e−03 – 9.21e−06 –
1/16 1/16 8.66e−04 1.98 5.86e−07 3.97
1/32 1/32 2.15e−04 2.01 3.94e−08 3.90
1/64 1/64 5.38e−05 2.00 2.57e−09 3.94
1/128 1/128 1.35e−05 2.00 – –
1/256 1/256 3.36e−06 2.00 – –

Table 5
Convergence of ADI solution using the third-order start with time-step τ = h.

h τ e(τ , h) Rate γ eE(τ , h) Rate γE

1/8 1/8 6.67e−03 – 1.99e−04 –
1/16 1/16 1.69e−03 1.98 2.31e−05 3.10
1/32 1/32 3.55e−04 2.25 3.22e−06 2.85
1/64 1/64 8.76e−05 2.02 4.93e−07 2.71
1/128 1/128 2.18e−05 2.00 – –
1/256 1/256 5.45e−06 2.00 – –

Fig. 1. Errors at y = 1/2, T = 1 of the explicit scheme with h = 1/20 and τ = 1/40.

We also apply the ADI scheme of the Douglas–Gunn type to solve the abovemodel. Data in Tables 4 and 5 are obtained in
a similar way to those in Tables 2 and 3. Again, similar numerical phenomena are seen. In particular, data in Table 4 support
the results of Theorems 4.1 and 4.3.

At last, we show the difference between the third and fourth order start of the twomethods in approximating a traveling
wave u(x, y, t) = sin(10(x + y +

√
2t)) at different time. Given the h = 1/20 and τ = 1/40, we compute the explicit

approximation, at T = 1 and T = 10 respectively, as shown in Figs. 1 and 2, in which numerical errors at y = 1/2 are
plotted. Observation shows that the numerical error of the fourth-order start is smaller than that of the third-order start.
Similar phenomena are also seen in Figs. 3 and 4, where the solution is approximated by the ADI scheme.
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Fig. 2. Errors at y = 1/2, T = 10 of the explicit scheme with h = 1/20 and τ = 1/40.

Fig. 3. Errors at y = 1/2, T = 1 of the ADI scheme with h = 1/40 and τ = 1/40.

Fig. 4. Errors at y = 1/2, T = 10 of the ADI scheme with h = 1/40 and τ = 1/40.
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6. Concluding remarks

The recently suggested H2 energy analysis is applied to theoretical considerations of the well-known second-order
explicit and ADI methods for second-order hyperbolic problems. It has been shown that the explicit and ADI solutions
are convergent in the maximum norm. Even though the centered schemes are employed for temporal discretizations, the
asymptotic expansion of the explicit or ADI solution consists of odd powers of the time-step due to the inconsistency
between the global scheme and the start procedure at the first time level. Thus an unusual Richardson extrapolation formula
is needed in promoting the second-order solution to fourth-order accuracy. Numerical tests are included to verify our results.
Our experiments show that the explicit scheme is more efficient than the ADI method in the sense of computational cost.

Extensions of the explicit and ADI approaches to three-dimensional wave equation are straightforward. As noted in [16],
Lemma2.1 are valid on the three-dimensional cuboidal domain. Thus, by applying the fourth-order start at the first time level
and the suggested H2 energy technique, it is easy to obtain the maximum norm error estimates of the numerical solutions
and their Richardson extrapolations. Since the three-dimensional ADImethodwould sweep the entire gridsmore times than
the two-dimensional version, the computational cost would be more expensive than the explicit method in getting certain
accuracy. Future work is planned to improve the resolving efficiency of ADI approach and reduce the computational count
of extrapolation.
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