Available online at www.sciencedirect.com

The intersection of the spectra of operator completions ${ }^{\text {sh }}$

Fang-Guo Ren*, Hong-Ke Du, Huai-xin Cao
College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China
Received 4 April 2002; accepted 27 January 2003
Submitted by R.A. Brualdi

Abstract

Let $A \in B(H), B \in B(K), C \in B(K, H), X \in B(H, K)$ and $M_{X}=\left(\begin{array}{ll}A & C \\ X & B\end{array}\right)$ be an operator completion of the partial operator matrix $Q=\left(\begin{array}{cc}A & C \\ ? & B\end{array}\right)$. In this note, we consider the intersection of the spectra of M_{X} when X runs over $B(H, K)$. Denote by $\sum(A, B, C)$ the set of scalar $\lambda \in \mathbb{C}$ such that either $(A-\lambda, C)$ or $\left(B^{*}-\bar{\lambda}, C^{*}\right)$ is not right invertible. We prove that

$$
\bigcap_{X \in B(H, K)} \sigma\left(M_{X}\right)= \begin{cases}\sum(A, B, C) & \text { if } \operatorname{dim} R(C)=\infty \\ \sum(A, B, C) \cup \Delta(A, B, C) & \text { if } \operatorname{dim} R(C)<\infty\end{cases}
$$

where $\Delta(A, B, C)$ is the set of scalars $\lambda \in \mathbb{C}$ such that $R((A-\lambda, C))=H, R\left(\left(B^{*}-\bar{\lambda}, C^{*}\right)\right)$ $=K$, and $\operatorname{ind}(A-\lambda)+\operatorname{ind}(B-\lambda) \neq 0$. We also prove that the intersection is empty if and only if (A, C) and $\left(B^{*}, C^{*}\right)$ are controllable.
© 2003 Elsevier Inc. All rights reserved.
AMS classification: 47A10; 47A55
Keywords: Operator completion; Spectrum; Operator matrix; Controllability

Let H and K be separable Hilbert spaces. Let $B(H, K)$ denote the space of all bounded linear operators from H to K and abbreviate $B(H, H)$ to $B(H)$. For an operator $A, \sigma(A), R(A)$, and $N(A)$ denote the spectrum, the range, and the

[^0]null-space of A, respectively. When $A \in B(H), B \in B(K), X \in B(H, K)$ and $C \in$ $B(K, H)$ are given, put
\[

M_{X}=\left($$
\begin{array}{cc}
A & C \\
X & B
\end{array}
$$\right), \quad Q=\left($$
\begin{array}{cc}
A & C \\
? & B
\end{array}
$$\right)
\]

The operator M_{X} on $H \oplus K$ can be viewed as an operator completion of the partial operator matrix Q. The some properties of the spectrum of M_{X} were discussed in [1]. Takahashi discussed in [2] the invertible completion of Q. The relationship between operator completion problem and spectrum assignment can be found in [3,4]. In this paper, we discuss the intersection of the spectra of M_{X} when X runs over $B(H, K)$. To do this, we need some notations and definitions.

For given $A \in B(H), B \in B(K)$ and $C \in B(K, H)$, let

$$
\sum(A, B, C):=\left\{\lambda \in \mathbf{C}:(A-\lambda, C) \text { or }\left(B^{*}-\bar{\lambda}, C^{*}\right) \text { is not right invertible }\right\} .
$$

Clearly, for any $X \in B(H, K)$ we have $\sum(A, B, C) \subset \sigma\left(M_{X}\right)$. Thus

$$
\sum(A, B, C) \subset \bigcap_{X \in B(H, K)} \sigma\left(M_{X}\right)
$$

Definition 1. Let $A \in B(H), B \in B(K)$ and $C \in B(K, H)$. A pair of operators (A, C) is called controllable if there exists a positive integer p with $\sum_{i=1}^{p} R\left(A^{i-1} C\right)$ $=H$; a triple of operators (A, B, C) is called controllable if (A, C) and $\left(B^{*}, C^{*}\right)$ are controllable.

Definition 2. Let $A \in B(H), B \in B(K)$ and $C \in B(K, H)$. For a pair of operators $A \in B(H)$ and $C \in B(K, H)$ denote $R_{p}(A, C)=R\left(C, A C, \ldots, A^{p-1} C\right)$. The pair of operators (A, C) is called admissible if for some positive integer $p, R_{p}(A, C)=$ $R_{p+1}(A, C)$ and the linear set $R_{p}(A, C)$ is closed. If p is the minimal positive integer with these properties, the pair (A, C) is p-admissible; the triple of operators (A, B, C) is called admissible if (A, C) and $\left(B^{*}, C^{*}\right)$ are admissible.

For two operators $S \in B(H)$ and $R \in B(K, H)$, let

$$
\begin{equation*}
N(S \mid R)=\{G \in B(K, H): R(S G) \subset R(R)\} . \tag{1}
\end{equation*}
$$

As well known (see [2]), an operator G belongs to $N(S \mid R)$ if and only if there exists an $D \in B(K)$ such that $S G=-R D$.

The following results are in [2] which we state as lemmas.
Lemma 1 (Theorem 1 in [2]). Let $A \in B(H), B \in B(K)$ and $C \in B(K, H)$. Assume that the operator $(A, C): H \oplus K \rightarrow H$ and $\left(B^{*}, C^{*}\right): K \oplus H \rightarrow K$ are right invertible. Then the following conditions are equivalent:
(1) There exists $X \in B(H, K)$ such that M_{X} is invertible.
(2) There exists $X \in B(H, K)$ such that M_{X} is Fredholm with ind $M_{X}=0$.
(3) The operator $M_{0}(=M(A, B, C, 0))$ is Fredholm with ind $M_{0}=0$ or both $N(A \mid$ $C)$ and $N\left(B^{*} \mid C^{*}\right)$ contain non-compact operators.

Lemma 2 (Theorem 2 in [2]). Let $S \in B(H)$ and $R \in B(K, H)$. Assume that $(S, R): H \oplus K \rightarrow H$ is right invertible.
(1) When R is compact, there exists $F \in B(H, K)$ such that $S+R F$ is invertible if and only if S is Fredholm with ind $S=0$.
(2) When R is not compact, there exists $F \in B(H, K)$ such that $S+R F$ is invertible if and only if $N(S \mid R)$ contains a non-compact operator.

Our main results are the followings.
Theorem 1. Let $M_{X} \in B(H \oplus K)$, then $\bigcap_{X \in B(H, K)} \sigma\left(M_{X}\right)=\emptyset$ if and only if both pairs (A, C) and $\left(B^{*}, C^{*}\right)$ of operators are controllable.

Proof. Suppose that $\bigcap_{X \in B(H, K)} \sigma\left(M_{X}\right)=\emptyset$, then for each $\lambda \in \mathbb{C}$, there exists $X_{\lambda} \in$ $B(H, K)$ such that

$$
M_{X_{\lambda}}=\left(\begin{array}{cc}
A-\lambda & C \\
X_{\lambda} & B-\lambda
\end{array}\right)
$$

is invertible, this implies that $R(A-\lambda)+R(C)=H$ and $R\left(B^{*}-\bar{\lambda}\right)+R\left(C^{*}\right)=$ K. Thus, the pairs of operators (A, C) and $\left(B^{*}, C^{*}\right)$ are controllable.

Conversely, assume that (A, B) and ($\left.B^{*}, C^{*}\right)$ are controllable. Then for each $\lambda \in$ $\mathbb{C},(A-\lambda, C)$ and $\left(B^{*}-\bar{\lambda}, C^{*}\right)$ are also controllable. Therefore there exist operators $F_{\lambda} \in B(H, K)$ and $G_{\lambda} \in B(H, K)$ such that $A-\lambda+C F_{\lambda}$ and $B-\lambda+G_{\lambda} C$ are invertible. Now we construct X_{λ} such that

$$
M_{X_{\lambda}}=\left(\begin{array}{cc}
A-\lambda & C \\
X_{\lambda} & B-\lambda
\end{array}\right)
$$

is invertible. Let $X_{\lambda}=-G_{\lambda}\left(A-\lambda+C F_{\lambda}\right)-(B-\lambda) F_{\lambda}$, then $G_{\lambda}=-\left(X_{\lambda}+\right.$ $\left.(B-\lambda) F_{\lambda}\right)\left(A-\lambda+C F_{\lambda}\right)^{-1}$. Note that

$$
\left(\begin{array}{cc}
A-\lambda & C \\
X_{\lambda} & B-\lambda
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
F_{\lambda} & I
\end{array}\right)=\left(\begin{array}{cc}
A-\lambda+C F_{\lambda} & C \\
X_{\lambda}+(B-\lambda) F_{\lambda} & B-\lambda
\end{array}\right)
$$

and

$$
\begin{aligned}
& \left(\begin{array}{cc}
A-\lambda+C F_{\lambda} & C \\
X_{\lambda}+(B-\lambda) F_{\lambda} & B-\lambda
\end{array}\right)\left(\begin{array}{cc}
I & -\left(A-\lambda+C F_{\lambda}\right)^{-1} C \\
0 & I
\end{array}\right) \\
& \quad=\left(\begin{array}{cc}
A-\lambda+C F_{\lambda} & 0 \\
X_{\lambda}+(B-\lambda) F_{\lambda} & B-\lambda-\left(X_{\lambda}+(B-\lambda) F_{\lambda}\right)\left(A-\lambda+C F_{\lambda}\right)^{-1} C
\end{array}\right) \\
& =\left(\begin{array}{cc}
A-\lambda+C F_{\lambda} & 0 \\
X_{\lambda}+(B-\lambda) F_{\lambda} & B-\lambda+G_{\lambda} C
\end{array}\right) .
\end{aligned}
$$

Consequently,

$$
M_{X_{\lambda}}=\left(\begin{array}{cc}
A-\lambda & C \\
X_{\lambda} & B-\lambda
\end{array}\right)
$$

is invertible. This shows that $\lambda \notin \bigcap_{X \in B(H, K)} \sigma\left(M_{X}\right)$. Since λ is arbitrary, $\bigcap_{X \in B(H, K)}$ $\sigma\left(M_{X}\right)=\emptyset$. The proof is completed.

Theorem 2. Let (A, B, C) be an admissible triple of operators.
(1) If $R(C)$ is infinite dimensional, then

$$
\begin{equation*}
\bigcap_{X \in B(H, K)} \sigma\left(M_{X}\right)=\sum(A, B, C) . \tag{2}
\end{equation*}
$$

(2) If $R(C)$ is finite dimensional, then

$$
\begin{equation*}
\bigcap_{X \in B(H, K)} \sigma\left(M_{X}\right)=\sum(A, B, C) \bigcup \Delta, \tag{3}
\end{equation*}
$$

where $\Delta=\left\{\lambda: R((A-\lambda, C))=H, \quad R\left(\left(B^{*}-\bar{\lambda}, C^{*}\right)\right)=K\right.$, and $\operatorname{ind}(A-\lambda)+$ $\operatorname{ind}(B-\lambda) \neq 0\}$.

Proof. (1) The inclusion $\sum(A, B, C) \subset \bigcap_{X \in B(H, K)} \sigma\left(M_{X}\right)$ is clear. For each $\lambda \notin$ $\sum(A, B, C)$, by Lemma 1, to prove that there exists $X_{\lambda} \in B(H, K)$ such that $M_{X_{\lambda}}$ is invertible. It suffices to prove that both $N((A-\lambda) \mid C)$ and $N\left(\left(B^{*}-\bar{\lambda}\right) \mid C^{*}\right)$ contain non-compact operators. Since that (A, B, C) is an admissible triple of operators and $R(C)$ is infinite dimensional, it is easy to know that C is not compact. Moreover, by (2) of Lemma 2, it suffices to prove that there exist $F \in B(H, K)$ and $G \in B(K, H)$ such that $A-\lambda+C F$ and $B^{*}-\bar{\lambda}+C^{*} G$ are invertible. At first, we prove that there exists an operator $F \in B(H, K)$ such that $A-\lambda+C F$ is invertible. Without loss of generality, we assume that $\lambda=0$. Suppose that (A, C) is p_{1-} admissible and $\left(B^{*}, C^{*}\right)$ is p_{2}-admissible. Denote $H_{2}=\sum_{i=1}^{p_{1}} R\left(A^{i-1} C\right)$ and $K_{1}=$ $\sum_{j=1}^{p_{2}} R\left(B^{*^{p_{2}-1}} C^{*}\right)$, then it is easy to know that H_{2} and K_{1} are invariant subspaces under A and B^{*}, respectively. Moreover, let $H_{1}=H \ominus H_{2}$ and $K_{2}=K \ominus K_{1}$, then $K=K_{1} \oplus K_{2}$ and $H=H_{1} \oplus H_{2}$. Thus, A and C have the following operator matrix forms

$$
A=\left(\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right), \quad C=\left(\begin{array}{cc}
0 & 0 \\
C_{0} & 0
\end{array}\right)
$$

For each $F \in B\left(H_{1} \oplus H_{2}, K_{1} \oplus K_{2}\right), F$ has the operator matrix form

$$
F=\left(\begin{array}{ll}
F_{11} & F_{12} \\
F_{21} & F_{22}
\end{array}\right)
$$

Then,

$$
A+C F=\left(\begin{array}{cc}
A_{11} & 0 \\
A_{21}+C_{0} F_{11} & A_{22}+C_{0} F_{12}
\end{array}\right) .
$$

We will construct an operator F such that $A+C F$ is invertible. For convenience, we divide it into two cases.

Case 1. Suppose that $N\left(A_{11}\right)=\{0\}$. Since (A, C) is right invertible, A_{11} is invertible. On the other hand, since the (A, B, C) is an admissible triple of operators, it is easy to know that $\left(A_{22}, C_{0}\right)$ is controllable. Therefore there exists an operator $F_{12} \in B\left(K_{1}, H_{2}\right)$ such that $A_{22}+C_{0} F_{12}$ is an invertible operator on H_{2}. Thus, for such an F_{12} and arbitrary operators F_{11}, F_{12}, and F_{22}, we obtain that $A+C F$ is invertible.

Case 2. Assume that $\operatorname{dim} N\left(A_{11}\right) \neq 0$. Let

$$
C_{0}^{*} C_{0}=\int_{0}^{\infty} t \mathrm{~d} E_{t}
$$

be the spectral decomposition of the positive operator $C_{0}^{*} C_{0}$. Because C is not compact, there exists sufficiently small $\delta>0$ such that the subspace $K_{11}=\int_{\delta}^{\infty} \mathrm{d} E_{t} K_{1}$ is infinite dimensional and $\left(A_{22}, C_{0}(\delta)\right)$ is controllable, where $C_{0}(\delta)=C_{0} E([\delta, \infty))$ and $E([\delta, \infty))=\int_{\delta}^{\infty} \mathrm{d} E_{t}$ (see the theorem of [4]). Let $K_{12}=K_{1} \ominus K_{11}, H_{21}=$ $R\left(C_{0}(\delta)\right)$ and $H_{22}=H_{2} \ominus H_{21}$, then $C_{0}(\delta)$, as an operator from $K_{1}=K_{11} \oplus K_{12}$ to $H_{2}=H_{21} \oplus H_{22}$, has the following operator matrix form

$$
C_{0}(\delta)=\left(\begin{array}{cc}
C_{0}^{11}(\delta) & 0 \\
0 & 0
\end{array}\right)
$$

where the operator $C_{0}^{11}(\delta)$ is an invertible operator from K_{11} onto H_{21} and dim H_{21} is infinite. In this case, the operator A_{22} has the following operator matrix form

$$
\left(\begin{array}{ll}
A_{22}^{11} & A_{22}^{12} \\
A_{22}^{21} & A_{22}^{22}
\end{array}\right)
$$

with respect to the decomposition $H_{2}=H_{21} \oplus H_{22}$. It is easy to known that the pair of operators $\left(A_{22}^{22}, A_{22}^{21}\right)$ is controllable, so we can choose a suitable operator $D \in B\left(H_{22}, H_{21}\right)$ such that $A_{22}^{22}+A_{22}^{21} D$ is invertible. Let $N \in B\left(H_{21}\right)$ is an isometry on H_{21} with $\operatorname{codim} R(N)=\operatorname{dim} N\left(A_{11}\right)$. Now, we define an operator $C_{0}(\delta)^{+}$ from $H_{2}=H_{21} \oplus H_{22}$ to $K_{1}=K_{11} \oplus K_{12}$ by

$$
C_{0}(\delta)^{+}=\left(\begin{array}{cc}
\left(C_{0}^{11}(\delta)\right)^{-1} & 0 \\
0 & 0
\end{array}\right)
$$

Put

$$
F_{12}=C_{0}(\delta)^{+}\left(\begin{array}{cc}
D A_{22}^{21}+N-A_{22}^{12} & D A_{22}^{22}-N D-A_{22}^{12} \\
0 & 0
\end{array}\right)
$$

Then

$$
A_{22}+C_{0} F_{12}=A_{22}+C_{0}(\delta) C_{0}(\delta)^{+}\left(\begin{array}{cc}
D A_{22}^{21}+N-A_{22}^{11} & D A_{22}^{22}-N D-A_{22}^{12} \\
0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
A_{22}^{11} & A_{22}^{12} \\
A_{22}^{21} & A_{22}^{22}
\end{array}\right)+\left(\begin{array}{cc}
D A_{22}^{21}+N-A_{22}^{11} & D A_{22}^{22}-N D-A_{22}^{12} \\
0
\end{array}\right) \\
& =\left(\begin{array}{cc}
D A_{22}^{21}+N & D A_{22}^{22}-N D \\
A_{22}^{21} & A_{22}^{22}
\end{array}\right) \\
& =\left(\begin{array}{cc}
I & D \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
N & 0 \\
A_{22}^{21} & A_{22}^{22}+A_{22}^{21} D
\end{array}\right)\left(\begin{array}{cc}
I & D \\
0 & I
\end{array}\right)^{-1} .
\end{aligned}
$$

On the other hand, since $C_{0}^{11}(\delta)$ is invertible, we can choose $F_{11}^{11} \in B\left(H_{1}, K_{11}\right)$ such that F_{11}^{11} is bounded below and $R\left(C_{0}^{11}(\delta) F_{11}^{11}\right)=H_{1} \ominus R(N)$. Then $F_{11}=$ $\binom{F_{11}^{11}}{0}$ is an operator from H_{1} to $K_{1}=K_{11} \oplus K_{12}$. Note that

$$
\begin{aligned}
\left(\begin{array}{cc}
I & D \\
0 & I
\end{array}\right)^{-1}\left(A_{21}+C_{0} F_{11}\right) & =\left(\begin{array}{cc}
I & -D \\
0 & I
\end{array}\right)\left(A_{21}+\left(\begin{array}{cc}
C_{0}^{11}(\delta) & 0 \\
0 & 0
\end{array}\right)\binom{F_{11}^{11}}{0}\right) \\
& =\left(\begin{array}{cc}
I & -D \\
0 & I
\end{array}\right) A_{21}+\binom{C_{0}^{11}(\delta) F_{11}^{11}}{0} .
\end{aligned}
$$

Consequently, for such F_{11}, F_{12} and any F_{21}, F_{22}, it is clear that $A+C F$ is invertible. Similarly, we can show that there exists an operator $G \in B(K, H)$ such that $B^{*}+C^{*} G$ is invertible.
(2) Since that the range $R(C)$ of C is finite dimensional, the inclusion

$$
\bigcap_{X \in B(H, K)} \sigma\left(M_{X}\right) \supseteq \sum(A, B, C) \bigcup \Delta
$$

is clear. Let $\lambda \notin \sum(A, B, C) \bigcup \Delta$. Without loss of generality, assume $\lambda=0$. Now we will construct an operator $X \in B(H, K)$ such that M_{X} is invertible. We may assume that M_{X} has the following operator matrix form

$$
M_{X}=\left(\begin{array}{cccc}
A_{11} & 0 & 0 & 0 \tag{4}\\
A_{21} & A_{22} & C_{0} & 0 \\
X_{11} & X_{12} & B_{11} & 0 \\
X_{21} & X_{22} & B_{21} & B_{22}
\end{array}\right)
$$

with respect to the decomposition $H \oplus K=H_{1} \oplus H_{2} \oplus K_{1} \oplus K_{2}$. Since (A, B, C) is an admissible triple of operators, it is easy to verify that the triple $\left(A_{22}, B_{11}, C_{0}\right)$ is controllable. By Theorem 1, there exists an operator X_{12} such that

$$
\tilde{M}_{X}=\left(\begin{array}{cc}
A_{22} & C_{0} \tag{5}\\
X_{12} & B_{11}
\end{array}\right)
$$

is invertible. Since $\operatorname{dim} R(C)$ is finite, we have ind $A+\operatorname{ind} B=\operatorname{ind} A_{11}+\operatorname{ind} B_{22}$. Moreover, since $0 \notin \sum(A, B, C) \bigcup \Delta, \operatorname{dim} N\left(A_{11}\right)=\operatorname{dim} N\left(B_{22}^{*}\right)$. Take X_{21} as an isometry from $N\left(A_{11}\right)$ into $N\left(B_{22}^{*}\right)$. Put $X=\left(\begin{array}{cc}0 & X_{12} \\ X_{21} & 0\end{array}\right)$, then

$$
M_{X}=\left(\begin{array}{cccc}
A_{11} & 0 & 0 & 0 \tag{6}\\
A_{21} & A_{22} & C_{0} & 0 \\
0 & X_{12} & B_{11} & 0 \\
X_{21} & 0 & B_{21} & B_{22}
\end{array}\right)
$$

Since $R\left(B_{22}\right) \oplus R\left(X_{21}\right)=K_{2}, R\left(M_{X}\right)=R\left(A_{11}\right) \oplus R\left(\tilde{M}_{X}\right) \oplus R\left(B_{22}\right) \oplus R\left(X_{21}\right)$ $=H \oplus K, N\left(A_{11}\right) \cap N\left(X_{21}\right)=\{0\}, N\left(\tilde{M}_{X}\right)=\{0\}$ and $N\left(B_{22}\right)=\{0\}$. Clearly, N $\left(M_{X}\right)=\{0\}$. So M_{X} is invertible. This shows $0 \notin \bigcap_{X \in B(H, K)} \sigma\left(M_{X}\right)$.

The proof is completed.
Remark. For a particular case $B=I$, Theorems 1 and 2 can be obtained from [3] directly.

Acknowledgements

The authors thank the referees for valuable suggestions. The first author would also like to express his gratitude to the graduate innovating foundation item of Shaanxi Normal University.

References

[1] H. Du, C. Gu, On the spectra of operator completion problems, in: I. Gohberg (Ed.), New aspects in Interpolation and Completion Theories, Birkhäuser, Basel, 1993, pp. 103-117.
[2] K. Takahashi, Invertible completions of operator matricis, Integr. Equat. Oper. Theory 21 (1995) 355-361.
[3] L. Gurvits, L. Rodman, I. Spitkovsky, Spectral assignment for Hilbert space operators, Houston J. Math. 17 (1991) 501-523.
[4] K. Takahashi, Exact controllability and spectrum assignment, J. Math. Anal. Appl. 104 (1984) 537545.

[^0]: ${ }^{4}$ This subject is supported by the National Natural Science Foundation Grants of China (no. 19771056).

 * Corresponding author.

 E-mail address: rfangguo@ snnu.edu.cn (F.-G. Ren).

