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Abstract

Let A ∈ B(H), B ∈ B(K), C ∈ B(K,H), X ∈ B(H, K) and MX =
(

A C

X B

)
be an op-

erator completion of the partial operator matrix Q =
(

A C

? B

)
. In this note, we consider the

intersection of the spectra of MX when X runs over B(H, K). Denote by
∑

(A,B,C) the set
of scalar λ ∈ C such that either (A − λ,C) or (B∗ − λ̄, C∗) is not right invertible. We prove
that ⋂

X∈B(H,K)

σ (MX) =
{∑

(A,B,C) if dim R(C) = ∞,∑
(A,B,C) ∪ �(A,B,C) if dim R(C) < ∞,

where �(A,B, C) is the set of scalars λ ∈ C such that R((A − λ, C)) = H , R((B∗ − λ̄, C∗))

= K , and ind(A − λ) + ind(B − λ) /= 0. We also prove that the intersection is empty if and
only if (A,C) and (B∗, C∗) are controllable.
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Let H and K be separable Hilbert spaces. Let B(H, K) denote the space of all
bounded linear operators from H to K and abbreviate B(H, H) to B(H). For an
operator A, σ(A), R(A), and N(A) denote the spectrum, the range, and the
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null-space of A, respectively. When A ∈ B(H), B ∈ B(K), X ∈ B(H, K) and C ∈
B(K, H) are given, put

MX =
(

A C

X B

)
, Q =

(
A C

? B

)
.

The operator MX on H ⊕ K can be viewed as an operator completion of the partial
operator matrix Q. The some properties of the spectrum of MX were discussed in [1].
Takahashi discussed in [2] the invertible completion of Q. The relationship between
operator completion problem and spectrum assignment can be found in [3,4]. In this
paper, we discuss the intersection of the spectra of MX when X runs over B(H, K).
To do this, we need some notations and definitions.

For given A ∈ B(H), B ∈ B(K) and C ∈ B(K, H), let∑
(A, B, C) := {λ ∈ C : (A − λ, C) or (B∗ − λ̄, C∗) is not right invertible}.

Clearly, for any X ∈ B(H, K) we have
∑

(A, B, C) ⊂ σ(MX). Thus∑
(A, B, C) ⊂

⋂
X∈B(H,K)

σ (MX).

Definition 1. Let A ∈ B(H), B ∈ B(K) and C ∈ B(K, H). A pair of operators
(A, C) is called controllable if there exists a positive integer p with

∑p

i=1 R(Ai−1C)

= H ; a triple of operators (A, B, C) is called controllable if (A, C) and (B∗, C∗)
are controllable.

Definition 2. Let A ∈ B(H), B ∈ B(K) and C ∈ B(K, H). For a pair of operators
A ∈ B(H) and C ∈ B(K, H) denote Rp(A, C) = R(C, AC, . . . , Ap−1C). The pair
of operators (A, C) is called admissible if for some positive integer p, Rp(A, C) =
Rp+1(A, C) and the linear set Rp(A, C) is closed. If p is the minimal positive in-
teger with these properties, the pair (A, C) is p-admissible; the triple of operators
(A, B, C) is called admissible if (A, C) and (B∗, C∗) are admissible.

For two operators S ∈ B(H) and R ∈ B(K, H), let

N(S | R) = {G ∈ B(K, H) : R(SG) ⊂ R(R)}. (1)

As well known (see [2]), an operator G belongs to N(S | R) if and only if there
exists an D ∈ B(K) such that SG = −RD.

The following results are in [2] which we state as lemmas.

Lemma 1 (Theorem 1 in [2]). Let A ∈ B(H), B ∈ B(K) and C ∈ B(K, H). As-
sume that the operator (A, C) : H ⊕ K → H and (B∗, C∗) : K ⊕ H → K are right
invertible. Then the following conditions are equivalent:

(1) There exists X ∈ B(H, K) such that MX is invertible.
(2) There exists X ∈ B(H, K) such that MX is Fredholm with ind MX = 0.
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(3) The operator M0(= M(A, B, C, 0)) is Fredholm with ind M0 = 0 or both N(A |
C) and N(B∗ | C∗) contain non-compact operators.

Lemma 2 (Theorem 2 in [2]). Let S ∈ B(H) and R ∈ B(K, H). Assume that
(S, R) : H ⊕ K → H is right invertible.

(1) When R is compact, there exists F ∈ B(H, K) such that S + RF is invertible
if and only if S is Fredholm with ind S = 0.

(2) When R is not compact, there exists F ∈ B(H, K) such that S + RF is invert-
ible if and only if N(S | R) contains a non-compact operator.

Our main results are the followings.

Theorem 1. Let MX ∈ B(H ⊕ K), then
⋂

X∈B(H,K) σ (MX) = ∅ if and only if both
pairs (A, C) and (B∗, C∗) of operators are controllable.

Proof. Suppose that
⋂

X∈B(H,K) σ (MX) = ∅, then for each λ ∈ C, there exists Xλ ∈
B(H, K) such that

MXλ =
(

A − λ C

Xλ B − λ

)
is invertible, this implies that R(A − λ) + R(C) = H and R(B∗ − λ̄) + R(C∗) =
K . Thus, the pairs of operators (A, C) and (B∗, C∗) are controllable.

Conversely, assume that (A, B) and (B∗, C∗) are controllable. Then for each λ ∈
C, (A − λ, C) and (B∗ − λ̄, C∗) are also controllable. Therefore there exist opera-
tors Fλ ∈ B(H, K) and Gλ ∈ B(H, K) such that A − λ + CFλ and B − λ + GλC

are invertible. Now we construct Xλ such that

MXλ =
(

A − λ C

Xλ B − λ

)
is invertible. Let Xλ = −Gλ(A − λ + CFλ) − (B − λ)Fλ, then Gλ = −(Xλ +
(B − λ)Fλ)(A − λ + CFλ)

−1. Note that(
A − λ C

Xλ B − λ

)(
I 0
Fλ I

)
=
(

A − λ + CFλ C

Xλ + (B − λ)Fλ B − λ

)
and (

A − λ + CFλ C

Xλ + (B − λ)Fλ B − λ

)(
I −(A − λ + CFλ)

−1C

0 I

)
=
(

A − λ + CFλ 0
Xλ + (B − λ)Fλ B − λ − (Xλ + (B − λ)Fλ)(A − λ + CFλ)

−1C

)
=
(

A − λ + CFλ 0
Xλ + (B − λ)Fλ B − λ + GλC

)
.
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Consequently,

MXλ =
(

A − λ C

Xλ B − λ

)
is invertible. This shows that λ �∈⋂X∈B(H,K)σ(MX). Since λ is arbitrary,

⋂
X∈B(H,K)

σ (MX) = ∅. The proof is completed. �

Theorem 2. Let (A, B, C) be an admissible triple of operators.

(1) If R(C) is infinite dimensional, then⋂
X∈B(H,K)

σ (MX) =
∑

(A, B, C). (2)

(2) If R(C) is finite dimensional, then⋂
X∈B(H,K)

σ (MX) =
∑

(A, B, C)
⋃

�, (3)

where � = {λ : R((A − λ, C)) = H, R((B∗ − λ̄, C∗)) = K, and ind(A − λ) +
ind(B − λ) /= 0}.

Proof. (1) The inclusion
∑

(A, B, C) ⊂ ⋂
X∈B(H,K) σ (MX) is clear. For each λ �∈∑

(A, B, C), by Lemma 1, to prove that there exists Xλ ∈ B(H, K) such that MXλ

is invertible. It suffices to prove that both N((A − λ) | C) and N((B∗ − λ̄) | C∗)
contain non-compact operators. Since that (A, B, C) is an admissible triple of op-
erators and R(C) is infinite dimensional, it is easy to know that C is not compact.
Moreover, by (2) of Lemma 2, it suffices to prove that there exist F ∈ B(H, K) and
G ∈ B(K, H) such that A − λ + CF and B∗ − λ̄ + C∗G are invertible. At first, we
prove that there exists an operator F ∈ B(H, K) such that A − λ + CF is invert-
ible. Without loss of generality, we assume that λ = 0. Suppose that (A, C) is p1-
admissible and (B∗, C∗) is p2-admissible. Denote H2 = ∑p1

i=1 R(Ai−1C) and K1 =∑p2
j=1 R(B∗p2−1

C∗), then it is easy to know that H2 and K1 are invariant subspac-
es under A and B∗, respectively. Moreover, let H1 = H � H2 and K2 = K � K1,

then K = K1 ⊕ K2 and H = H1 ⊕ H2. Thus, A and C have the following operator
matrix forms

A =
(

A11 0
A21 A22

)
, C =

(
0 0
C0 0

)
.

For each F ∈ B(H1 ⊕ H2, K1 ⊕ K2), F has the operator matrix form

F =
(

F11 F12
F21 F22

)
.

Then,

A + CF =
(

A11 0
A21 + C0F11 A22 + C0F12

)
.
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We will construct an operator F such that A + CF is invertible. For convenience,
we divide it into two cases.

Case 1. Suppose that N(A11) = {0}. Since (A, C) is right invertible, A11 is invert-
ible. On the other hand, since the (A, B, C) is an admissible triple of operators, it
is easy to know that (A22, C0) is controllable. Therefore there exists an operator
F12 ∈ B(K1, H2) such that A22 + C0F12 is an invertible operator on H2. Thus, for
such an F12 and arbitrary operators F11, F12, and F22, we obtain that A + CF is
invertible.

Case 2. Assume that dim N(A11) /= 0. Let

C∗
0C0 =

∫ ∞

0
t dEt

be the spectral decomposition of the positive operator C∗
0C0. Because C is not com-

pact, there exists sufficiently small δ > 0 such that the subspace K11 = ∫∞
δ

dEtK1 is
infinite dimensional and (A22, C0(δ)) is controllable, where C0(δ) = C0E([δ, ∞))

and E([δ, ∞)) = ∫∞
δ

dEt (see the theorem of [4]). Let K12 = K1 � K11, H21 =
R(C0(δ)) and H22 = H2 � H21, then C0(δ), as an operator from K1 = K11 ⊕ K12
to H2 = H21 ⊕ H22, has the following operator matrix form

C0(δ) =
(

C11
0 (δ) 0
0 0

)
,

where the operator C11
0 (δ) is an invertible operator from K11 onto H21 and dim H21

is infinite. In this case, the operator A22 has the following operator matrix form(
A11

22 A12
22

A21
22 A22

22

)
with respect to the decomposition H2 = H21 ⊕ H22. It is easy to known that the
pair of operators (A22

22, A
21
22) is controllable, so we can choose a suitable operator

D ∈ B(H22, H21) such that A22
22 + A21

22D is invertible. Let N ∈ B(H21) is an isom-
etry on H21 with codim R(N) = dim N(A11). Now, we define an operator C0(δ)

+
from H2 = H21 ⊕ H22 to K1 = K11 ⊕ K12 by

C0(δ)
+ =

(
(C11

0 (δ))−1 0
0 0

)
.

Put

F12 = C0(δ)
+
(

DA21
22 + N − A12

22 DA22
22 − ND − A12

22
0 0

)
.

Then

A22 + C0F12 = A22 + C0(δ)C0(δ)+
(

DA21
22 + N − A11

22 DA22
22 − ND − A12

22
0 0

)
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=
(

A11
22 A12

22

A21
22 A22

22

)
+
(

DA21
22 + N − A11

22 DA22
22 − ND − A12

22
0 0

)

=
(

DA21
22 + N DA22

22 − ND

A21
22 A22

22

)

=
(

I D

0 I

)(
N 0

A21
22 A22

22 + A21
22D

)(
I D

0 I

)−1
.

On the other hand, since C11
0 (δ) is invertible, we can choose F 11

11 ∈ B(H 1, K11)

such that F 11
11 is bounded below and R(C11

0 (δ)F 11
11 ) = H1 � R(N). Then F11 =(F 11

11
0

)
is an operator from H1 to K1 = K11 ⊕ K12. Note that(

I D

0 I

)−1

(A21 + C0F11) =
(

I −D

0 I

)(
A21 +

(
C11

0 (δ) 0
0 0

)(
F 11

11
0

))
=
(

I −D

0 I

)
A21 +

(
C11

0 (δ)F 11
11

0

)
.

Consequently, for such F11, F12 and any F21, F22, it is clear that A + CF is invert-
ible. Similarly, we can show that there exists an operator G ∈ B(K, H) such that
B∗ + C∗G is invertible.

(2) Since that the range R(C) of C is finite dimensional, the inclusion⋂
X∈B(H,K)

σ (MX) ⊇
∑

(A, B, C)
⋃

�

is clear. Let λ /∈ ∑(A, B, C)
⋃

�. Without loss of generality, assume λ = 0. Now
we will construct an operator X ∈ B(H, K) such that MX is invertible. We may
assume that MX has the following operator matrix form

MX =


A11 0 0 0
A21 A22 C0 0
X11 X12 B11 0
X21 X22 B21 B22

 , (4)

with respect to the decomposition H ⊕ K = H1 ⊕ H2 ⊕ K1 ⊕ K2. Since (A, B, C)

is an admissible triple of operators, it is easy to verify that the triple (A22, B11, C0)

is controllable. By Theorem 1, there exists an operator X12 such that

M̃X =
(

A22 C0
X12 B11

)
(5)

is invertible. Since dim R(C) is finite, we have ind A + ind B = ind A11 + ind B22.
Moreover, since 0 /∈ ∑(A, B, C)

⋃
�, dim N(A11) = dim N(B∗

22). Take X21 as an

isometry from N(A11) into N(B∗
22). Put X =

(
0 X12

X21 0

)
, then
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MX =


A11 0 0 0
A21 A22 C0 0

0 X12 B11 0
X21 0 B21 B22

 . (6)

Since R(B22) ⊕ R(X21) = K2, R(MX) = R(A11) ⊕ R(M̃X) ⊕ R(B22) ⊕ R(X21)

= H ⊕ K , N(A11) ∩ N(X21) = {0}, N(M̃X) = {0} and N(B22) = {0}. Clearly, N

(MX) = {0}. So MX is invertible. This shows 0 /∈ ⋂X∈B(H,K) σ (MX).

The proof is completed. �

Remark. For a particular case B = I, Theorems 1 and 2 can be obtained from [3]
directly.
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