The intersection of the spectra of operator completions

Fang-Guo Ren*, Hong-Ke Du, Huai-xin Cao

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China

Received 4 April 2002; accepted 27 January 2003

Submitted by R.A. Brualdi

Abstract

Let $A \in B(H)$, $B \in B(K)$, $C \in B(K, H)$, $X \in B(H, K)$ and $M_X = \left(\begin{array}{cc} A & C \\ X & B \end{array} \right)$ be an operator completion of the partial operator matrix $Q = \left(\begin{array}{cc} A \\ X & B \end{array} \right)$. In this note, we consider the intersection of the spectra of M_X when X runs over $B(H, K)$. Denote by $\sum(A, B, C)$ the set of scalar $\lambda \in \mathbb{C}$ such that either $(A - \lambda, C)$ or $(B^* - \bar{\lambda}, C^*)$ is not right invertible. We prove that

$$\bigcap_{X \in B(H, K)} \sigma(M_X) = \begin{cases} \sum(A, B, C) & \text{if } \dim(R(C)) = \infty, \\ \sum(A, B, C) \cup \Delta(A, B, C) & \text{if } \dim(R(C)) < \infty, \end{cases}$$

where $\Delta(A, B, C)$ is the set of scalars $\lambda \in \mathbb{C}$ such that $R((A - \lambda, C)) = H$, $R((B^* - \bar{\lambda}, C^*)) = K$, and $\text{ind}(A - \lambda) + \text{ind}(B - \lambda) \neq 0$. We also prove that the intersection is empty if and only if (A, C) and (B^*, C^*) are controllable.

© 2003 Elsevier Inc. All rights reserved.

AMS classification: 47A10; 47A55

Keywords: Operator completion; Spectrum; Operator matrix; Controllability
null-space of A, respectively. When $A \in B(H)$, $B \in B(K)$, $X \in B(H, K)$ and $C \in B(K, H)$ are given, put

$$M_X = \begin{pmatrix} A & C \\ X & B \end{pmatrix}, \quad Q = \begin{pmatrix} A & C \\ \ast & B \end{pmatrix}.$$

The operator M_X on $H \oplus K$ can be viewed as an operator completion of the partial operator matrix Q. The some properties of the spectrum of M_X were discussed in [1]. Takahashi discussed in [2] the invertible completion of Q. The relationship between operator completion problem and spectrum assignment can be found in [3,4]. In this paper, we discuss the intersection of the spectra of M_X when X runs over $B(H, K)$.

To do this, we need some notations and definitions.

For given $A \in B(H)$, $B \in B(K)$ and $C \in B(K, H)$, let

$$\sum(A, B, C) := \{ \lambda \in \mathbb{C} : (A - \lambda, C) \text{ or } (B\ast - \bar{\lambda}, C\ast) \text{ is not right invertible}. \}$$

Clearly, for any $X \in B(H, K)$ we have $\sum(A, B, C) \subset \sigma(M_X)$. Thus

$$\sum(A, B, C) \subset \bigcap_{X \in B(H, K)} \sigma(M_X).$$

Definition 1. Let $A \in B(H)$, $B \in B(K)$ and $C \in B(K, H)$. A pair of operators (A, C) is called controllable if there exists a positive integer p with $\sum_{i=1}^{p} R(A^{i-1}C) = H$; a triple of operators (A, B, C) is called controllable if (A, C) and $(B\ast, C\ast)$ are controllable.

Definition 2. Let $A \in B(H)$, $B \in B(K)$ and $C \in B(K, H)$. For a pair of operators $A \in B(H)$ and $C \in B(K, H)$ denote $R_p(A, C) = R(C, AC, \ldots, A^{p-1}C)$. The pair of operators (A, C) is called admissible if for some positive integer p, $R_p(A, C) = R_{p+1}(A, C)$ and the linear set $R_p(A, C)$ is closed. If p is the minimal positive integer with these properties, the pair (A, C) is p-admissible; the triple of operators (A, B, C) is called admissible if (A, C) and $(B\ast, C\ast)$ are admissible.

For two operators $S \in B(H)$ and $R \in B(K, H)$, let

$$N(S \mid R) = \{ G \in B(K, H) : R(SG) \subset R(R) \}. \quad (1)$$

As well known (see [2]), an operator G belongs to $N(S \mid R)$ if and only if there exists an $D \in B(K)$ such that $SG = -RD$.

The following results are in [2] which we state as lemmas.

Lemma 1 (Theorem 1 in [2]). Let $A \in B(H)$, $B \in B(K)$ and $C \in B(K, H)$. Assume that the operator $(A, C) : H \oplus K \to H$ and $(B\ast, C\ast) : K \oplus H \to K$ are right invertible. Then the following conditions are equivalent:

(1) There exists $X \in B(H, K)$ such that M_X is invertible.

(2) There exists $X \in B(H, K)$ such that M_X is Fredholm with $\text{ind } M_X = 0$.

null-space of A, respectively. When $A \in B(H)$, $B \in B(K)$, $X \in B(H, K)$ and $C \in B(K, H)$ are given, put

$$M_X = \begin{pmatrix} A & C \\ X & B \end{pmatrix}, \quad Q = \begin{pmatrix} A & C \\ \ast & B \end{pmatrix}.$$
The operator $M_0(= M(A, B, C, 0))$ is Fredholm with $\text{ind } M_0 = 0$ or both $N(A | C)$ and $N(B^* | C^*)$ contain non-compact operators.

Lemma 2 (Theorem 2 in [2]). Let $S \in B(H)$ and $R \in B(K, H)$. Assume that $(S, R): H \oplus K \rightarrow H$ is right invertible.

1. When R is compact, there exists $F \in B(H, K)$ such that $S + RF$ is invertible if and only if S is Fredholm with $\text{ind } S = 0$.
2. When R is not compact, there exists $F \in B(H, K)$ such that $S + RF$ is invertible if and only if $N(S | R)$ contains a non-compact operator.

Our main results are the followings.

Theorem 1. Let $M_X \in B(H \oplus K)$, then $igcap_{X \in B(H,K)} \sigma(M_X) = \emptyset$ if and only if both pairs (A, C) and (B^*, C^*) of operators are controllable.

Proof. Suppose that $igcap_{X \in B(H,K)} \sigma(M_X) = \emptyset$, then for each $\lambda \in \mathbb{C}$, there exists $X_\lambda \in B(H,K)$ such that

$$
M_{X_\lambda} =
\begin{pmatrix}
A - \lambda & C \\
X_\lambda & B - \lambda
\end{pmatrix}
$$

is invertible, this implies that $R(A - \lambda) + R(C) = H$ and $R(B^* - \tilde{\lambda}) + R(C^*) = K$. Thus, the pairs of operators (A, C) and (B^*, C^*) are controllable.

Conversely, assume that (A, B) and (B^*, C^*) are controllable. Then for each $\lambda \in \mathbb{C}$, $(A - \lambda, C)$ and $(B^* - \tilde{\lambda}, C^*)$ are also controllable. Therefore there exist operators $F_\lambda \in B(H, K)$ and $G_\lambda \in B(H, K)$ such that $A - \lambda + CF_\lambda$ and $B - \lambda + G_\lambda C$ are invertible. Now we construct X_λ such that

$$
M_{X_\lambda} =
\begin{pmatrix}
A - \lambda & C \\
X_\lambda & B - \lambda
\end{pmatrix}
$$

is invertible. Let $X_\lambda = -G_\lambda(A - \lambda + CF_\lambda) - (B - \lambda)F_\lambda$, then $G_\lambda = -(X_\lambda + (B - \lambda)F_\lambda)(A - \lambda + CF_\lambda)^{-1}$. Note that

$$
\begin{pmatrix}
A - \lambda & C \\
X_\lambda & B - \lambda
\end{pmatrix}
\begin{pmatrix}
I & 0 \\
F_\lambda & I
\end{pmatrix}
=
\begin{pmatrix}
A - \lambda + CF_\lambda & C \\
X_\lambda + (B - \lambda)F_\lambda & B - \lambda
\end{pmatrix}
$$

and

$$
\begin{pmatrix}
A - \lambda + CF_\lambda & C \\
X_\lambda + (B - \lambda)F_\lambda & B - \lambda
\end{pmatrix}
\begin{pmatrix}
I & -(A - \lambda + CF_\lambda)^{-1}C \\
0 & I
\end{pmatrix}
=
\begin{pmatrix}
A - \lambda + CF_\lambda & 0 \\
X_\lambda + (B - \lambda)F_\lambda & B - \lambda - (X_\lambda + (B - \lambda)F_\lambda)(A - \lambda + CF_\lambda)^{-1}C
\end{pmatrix}
=
\begin{pmatrix}
A - \lambda + CF_\lambda & 0 \\
X_\lambda + (B - \lambda)F_\lambda & B - \lambda + G_\lambda C
\end{pmatrix}.
$$
Consequently,
\[
M_{X_\lambda} = \begin{pmatrix}
A - \lambda & C \\
X_\lambda & B - \lambda
\end{pmatrix}
\]
is invertible. This shows that \(\lambda \not\in \bigcap_{X \in B(H, K)} \sigma(M_X) \). Since \(\lambda \) is arbitrary, \(\bigcap_{X \in B(H, K)} \sigma(M_X) = \emptyset \). The proof is completed. \(\square \)

Theorem 2. Let \((A, B, C)\) be an admissible triple of operators.

1. If \(R(C) \) is infinite dimensional, then
 \[
 \bigcap_{X \in B(H, K)} \sigma(M_X) = \sum (A, B, C).
 \]
2. If \(R(C) \) is finite dimensional, then
 \[
 \bigcap_{X \in B(H, K)} \sigma(M_X) = \sum (A, B, C) \bigcup \Lambda,
 \]
 where \(\Lambda = \{ \lambda : R((A - \lambda, C)) = H, R((B^* - \bar{\lambda}, C^*)) = K, \text{ and } \text{ind}(A - \lambda) + \text{ind}(B - \lambda) \neq 0 \} \).

Proof. (1) The inclusion \(\sum (A, B, C) \subseteq \bigcap_{X \in B(H, K)} \sigma(M_X) \) is clear. For each \(\lambda \not\in \sum (A, B, C) \), by Lemma 1, to prove that there exists \(X_\lambda \in B(H, K) \) such that \(M_{X_\lambda} \) is invertible. It suffices to prove that both \(N((A - \lambda) | C) \) and \(N((B^* - \bar{\lambda}) | C^*) \) contain non-compact operators. Since that \((A, B, C)\) is an admissible triple of operators and \(R(C) \) is infinite dimensional, it is easy to know that \(C \) is not compact. Moreover, by (2) of Lemma 2, it suffices to prove that there exist \(F \in B(H, K) \) and \(G \in B(K, H) \) such that \(A - \lambda + CF \) and \(B^* - \bar{\lambda} + C^*G \) are invertible. At first, we prove that there exists an operator \(F \in B(H, K) \) such that \(A - \lambda + CF \) is invertible. Without loss of generality, we assume that \(\lambda = 0 \). Suppose that \((A, C)\) is \(p_1 \)-admissible and \((B^*, C^*)\) is \(p_2 \)-admissible. Denote \(H_2 = \sum_{i=1}^{p_1} R(A^{i-1}C) \) and \(K_1 = \sum_{j=1}^{p_2} R(B^{*p_2-j}C^*) \), then it is easy to know that \(H_2 \) and \(K_1 \) are invariant subspaces under \(A \) and \(B^* \), respectively. Moreover, let \(H_1 = H \oplus H_2 \) and \(K_2 = K \oplus K_1 \), then \(K = K_1 \oplus K_2 \) and \(H = H_1 \oplus H_2 \). Thus, \(A \) and \(C \) have the following operator matrix forms
 \[
 A = \begin{pmatrix}
 A_{11} & 0 \\
 A_{21} & A_{22}
 \end{pmatrix}, \quad
 C = \begin{pmatrix}
 0 & 0 \\
 C_0 & 0
 \end{pmatrix}.
 \]
 For each \(F \in B(H_1 \oplus H_2, K_1 \oplus K_2) \), \(F \) has the operator matrix form
 \[
 F = \begin{pmatrix}
 F_{11} & F_{12} \\
 F_{21} & F_{22}
 \end{pmatrix},
 \]
 Then,
 \[
 A + CF = \begin{pmatrix}
 A_{11} & 0 \\
 A_{21} + C_0 F_{11} & A_{22} + C_0 F_{12}
 \end{pmatrix}.
 \]
We will construct an operator \(F \) such that \(A + CF \) is invertible. For convenience, we divide it into two cases.

Case 1. Suppose that \(N(A_{11}) = \{0\} \). Since \((A, C)\) is right invertible, \(A_{11} \) is invertible. On the other hand, since the \((A, B, C)\) is an admissible triple of operators, it is easy to know that \((A_{22}, C_0)\) is controllable. Therefore there exists an operator \(F_{12} \in \mathcal{B}(K_1, H_2) \) such that \(A_{22} + C_0F_{12} \) is an invertible operator on \(H_2 \). Thus, for such an \(F_{12} \) and arbitrary operators \(F_{11}, F_{12}, \) and \(F_{22} \), we obtain that \(A + CF \) is invertible.

Case 2. Assume that \(\dim N(A_{11}) \neq 0 \). Let

\[
C_0^*C_0 = \int_0^\infty t \, dE_t
\]

be the spectral decomposition of the positive operator \(C_0^*C_0 \). Because \(C \) is not compact, there exists sufficiently small \(\delta > 0 \) such that the subspace \(K_{11} = \int_0^\infty dE_t K_1 \) is infinite dimensional and \((A_{22}, C_0(\delta))\) is controllable, where \(C_0(\delta) = C_0 E([\delta, \infty)) \) and \(E([\delta, \infty)) = \int_\delta^\infty dE_t \) (see the theorem of [4]). Let \(K_{12} = K_1 \oplus K_{11}, H_{21} = R(C_0(\delta)) \) and \(H_{22} = H_2 \ominus H_{21} \), then \(C_0(\delta) \), as an operator from \(K_{11} = K_{11} \oplus K_{12} \) to \(H_2 = H_{21} \oplus H_{22} \), has the following operator matrix form

\[
C_0(\delta) = \begin{pmatrix}
C_{11}^{11}(\delta) & 0 \\
0 & 0
\end{pmatrix},
\]

where the operator \(C_{11}^{11}(\delta) \) is an invertible operator from \(K_{11} \) onto \(H_{21} \) and \(\dim H_{21} \) is infinite. In this case, the operator \(A_{22} \) has the following operator matrix form

\[
\begin{pmatrix}
A_{22}^{11} & A_{22}^{12} \\
A_{22}^{21} & A_{22}^{22}
\end{pmatrix}
\]

with respect to the decomposition \(H_2 = H_{21} \oplus H_{22} \). It is easy to known that the pair of operators \((A_{22}^{11}, A_{22}^{22})\) is controllable, so we can choose a suitable operator \(D \in \mathcal{B}(H_{22}, H_{21}) \) such that \(A_{22}^{22} + A_{22}^{22}D \) is invertible. Let \(N \in \mathcal{B}(H_{21}) \) is an isometry on \(H_{21} \) with codim \(R(N) = \dim N(A_{11}) \). Now, we define an operator \(C_0(\delta)^+ \) from \(H_2 = H_{21} \oplus H_{22} \) to \(K_1 = K_{11} \oplus K_{12} \) by

\[
C_0(\delta)^+ = \begin{pmatrix}
(C_0^{11}(\delta))^{-1} & 0 \\
0 & 0
\end{pmatrix},
\]

Put

\[
F_{12} = C_0(\delta)^+ \begin{pmatrix}
DA_{22}^{11} + N - A_{22}^{12} & DA_{22}^{22} - ND - A_{22}^{12} \\
0 & 0
\end{pmatrix}.
\]

Then

\[
A_{22} + C_0F_{12} = A_{22} + C_0(\delta)C_0(\delta)^+ \begin{pmatrix}
DA_{22}^{11} + N - A_{22}^{12} & DA_{22}^{22} - ND - A_{22}^{12} \\
0 & 0
\end{pmatrix}.
\]
\[
= \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
+ \begin{pmatrix}
DA_{21} + N - A_{11} & DA_{22} - ND - A_{12} \\
0 & 0
\end{pmatrix}
\]
\[
= \begin{pmatrix}
DA_{21} + N & DA_{22} - ND \\
A_{21} & A_{22}
\end{pmatrix}
\]
\[
= \begin{pmatrix}
I & D \\
0 & I
\end{pmatrix}
\begin{pmatrix}
N & 0 \\
A_{21} & A_{22} + A_{21}D
\end{pmatrix}
\begin{pmatrix}
I & D \\
0 & I
\end{pmatrix}^{-1}.
\]

On the other hand, since \(C_{0}^{11}(\delta)\) is invertible, we can choose \(F_{11}^{11} \in B(H_1, K_{11})\) such that \(F_{11}^{11}\) is bounded below and \(R(C_{0}^{11}(\delta)F_{11}^{11}) = H_1 \oplus R(N)\). Then \(F_{11} = (F_{11}^{11})\) is an operator from \(H_1\) to \(K_1 = K_{11} \oplus K_{12}\). Note that
\[
\begin{pmatrix}
I & D \\
0 & I
\end{pmatrix}^{-1}(A_{21} + C_0 F_{11}) = \begin{pmatrix}
I & -D \\
0 & I
\end{pmatrix} \begin{pmatrix}
A_{21} + \left(C_{0}^{11}(\delta) 0 \right) \\
0 & 0 \end{pmatrix}
\begin{pmatrix}
F_{11}^{11} \\
0
\end{pmatrix}
\]
\[
= \begin{pmatrix}
I & -D \\
0 & I
\end{pmatrix} A_{21} + \left(C_{0}^{11}(\delta)F_{11}^{11} \right) 0 \end{pmatrix}.
\]

Consequently, for such \(F_{11}, F_{12}\) and any \(F_{21}, F_{22}\), it is clear that \(A + CF\) is invertible. Similarly, we can show that there exists an operator \(G \in B(K, H)\) such that \(B^* + CG\) is invertible.

(2) Since that the range \(R(C)\) of \(C\) is finite dimensional, the inclusion
\[
\bigcap_{X \in B(H, K)} \sigma(M_X) \supseteq \sum (A, B, C) \bigcup \Delta
\]
is clear. Let \(\lambda \notin \sum (A, B, C) \bigcup \Delta\). Without loss of generality, assume \(\lambda = 0\). Now we will construct an operator \(X \in B(H, K)\) such that \(M_X\) is invertible. We may assume that \(M_X\) has the following operator matrix form
\[
M_X = \begin{pmatrix}
A_{11} & 0 & 0 & 0 \\
A_{21} & A_{22} & C_0 & 0 \\
X_{11} & X_{12} & B_{11} & 0 \\
X_{21} & X_{22} & B_{21} & B_{22}
\end{pmatrix},
\]
with respect to the decomposition \(H \oplus K = H_1 \oplus H_2 \oplus K_1 \oplus K_2\). Since \((A, B, C)\) is an admissible triple of operators, it is easy to verify that the triple \((A_{22}, B_{11}, C_0)\) is controllable. By Theorem 1, there exists an operator \(X_{12}\) such that
\[
\tilde{M}_X = \begin{pmatrix}
A_{22} & C_0 \\
X_{12} & B_{11}
\end{pmatrix}
\]
is invertible. Since \(\dim R(C)\) is finite, we have \(\text{ind} A + \text{ind} B = \text{ind} A_{11} + \text{ind} B_{22}\). Moreover, since \(0 \notin \sum (A, B, C) \bigcup \Delta\), \(\dim N(A_{11}) = \dim N(B_{22}^*)\). Take \(X_{21}\) as an isometry from \(N(A_{11})\) into \(N(B_{22}^*)\). Put \(X = \begin{pmatrix} 0 & X_{12} \\ X_{21} & 0 \end{pmatrix}\), then
\[\begin{pmatrix}
A_{11} & 0 & 0 & 0 \\
A_{21} & A_{22} & C_0 & 0 \\
0 & X_{12} & B_{11} & 0 \\
X_{21} & 0 & B_{21} & B_{22}
\end{pmatrix}. \]
(6)

Since \(R(B_{22}) \oplus R(X_{21}) = K_2 \), \(R(M_X) = R(A_{11}) \oplus R(\tilde{M}_X) \oplus R(B_{22}) \oplus R(X_{21}) = H \oplus K \), \(N(A_{11}) \cap N(X_{21}) = \{0\} \), \(N(\tilde{M}_X) = \{0\} \) and \(N(B_{22}) = \{0\} \). Clearly, \(N(M_X) = \{0\} \). So \(M_X \) is invertible. This shows \(0 \not\in \bigcap_{X \in B(H,K)} \sigma(M_X) \).

The proof is completed. \(\square \)

Remark. For a particular case \(B = I \), Theorems 1 and 2 can be obtained from [3] directly.

Acknowledgements

The authors thank the referees for valuable suggestions. The first author would also like to express his gratitude to the graduate innovating foundation item of Shaanxi Normal University.

References

