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Abstract

Let 7 be a bounded linear operator acting on a Banach space angyg’) = {1
C such that — A1 is not a B-Fredholm operator of index Be the B-Weyl spectrum df .
Define alsoE (T) to be the set of all isolated eigenvalues in the specw\i) of T, and
I1(T) to be the set of the poles of the resolvent7ofin this paper two new generalized
versions of the classical Weyl's theorem are considered. More precisely, we seek for
conditions under which an operatBrsatisfies the generalized Weyl's theoremgiy (T) =
o (T)\ E(T), or the version Il of the generalized Weyl's theorergiy (T) = o (T)\I1(T).
0 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

This paper is a continuation of our previous works [2—4]. We consider a Banach
spaceX andL(X) the Banach algebra of bounded linear operators acting.on
For T € L(X) we will denote byN (T) the null space of’, by «(T) the nullity
of T, by R(T) the range off and byg(T) its defect. If both ofx(7) andB8(T)
are finite thenT is called a Fredholm operator and the indextois defined by
ind(T) = «(T) — B(T). In this case it is well known that the ran®&éT) of T is
closed inX.

Now for a bounded linear operatd@t and for each integer, define T, to
be the restriction of to R(T") viewed as a map fronR(7") into R(T") (in
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particular, 7o = T). If for some integer the range spack(T") is closed and’,
is a Fredholm operator, theh is called a B-Fredholm operator. In this case and
from [4, Proposition 2.1T, is a Fredholm operator and i(i,) = ind(7;,) for
eachm > n. This enable us to define the index of a B-Fredholm operatas
the index of the Fredholm operat®y, wheren is any integer such thak(7T")
is closed and such thd, is a Fredholm operator. Let BK) be the class of all
B-Fredholm operators. In [4] we studied this class of operators and we proved [4,
Theorem 2.7] that an operat@re L(X) is a B-Fredholm operator if and only if
T = To ® T1, whereTyp is a Fredholm operator arf] is a nilpotent one.

It appears that the concept of Drazin invertibility plays an important role for
the class of B-Fredholm operators. Létbe an algebra with a uni; following
[12] we say that an elementof A is Drazin invertible of degreg if there is an
element of A such that

xkbx = xk, bxb=b, xb=bx. ()

Recall that the concept of Drazin invertibility was originally considered
by Drazin in [8] where elements satisfying relatior) (are called pseudo-
invertible elements. The Drazin spectrum is definedolya) = {» € C: a —

Ae is not Drazin invertiblg for everya € A. In the case of a bounded linear
operatolT acting on a Banach spagg it is well known thatT is Drazin invertible

if and only if it has a finite ascent and descent (Definition 2.1); which is also
equivalent to the fact that = To @ T1, whereTy is an invertible operator anty

is a nilpotent one (see [12, Proposition 6] and [11, Corollary 2.2]). In [2] B-WeylI
operators and the B-Weyl spectrum are defined as follows:

Definition 1.1. Let T € L(X). ThenT is called a B-Weyl operator if it is a B-
Fredholm operator of index 0. The B-Weyl spectrugyw (7) of T is defined by
ogw(T) ={A € C: T — Al is not a B-Weyl operatgr

Now let Fp(X) to be the ideal of finite rank operators in the algebrtX) of
bounded linear operators acting an and letE(T) to be the set of all isolated
eigenvalues in the spectrusn(T) of T. In [2, Theorem 4.3] we showed that for
T € L(X) we have

oaw(M) = () on(T+F),
FeFy(X)

and in the case of a normal operafoeacting on a Hilbert spacH, we showed in
[2, Theorem 4.5] that

osw(T) =o(T)\ E(T),

which gives a generalization of the classical Weyl theorem. Recall that the
classical Weyl theorem [13] asserts thatTifis a normal operator acting on a
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Hilbert spacefl, then the Weyl spectruy (T') is exactly the set of all points in
o (T) except the isolated eigenvalues of finite multiplicity; that is

ow(T) =0 (T)\ Eo(T),

where Eq(T) is the set of isolated eigenvalues of finite multiplicity angl(7')
is the Weyl spectrum off". In other words,ow (T) = {A € C such thatT —
Al is not a Fredholm operator of index.Qt is known from [10, Theorem 6.5.2]
that

ow(T)= () o(T+F).
FeFy(X)

In his paper [1], Barnes considered the version Il of the Weyl's theorem (called
also the Browder’s theorem in [7]): For a bounded linear operBtacting onX,
what conditions orT" implies thatT" satisfies

ow(T) =0 (T)\ Io(T),

whereITo(T) is the set of poles of the resolvent of of finite rank. It is well
known [11, Section 2] that an isolated poinof the spectruna (T') of T is a pole
of the resolvent of” if T — AI is Drazin invertible. A pole of the resolvent @f
is of finite rank if the spectral projection associated to theg sgis of finite rank.

The aim of this paper is to study similar questions as in [1], but instead
of isolated eigenvalues of finite multiplicity, we consider the set of all isolated
eigenvalues, instead of poles of the resolvent of finite rank, we consider the set
of all the poles of the resolvent, and instead of the Weyl's spectrum, we use the
B-Weyl spectrum. More precisely, |é(T) be the set of all isolated eigenvalues
in the spectruna (T') of T, andIT(T) the set of all the poles of the resolventiof
Then the two following new generalized versions of the classical Weyl's theorem
are considered. Under which conditions an operdtaatisfies the generalized
Weyl's theorem:

ow(T) =o(T)\ E(T),
or the version Il of the generalized Weyl's theorem
ow(T) =o(T)\ I1(T).

As we will see, many of the results valid for Poles of finite rank obtained in [1]
are also valid for all poles.

Finally, we also mention the following book [6], which is useful for the reader
in this circle of ideas.

2. Results

The following definition is well known:
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Definition 2.1. Let T € L(X), n € N and letc, (T) = dimR(T")/R(T"*1) and
c(T) = dimN (7"t /N(T™). Then the descent of is defined bys(T) =
inf{n: ¢,(T) =0} = inf{n: R(T") = R(T"™Y)}, and the ascent(T) of T is
defined bya(T) = inf{n: ¢, (T) = 0} = inf{n: N(T") = N(T"1)}, with inf@
= 0oQ.

Definition 2.2 [9]. Let T € L(X) and letd € N. ThenT has a uniform descent
forn >d if R(T)+ N(T") = R(T) + N(T?) for all n > d. If, in addition,
R(T) + N(T%) is closed therf is said to have a topological uniform descent
forn>d.

Remark. As it has already been observed in [4] a B-Fredholm operator is an
operator of topological uniform descent.

Theorem 2.3. LetT € L(X) and letA € o(T) be an isolated point of (7). Then
the following properties are equivalent

(1) Ais pole of the resolvent af.

(2) There exists -invariant subspaced/ and N of X such thatX =M & N,
(T — Ay is invertible and(T — A1) w is nilpotent.

(3) T — Al is a B-Fredholm operator of indeX

Proof. The equivalence of the two first properties is well known as a characteri-
zation of poles of the resolvent. Let us show that (2) is equivalent to (3).

If there existsT -invariant subspace®% and N of X such thatX =M & N,
(T — A1) M is invertible and T — A1)y is nilpotent, then from [2, Theorem 4.2]
it follows thatT — A1 is a B-Fredholm operator of index 0.

Conversely, suppose that— Al is a B-Fredholm operator of index 0. Sinte
is isolated in the spectrum @f, then from the Grabiner’s punctured neighborhood
theorem [5, Theorem 4.5], |t — 8| is small enough and for large enough we
havec, (T — B1) = cy(T — AI), c;,(T — BI) = c, (T — AI). Sincea is isolated in
the spectrum of’, then if|A — 8| is small enough and £ 8, T — B1 is invertible.
Hencec, (T — 1) = ¢, (T — BI) =0. SoT — Al is an operator of finite ascent
and descent. Therefokeis a pole ofT. O

Theorem 2.4. Let H be a Hilbert space, leT" € L(H) and letT* be its adjoint.
ThenT satisfies the version Il of the generalized Wey!'s theorem if and oty if
does.

Proof. Itis easily seen that(7*) = o(T) andI1(T*) = I1(T). Moreover, from
[2, Remark B] we know thaf is a B-Fredholm operator of index 0 if and
only if T* is B-Fredholm operator of index 0. Thugw (7T*) = osw(T), Where
ogw(T) denotes the conjugate setadw (T). From those relations it follows that
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T satisfies the version Il of the generalized Weyl's theorem if and onlg*if
does. O

Theorem 2.5. Let T € L(X). Then we have the following properties

(1) osw(T) Co(T)\ E(T) ifand only if E(T) = I1(T).
(2) ow(T) 2 o(T) \ E(T) if and only ifogw(T) = op(T).

Proof. (1) Suppose thatgw(T) Co(T) \ E(T) and letr € E(T) be an isolated
eigenvalue of7T. Theni ¢ opw(T), so T — Al is a B-Fredholm operator of
index 0. From the Theorem 2.3 it follows thatis a pole of the resolvent df,
and sor € I1(T). As we have alway$I(T) C E(T), thenE(T) =1I1(T).

Conversely, ifE(T) =II(T) and i € E(T), thenT — Al is a B-Fredholm
operator of index 0. Therefove¢ opw(T) and saow(T) Co(T) \ E(T).

(2) Suppose thadgw(T) 2 o(T) \ E(T) and letx € o(T) \ ogw(T). Then
A € E(T), in particulari is isolated in the spectrum df. Moreover, T — Al
is a B-Fredholm operator of index 0. From the Theorem 2.3 it follows that
T — Al is Drazin invertible antbp(T) C ogw(T). As it is always true that
osw(T) Cop(T), thenogw(T) =op(T).

Conversely, suppose thagw (T) = op(T). Letx ¢ ogw(T); theni ¢ op(T).
SoT — Al is Drazin invertibleand. € E(T). Henceogw(T) 2o (T)\ E(T). O

From this theorem we obtain immediately the following corollary:

Corollary 2.6. LetT € L(X). ThenT satisfies the generalized Weyl's theorem if
and only ifopw(T) = o (T) \ I[1(T) and E(T) = I1(T).

Theorem 2.7. Let T € L(X). If F e Fo(X) and TF = FT, thenop(T) =
op(T + F).

Proof. Letus showthatp(T) Cop(T+F).lf A ¢ op(T+ F),thenT +F — X1

is Drazin invertible. Hence from [2, Proposition 3B+ Al = (T — A+ F)— F

is a B-Fredholm operator. In particular, the two operaforsil andT — Al + F

are operators of topological uniform descent. From [9, Theorem 5.8], and for
large enough, we have, (T — BI) = c,(T — Al + F),c, (T — BI) = (T —

Al + F). SinceT — Al + F is Drazin invertible, then for large enough we
havec,(T — Al + F) = ¢,(T — Al + F) =0. So forn large enough we have
cn(T —Al)=c, (T —AI)=0.SoT — Al is Drazin invertible and. ¢ op(T).
Thereforeop(T) C op(T + F). SinceT = (T + F) — F and (T + F)F =
F(T + F), thenwe have alsop (T + F) Cop(T). O

From this property of the Drazin spectrum, we obtain the following perturba-
tion theorem:
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Theorem 2.8. If T satisfies the version Il of the generalized Weyl's theorem and if
F is afinite rank operator such thdtF = FT, thenT + F satisfies the version I
of the generalized Weyl's theorem.

Proof. From the characterization of the B-Weyl spectrum [2, Theorem 4.3], it
follows that if F is a finite rank operator, thergw (T + F) = opw (7). Moreover,

if F commutes withT’, then from the previous theorem we hawg(T + F) =
op(T). If T satisfies the version Il of the generalized Weyl's theorem, then
ogw(T) = op(T). Henceopw(T + F) = op(T + F), and soT + F satisfies

the version Il of the generalized Wey!'s theorenm

Theorem 2.9. Let I be a nonempty connected subse€afuch thatl” — A1 is a
B-Fredholm operator for allx € I'. If there isa € I" such thatl" — «! is Drazin
invertible, then every pointef(T)N I is a pole ofl ando (T)N T is a countable
discrete set.

Proof. SinceT — «f is Drazin invertible, form large enough we have, (T —
al)=c, (T —al)=0.Let A={u e I' | T — ul isDrazininvertibl¢. Then
a€AandA #@.If L € A, sinceT — Al is Drazin invertible, then there is an
open neighborhoo@ (4, €) such thatB(A, €) — {A} C p(T), wherep(T) is the
resolvent set of. ThereforeB(A,e) N I" C A, and A is open inI". Now let
L€ ANT, whereA is the closure ofA. In particular,7 — AI is a B-Fredholm
operator. Hence there is an- 0 such that ifiA — u| < € then forn large enough,
we havec, (T — 1) = ¢, (T — ul), ¢, (T — A1) = ¢, (T — uI). Sincex € A, then
B(r,e)NA#@. Sothereigw € B(x,e)NA. Hencec, (T —AI) =c, (T — 1) =
0, and sox € A. ThereforeA is closed inI". Sincel” is connected, thed = TI.
Moreover, ifA € o (T) NI, thena is a pole of the resolvent @f. Therefore itis an
isolated point of the spectruaT). Sinceo (T') is a compact set, then(T) N I”
is a discrete set. O

Theorem 2.10. Let T € L(X) and suppose thadgw(7T) is simply connected.
ThenT + F satisfies the generalized version Il of the Weyl's theorem for every
F € Fo(X).

Proof. Suppose that € o(T) andT — Al is a B-Fredholm operator of index 0
LetI' ={« € C| T — «l is a B-Fredholm operator of inde}.0ThenI" is con-
nected. Sincd™ N p(T) is nonempty, from the previous theorem it follows that
I' N o (T) consists entirely of Poles of the resolvent®ofSo A € IT(T) andT
satisfies the version Il of the generalized Weyl’'s theorem.

If F e Fo(X) is a finite rank operator, thesgw (T + F) = ogw(T). Thus
ogw(T + F) is simply connected, and sb + F satisfies the version Il of the
generalized Weyl's theorem.o
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As it is well known, a meromorphic operatdr is an operatoil’ such that
eachi # 0 is a pole ofT. In the following theorem we characterize meromorphic
operators in terms of B-Fredholm operators.

Theorem 2.11. Let T € L(X). ThenT is a meromorphic operator if and only if
T — Al is a B-Fredholm operator for all. £ 0.

Proof. If T is a meromorphic operator, th&h— A1 is Drazin invertible for each
A # 0. In particular,l — Al is a B-Fredholm operator.

Conversely, suppose that for alk~£ 0, T — Al is a B-Fredholm operator. Set
I' =C\ {0}. ThenrI is a connected set of B-Fredholm points7of Since the
spectrum off" is bounded, then there ise I" such thatl" — A[ is invertible, and
soT — Al is Drazin invertible. From Theorem 2.9 it follows that every poinfof
isapoleofl. O

Remark. Itis proved in [3] thatifT is a bounded linear operator acting on Banach
spaceX, satisfying the generalized Weyl's theorem (respectively, the version Il
of the generalized Weyl's theorem), th@h satisfies also the Weyl's theorem
(respectively, the version Il of the Weyl's theorem). However, the converse is not
true as shown by the following example:

Example. Let X be an infinite-dimensional Banach space. Tet L(X) be any
nilpotent operator with nonclosed range, anddet L(X) be a quasi-nilpotent
operator which is not nilpotent. Consider the operafoe= T & Q, defined
on the Banach spack @ X. Then E(S) = {0}, I1(S) = Eo(S) = I1p(S) = 9,

o (S) = {0}, ow(S) = {0} andopw (S) = {0}. Hence the Weyl's theorem and its
version Il are satisfied by, but the generalized Weyl's theorem is not satisfied
by S.
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