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Abstract

Let T be a bounded linear operator acting on a Banach space and letσBW(T ) = {λ ∈
C such thatT −λI is not a B-Fredholm operator of index 0} be the B-Weyl spectrum ofT .
Define alsoE(T ) to be the set of all isolated eigenvalues in the spectrumσ(T ) of T , and
Π(T ) to be the set of the poles of the resolvent ofT . In this paper two new generalized
versions of the classical Weyl’s theorem are considered. More precisely, we seek for
conditions under which an operatorT satisfies the generalized Weyl’s theorem:σBW(T )=
σ(T )\E(T ), or the version II of the generalized Weyl’s theorem:σBW(T )= σ(T )\Π(T ).
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

This paper is a continuation of our previous works [2–4]. We consider a Banach
spaceX andL(X) the Banach algebra of bounded linear operators acting onX.
For T ∈ L(X) we will denote byN(T ) the null space ofT , by α(T ) the nullity
of T , by R(T ) the range ofT and byβ(T ) its defect. If both ofα(T ) andβ(T )
are finite thenT is called a Fredholm operator and the index ofT is defined by
ind(T ) = α(T )− β(T ). In this case it is well known that the rangeR(T ) of T is
closed inX.

Now for a bounded linear operatorT and for each integern, defineTn to
be the restriction ofT to R(T n) viewed as a map fromR(T n) into R(T n) (in
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particular,T0 = T ). If for some integern the range spaceR(T n) is closed andTn
is a Fredholm operator, thenT is called a B-Fredholm operator. In this case and
from [4, Proposition 2.1]Tm is a Fredholm operator and ind(Tm) = ind(Tn) for
eachm � n. This enable us to define the index of a B-Fredholm operatorT as
the index of the Fredholm operatorTn, wheren is any integer such thatR(T n)

is closed and such thatTn is a Fredholm operator. Let BF(X) be the class of all
B-Fredholm operators. In [4] we studied this class of operators and we proved [4,
Theorem 2.7] that an operatorT ∈ L(X) is a B-Fredholm operator if and only if
T = T0 ⊕ T1, whereT0 is a Fredholm operator andT1 is a nilpotent one.

It appears that the concept of Drazin invertibility plays an important role for
the class of B-Fredholm operators. LetA be an algebra with a unite; following
[12] we say that an elementx of A is Drazin invertible of degreek if there is an
elementb of A such that

xkbx = xk, bxb = b, xb = bx. (∗)

Recall that the concept of Drazin invertibility was originally considered
by Drazin in [8] where elements satisfying relation (∗) are called pseudo-
invertible elements. The Drazin spectrum is defined byσD(a) = {λ ∈ C: a −
λe is not Drazin invertible} for every a ∈ A. In the case of a bounded linear
operatorT acting on a Banach spaceX, it is well known thatT is Drazin invertible
if and only if it has a finite ascent and descent (Definition 2.1); which is also
equivalent to the fact thatT = T0 ⊕ T1, whereT0 is an invertible operator andT1

is a nilpotent one (see [12, Proposition 6] and [11, Corollary 2.2]). In [2] B-Weyl
operators and the B-Weyl spectrum are defined as follows:

Definition 1.1. Let T ∈ L(X). ThenT is called a B-Weyl operator if it is a B-
Fredholm operator of index 0. The B-Weyl spectrumσBW(T ) of T is defined by
σBW(T )= {λ ∈ C: T − λI is not a B-Weyl operator}.

Now letF0(X) to be the ideal of finite rank operators in the algebraL(X) of
bounded linear operators acting onX, and letE(T ) to be the set of all isolated
eigenvalues in the spectrumσ(T ) of T . In [2, Theorem 4.3] we showed that for
T ∈ L(X) we have

σBW(T ) =
⋂

F∈F0(X)

σD(T +F),

and in the case of a normal operatorT acting on a Hilbert spaceH , we showed in
[2, Theorem 4.5] that

σBW(T ) = σ(T ) \E(T ),

which gives a generalization of the classical Weyl theorem. Recall that the
classical Weyl theorem [13] asserts that ifT is a normal operator acting on a
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Hilbert spaceH , then the Weyl spectrumσW (T ) is exactly the set of all points in
σ(T ) except the isolated eigenvalues of finite multiplicity; that is

σW (T ) = σ(T ) \E0(T ),

whereE0(T ) is the set of isolated eigenvalues of finite multiplicity andσW (T )

is the Weyl spectrum ofT . In other words,σW (T ) = {λ ∈ C such thatT −
λI is not a Fredholm operator of index 0}. It is known from [10, Theorem 6.5.2]
that

σW (T ) =
⋂

F∈F0(X)

σ (T + F).

In his paper [1], Barnes considered the version II of the Weyl’s theorem (called
also the Browder’s theorem in [7]): For a bounded linear operatorT acting onX,
what conditions onT implies thatT satisfies

σW (T ) = σ(T ) \Π0(T ),

whereΠ0(T ) is the set of poles of the resolvent ofT of finite rank. It is well
known [11, Section 2] that an isolated pointλ of the spectrumσ(T ) of T is a pole
of the resolvent ofT if T − λI is Drazin invertible. A pole of the resolvent ofT
is of finite rank if the spectral projection associated to the set{λ} is of finite rank.

The aim of this paper is to study similar questions as in [1], but instead
of isolated eigenvalues of finite multiplicity, we consider the set of all isolated
eigenvalues, instead of poles of the resolvent of finite rank, we consider the set
of all the poles of the resolvent, and instead of the Weyl’s spectrum, we use the
B-Weyl spectrum. More precisely, letE(T ) be the set of all isolated eigenvalues
in the spectrumσ(T ) of T , andΠ(T ) the set of all the poles of the resolvent ofT .
Then the two following new generalized versions of the classical Weyl’s theorem
are considered. Under which conditions an operatorT satisfies the generalized
Weyl’s theorem:

σBW(T )= σ(T ) \E(T ),

or the version II of the generalized Weyl’s theorem

σBW(T )= σ(T ) \Π(T ).

As we will see, many of the results valid for Poles of finite rank obtained in [1]
are also valid for all poles.

Finally, we also mention the following book [6], which is useful for the reader
in this circle of ideas.

2. Results

The following definition is well known:
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Definition 2.1. Let T ∈ L(X), n ∈ N and letcn(T ) = dimR(T n)/R(T n+1) and
c′
n(T ) = dimN(T n+1)/N(T n). Then the descent ofT is defined byδ(T ) =

inf{n: cn(T ) = 0} = inf{n: R(T n) = R(T n+1)}, and the ascenta(T ) of T is
defined bya(T ) = inf{n: c′

n(T ) = 0} = inf{n: N(T n) = N(T n+1)}, with inf ∅
= ∞.

Definition 2.2 [9]. Let T ∈ L(X) and letd ∈ N. ThenT has a uniform descent
for n � d if R(T ) + N(T n) = R(T ) + N(T d) for all n � d . If, in addition,
R(T ) + N(T d) is closed thenT is said to have a topological uniform descent
for n� d .

Remark. As it has already been observed in [4] a B-Fredholm operator is an
operator of topological uniform descent.

Theorem 2.3. LetT ∈L(X) and letλ ∈ σ(T ) be an isolated point ofσ(T ). Then
the following properties are equivalent:

(1) λ is pole of the resolvent ofT .
(2) There existsT -invariant subspacesM andN of X such thatX = M ⊕ N ,

(T − λI)|M is invertible and(T − λI)|N is nilpotent.
(3) T − λI is a B-Fredholm operator of index0.

Proof. The equivalence of the two first properties is well known as a characteri-
zation of poles of the resolvent. Let us show that (2) is equivalent to (3).

If there existsT -invariant subspacesM andN of X such thatX = M ⊕ N ,
(T − λI)|M is invertible and(T − λI)|N is nilpotent, then from [2, Theorem 4.2]
it follows thatT − λI is a B-Fredholm operator of index 0.

Conversely, suppose thatT − λI is a B-Fredholm operator of index 0. Sinceλ
is isolated in the spectrum ofT , then from the Grabiner’s punctured neighborhood
theorem [5, Theorem 4.5], if|λ − β| is small enough and forn large enough we
havecn(T − βI)= cn(T − λI), c′

n(T − βI)= c′
n(T − λI). Sinceλ is isolated in

the spectrum ofT , then if|λ−β| is small enough andλ �= β , T −βI is invertible.
Hencecn(T − βI) = c′

n(T − βI) = 0. SoT − λI is an operator of finite ascent
and descent. Thereforeλ is a pole ofT . ✷
Theorem 2.4. LetH be a Hilbert space, letT ∈ L(H) and letT ∗ be its adjoint.
ThenT satisfies the version II of the generalized Weyl’s theorem if and only ifT ∗
does.

Proof. It is easily seen thatσ(T ∗)= σ(T ) andΠ(T ∗)=Π(T ). Moreover, from
[2, Remark B] we know thatT is a B-Fredholm operator of index 0 if and
only if T ∗ is B-Fredholm operator of index 0. ThusσBW(T ∗) = σBW(T ), where
σBW(T ) denotes the conjugate set ofσBW(T ). From those relations it follows that
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T satisfies the version II of the generalized Weyl’s theorem if and only ifT ∗
does. ✷
Theorem 2.5. LetT ∈L(X). Then we have the following properties:

(1) σBW(T ) ⊆ σ(T ) \E(T ) if and only ifE(T )= Π(T ).
(2) σBW(T ) ⊇ σ(T ) \E(T ) if and only ifσBW(T ) = σD(T ).

Proof. (1) Suppose thatσBW(T )⊆ σ(T ) \E(T ) and letλ ∈ E(T ) be an isolated
eigenvalue ofT . Thenλ /∈ σBW(T ), so T − λI is a B-Fredholm operator of
index 0. From the Theorem 2.3 it follows thatλ is a pole of the resolvent ofT ,
and soλ ∈Π(T ). As we have alwaysΠ(T )⊂E(T ), thenE(T )=Π(T ).

Conversely, ifE(T ) = Π(T ) andλ ∈ E(T ), thenT − λI is a B-Fredholm
operator of index 0. Thereforeλ /∈ σBW(T ) and soσBW(T )⊆ σ(T ) \E(T ).

(2) Suppose thatσBW(T ) ⊇ σ(T ) \ E(T ) and letλ ∈ σ(T ) \ σBW(T ). Then
λ ∈ E(T ), in particularλ is isolated in the spectrum ofT . Moreover,T − λI

is a B-Fredholm operator of index 0. From the Theorem 2.3 it follows that
T − λI is Drazin invertible andσD(T ) ⊂ σBW(T ). As it is always true that
σBW(T ) ⊂ σD(T ), thenσBW(T )= σD(T ).

Conversely, suppose thatσBW(T )= σD(T ). Letλ /∈ σBW(T ); thenλ /∈ σD(T ).
SoT −λI is Drazin invertible andλ ∈ E(T ). HenceσBW(T ) ⊇ σ(T )\E(T ). ✷

From this theorem we obtain immediately the following corollary:

Corollary 2.6. Let T ∈ L(X). ThenT satisfies the generalized Weyl’s theorem if
and only ifσBW(T )= σ(T ) \Π(T ) andE(T )=Π(T ).

Theorem 2.7. Let T ∈ L(X). If F ∈ F0(X) and T F = FT , then σD(T ) =
σD(T + F).

Proof. Let us show thatσD(T )⊂ σD(T +F). If λ /∈ σD(T +F), thenT +F −λI

is Drazin invertible. Hence from [2, Proposition 3.3]T −λI = (T −λI +F)−F

is a B-Fredholm operator. In particular, the two operatorsT −λI andT −λI +F

are operators of topological uniform descent. From [9, Theorem 5.8], and forn

large enough, we havecn(T − βI) = cn(T − λI + F), c′
n(T − βI) = c′

n(T −
λI + F). SinceT − λI + F is Drazin invertible, then forn large enough we
havecn(T − λI + F) = c′

n(T − λI + F) = 0. So for n large enough we have
cn(T − λI) = c′

n(T − λI) = 0. SoT − λI is Drazin invertible andλ /∈ σD(T ).
ThereforeσD(T ) ⊂ σD(T + F). SinceT = (T + F) − F and (T + F)F =
F(T +F), then we have alsoσD(T + F) ⊂ σD(T ). ✷

From this property of the Drazin spectrum, we obtain the following perturba-
tion theorem:
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Theorem 2.8. If T satisfies the version II of the generalized Weyl’s theorem and if
F is a finite rank operator such thatT F = FT , thenT +F satisfies the version II
of the generalized Weyl’s theorem.

Proof. From the characterization of the B-Weyl spectrum [2, Theorem 4.3], it
follows that ifF is a finite rank operator, thenσBW(T +F)= σBW(T ). Moreover,
if F commutes withT , then from the previous theorem we haveσD(T + F) =
σD(T ). If T satisfies the version II of the generalized Weyl’s theorem, then
σBW(T ) = σD(T ). HenceσBW(T + F) = σD(T + F), and soT + F satisfies
the version II of the generalized Weyl’s theorem.✷
Theorem 2.9. LetΓ be a nonempty connected subset ofC such thatT − λI is a
B-Fredholm operator for allα ∈ Γ. If there isα ∈ Γ such thatT − αI is Drazin
invertible, then every point ofσ(T )∩Γ is a pole ofT andσ(T )∩Γ is a countable
discrete set.

Proof. SinceT − αI is Drazin invertible, forn large enough we havecn(T −
αI) = c′

n(T − αI) = 0. Let A = {µ ∈ Γ | T − µI is Drazin invertible}. Then
α ∈ A andA �= ∅. If λ ∈ A, sinceT − λI is Drazin invertible, then there is an
open neighborhoodB(λ, ε) such thatB(λ, ε) − {λ} ⊂ ρ(T ), whereρ(T ) is the
resolvent set ofT . ThereforeB(λ, ε) ∩ Γ ⊂ A, andA is open inΓ. Now let
λ ∈ A ∩ Γ, whereA is the closure ofA. In particular,T − λI is a B-Fredholm
operator. Hence there is anε > 0 such that if|λ−µ|< ε then forn large enough,
we havecn(T − λ)= cn(T −µI), c′

n(T − λI) = c′
n(T −µI). Sinceλ ∈ A, then

B(λ, ε)∩A �= ∅. So there isµ ∈ B(λ, ε)∩A. Hencecn(T −λI) = c′
n(T −λI)=

0, and soλ ∈ A. ThereforeA is closed inΓ. SinceΓ is connected, thenA = Γ.

Moreover, ifλ ∈ σ(T )∩Γ , thenλ is a pole of the resolvent ofT . Therefore it is an
isolated point of the spectrumσ(T ). Sinceσ(T ) is a compact set, thenσ(T )∩Γ

is a discrete set. ✷
Theorem 2.10. Let T ∈ L(X) and suppose thatσBW(T ) is simply connected.
ThenT + F satisfies the generalized version II of the Weyl’s theorem for every
F ∈ F0(X).

Proof. Suppose thatλ ∈ σ(T ) andT − λI is a B-Fredholm operator of index 0.
Let Γ = {α ∈ C | T − αI is a B-Fredholm operator of index 0}. ThenΓ is con-
nected. SinceΓ ∩ ρ(T ) is nonempty, from the previous theorem it follows that
Γ ∩ σ(T ) consists entirely of Poles of the resolvent ofT . Soλ ∈ Π(T ) andT
satisfies the version II of the generalized Weyl’s theorem.

If F ∈ F0(X) is a finite rank operator, thenσBW(T + F) = σBW(T ). Thus
σBW(T + F) is simply connected, and soT + F satisfies the version II of the
generalized Weyl’s theorem.✷
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As it is well known, a meromorphic operatorT is an operatorT such that
eachλ �= 0 is a pole ofT . In the following theorem we characterize meromorphic
operators in terms of B-Fredholm operators.

Theorem 2.11. Let T ∈ L(X). ThenT is a meromorphic operator if and only if
T − λI is a B-Fredholm operator for allλ �= 0.

Proof. If T is a meromorphic operator, thenT − λI is Drazin invertible for each
λ �= 0. In particular,T − λI is a B-Fredholm operator.

Conversely, suppose that for allλ �= 0, T − λI is a B-Fredholm operator. Set
Γ = C \ {0}. ThenΓ is a connected set of B-Fredholm points ofT . Since the
spectrum ofT is bounded, then there isλ ∈ Γ such thatT − λI is invertible, and
soT −λI is Drazin invertible. From Theorem 2.9 it follows that every point ofΓ

is a pole ofT . ✷
Remark. It is proved in [3] that ifT is a bounded linear operator acting on Banach
spaceX, satisfying the generalized Weyl’s theorem (respectively, the version II
of the generalized Weyl’s theorem), thenT satisfies also the Weyl’s theorem
(respectively, the version II of the Weyl’s theorem). However, the converse is not
true as shown by the following example:

Example. Let X be an infinite-dimensional Banach space. LetT ∈ L(X) be any
nilpotent operator with nonclosed range, and letQ ∈ L(X) be a quasi-nilpotent
operator which is not nilpotent. Consider the operatorS = T ⊕ Q, defined
on the Banach spaceX ⊕ X. ThenE(S) = {0}, Π(S) = E0(S) = Π0(S) = ∅,
σ(S) = {0}, σW(S) = {0} andσBW(S) = {0}. Hence the Weyl’s theorem and its
version II are satisfied byS, but the generalized Weyl’s theorem is not satisfied
by S.
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