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Let S be a hypersurface in R”, n>2, and let du =y da, where € C; (R") and
o denotes the surface area measure on S. Define the maximal function . # associated
to S and u by

M f(x)=sup

>0

. fe L(R").

| e aus)
S

It was shown by Stein that when S is the sphere in R”, n >3, .# (the spherical
maximal function) is bounded on L7”(R") if and only if p>n/(n—1). It has also
been shown that if S is of finite type, i.e.. the curvature vanishes to at most a finite
order m at every point of S, then there exists some number p,, <« such that .#
is bounded on L7(R") (n>3) for all pe(p,,, «x]. On the other hand it is well
known that if S is flar. that is, S contains a point at which the curvature vanishes
to infinite order, then .# may not be bounded on any L”(R"), p < co. We show that
under some hypotheses the maximal functions . # associated to flat surfaces S R*
are bounded on certain Orlicz spaces L®(R*) defined naturally in terms of S§.
" 1995 Academic Press. Inc.

0. INTRODUCTION

Let S be a hypersurface in R”, n =2, and let ¢ denote the surface area
measure on S. Let du = do, where € C(R"). The maximal function .#
associated to S and u is defined by

Mf(x)=sup |(f * u,)(x)| = sup

1>0 >

Lf(-’c‘—té)d/l(f) : (0.1)

for suitable functions f, say fe . (R"), the Schwartz class of functions.

It was shown by Stein that ./# is bounded on L7”(R") if and only if
p>nf(n—1) in the case that S is the sphere in R”, n >3 [S],SW]. (.# is
called the spherical maximal function in this case. The corresponding result
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for the circular maximal function on R?> was later proved by Bourgain
[Bo}.)

Recall that S is said to be of finite type if the Gaussian curvature
vanishes to at most a finite order m at every point of § (the smallest such
number m is called the type of S). Stein’s result has been extended to all
finite type surfaces S: it has been proved that if S is of type m then .# is
bounded on L7(R") (n=3) for all sufficiently large p, namely all
pe(p,., ], where p,,=p,(n) is some number (not necessarily optimal)
such that p,,—» o0 as m— oo (see [ G, SS, CM, NSWT).

On the other hand if S is (infinitely) flaz, that is, S contains a point at
which the curvature vanishes to infinite order, then .# may not be
bounded on any L7(R"), p < oo (see [SS] or [S3, p. 5127]). The purpose of
this paper is to prove Orlicz space estimates for .4 associated to some flat
surfaces (in R*), which may be regarded as natural substitutes for the L”
space estimates. For example take y(¢) =exp(— 1/¢") for some >0 if 1> 0
and y(0)=0. And consider the radial surface S= {(y, I + y([y{}): yeR?}
(with a flat point at y =0) and the measure du(y, 1 + y(|»})) =¥ (|y|) dy,
where Yy e C(R) is a cutoff function with (0)>0. (That is, u acts on
functions f by <{u, /> ={ f(y, 1+ p(lyD)) ¥(1y]) dy.) Let L*(R?) denote the
Orlicz space associated to a Young’s function @ given by @(1) =exp(!") for
large ¢ (see Example 1.3.a). It turns out that the estimate

Hv”f” LP(RY) <C “f“ L¥(RY)

holds if and only if r>b/2. In Section3 we prove a result on .#
{Theorem 3.1), which includes this as an example (see Example 3.3(a)). We
wish to point out that this problem is in the spirit of the problems
discussed by Wainger [W] (see also [B] and [BMO] for related
phenomena)).

The proof of Theorem 3.1 is based on an interpolation lemma for Orlicz
spaces and certain uniform estimates on the Fourier transforms of
measures on S < R? obtained by decomposing u radially, combined with
the standard methods in [S1] and [SS]. We prove our interpolation result
in Section 1 and the Fourier transform estimates in Section 2. If these
Fourier transform estimates could be extended to higher dimensions
(n=24), then one would immediately obtain an extension of our result on
.# to higher dimensions.

1. AN INTERPOLATION LEMMA

Let (X, .47, ) and (Y, .43, v) be measure spaces, where y, v are positive
o-finite measures, and let 7 be a sublinear operator defined on a suitable
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linear space of functions f on X such that 7fis a measurable function on
Y. The Orlicz space L®(du) associated to a Young’s function & is equipped
with the (Luxemburg) norm

I/ le=11/1l o4 = inf {s >0: J D(1f(x)1/s) du < 1}- (1.0)

The (generalized) inverse of @ is defined for 1€ [0, co) by
@ )=inf{s>0: S(s)>1}.

The following lemma is an extension of (a special case of) the
Marcinkiewicz interpolation theorem. For related results see [GP] and
[ To]. Throughout this paper the letter C will denote a constant which may
not be the same at each occurrence.

LemMa 1.1. Let re[1, o). Suppose that T is simultaneously of weak
types (r, r) and (oc, o0 ), namely there exist constants A and B >0 such that

‘uxuﬂm>gk4i¥&y V>0, (1.1)

1Tl <BUS . (12)

Assume that a Young's function @ is given by P(s)= S‘(‘, é(1) dt, where
¢: [0, c)— [0, 0) is a nondecreasing function such that ¢(t)=0 for
0<1<1, and ¢(t)> 0 for t > 1. Also assume that there exist constants ¢ > 1,
Co, and C, such that

rﬂﬁm<q¢f{ for u>1, (13)
1 ! u
and for every 4> 1
(At)
q%memm for 1>c (1.4)

Then there exists a constant C= C(®, r) depending only on @ and r such
that

VTF 1 pogay < CBD'((A/BY) || f) Loy

Remark 1.2. (a) The condition (1.3) will be verified, for instance, if
there exist some £>0 and ¢, > 1 such that

#(1)

tr—l+£

is nondecreasing for = c¢,, (1.3

580:129:2-15
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and (1.4) will follow if for every 4> 1 the quotient function

P(A1)
(1)

{(b) Our main interest in this lemma lies in the operator norm
CB® ~'((A/B)"), which makes it useful when @ grows exponentially at oc
and the ratio A/B is large. See Example 1.3, Corollary 1.4, and
Theorem 3.1.

is nondecreasing for (>=c. (1.4")

ExaMpPLE 1.3. In the following we define ¢(¢)=®'(t) by the given
expressions if > 2 and let ¢(z) =0 if 0 <z < 1. We also require it to be non-
decreasing for 7> 0. Assume the ratio 4/B is sufficiently large.

(a) ¢(t)=e", s>0. In this case Bd ~'((4/B)") < CB(log(A/B))"".

(b) ¢(t)=exp---exp(t’), s>0. Here B® '((A4/B)") < CB(log ---
log(A/B)'".

(c) ¢(1)=e"2" 5> 1 Then B® '((A/B)") < CBexp((rlog(A/B))"").

(d) ¢(r)=t"""(logt), with pe(r,oc) and seR. In this case
B®'((A/B)) < CA"B' ~"r(log(A/B)) *7, and when s=0 the lemma
essentially reduces to {(a special case of) the Marcinkiewicz interpolation
theorem.

i

Proof of Lemma 1.1. The proof relies on the method of proof of the
Marcinkiewicz interpolation theorem (see [Z]). We may assume B=1,
since otherwise we may replace T by 7= B~ 'T. It is then enough to show

szczsurf(xn/zu)dvs I

with some constant D < CP~'(A"), assuming || flle=1 (see (1.0)). By a
well known representation we have

1={" 40y vy2D0ydi,
0

where v (1) = w({x: |g(x)| >1}) denotes the distribution function of g. For
z>0let f.(x)=f(x) if |f/(x)| <z, and f.(x) = ze"* 8/ if | f(x)| >z, and let
f*=f—f.. Since T is sublinear and ¢(¢) =0 when <1,

1

Igr ¢(1) vy (D1) dt+J ) vy(DYydt=1, + 1.
1

By (1.2) IITf.l . <l /-l .. <:z. Now choose z=Dt. Then v,.(Dt)=0, so
I, =0. Hence by (1.1)
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1<12<£x‘ (1) (ﬂ%@)rm

iy [0 <
<rA’D fl - f "\ (s) ds dt
B o siD ¢( [) ) _
=rA’'D™" dr) s Yy (s)ds
r _[D <£ " s (s) ds

since |[f|l=r jo‘ s '/zf_-(s) ds=r j_‘ (s—z) ! HAsyds<r j‘__“ s ‘#f(s) ds.
Now (1.3) implies

f " ii’“) dr < Cod(s/D)(s/D)' ",

1
and (1.4) (with 4= D/2 and t=s/4) implies
d(s/D) <P 2s/D) < C Pls)/d(D/2) if s=zD>2 (1.5)

Thus
A o
I< rC0C| W jD ¢(S‘)/l/(8‘) ds.

We have [ ¢(s) u () ds <[5 () (s)ds=[ D f1)du<], if | f]o=1.
So I < rCyC, A" /[ DYD/2)] < rCoC, A’/[2(D/2)], because ®(D/2) =
Pra(eydi <¢p(D/2yDJ2. Thus we get I<1, if we choose D=
20 "Y(rCyC,A7/2). Since @ '(1)>1 for t>0, we have D>2 as was
required in (1.5). Therefore we conclude that

1T e <2D | fll

with D C® '(4"), where C=max{2,rC,C,}, since the inequality
& '(Ju)<max{l, A} @ '(u) holds by the convexity of @. |

The following is an immediate corollary of Lemma 1.1. We state it to
indicate the way Lemma 1.1 1s intended to be applied.

COROLLARY 14. Let T and T, be sublinear operators such that

[ TAXN <Y | T fIX)| ae. Suppose that for some re[l, o) and
k=12, ..

vix: ITA.f(x)I>t}<<M>r Vi >0,

ITe S < B LSl
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If @ is a Young’s function as in Lemma 1.1 such that

C=Y B ((4:/B)) <0,

k=1

then

1Tfle < Clfllo-

2. UNIFORM ESTIMATES FOR FOURIER TRANSFORMS OF MEASURES
CARRIED ON A SURFACE

Let ye C*[0, oc)) be a nonnegative strictly convex function such that
y(0)=y'(0)=0. For simplicity assume y'(1)=1. Assume in addition that

y'(2)/t 1s nondecreasing for 7> 0. (2.1)

Let S be a hypersurface in R” given by S={(y, b+ y(|y|}):yeR" "'} for
some beR. Write #(z)=5b+ p(1) and 7= (y, §(}yD).

If K(j7) denotes the Gaussian curvature of S at j, then K(j)=
Iy (y1)/]1y1]1" 2 (on any compact set). (Here the symbol ~ means
the ratio of the expressions on either side is bounded between two positive
absolute constants.) Since (2.1) implies y"(¢)=9'(¢)/t>0 for >0, the
Gaussian curvature of S can only vanish at the origin.

The following theorem is proved by using the method of proof of
Theorem 2.2 in [ BMVW]. Therefore it may be generalized to include sur-
faces in R* whose horizontal cross sections are dilates of a single smooth
convex curve with nonvanishing curvature (see [ BMVW ]). For simplicity
we state and prove it only in the radial case (where the cross sections are
concentric circles).

THEOREM 2.1. Let ye Co([0, o)) be a nonnegative function that is com-
pactly supported in the interval (a, o), where a>0. Let n=73 and let y, 7,
and S be as above. Let v be the measure on the surface S such that
dv(y, 5(1yD)) = x(Iy]) dy.

Then for every multiindex o with |a| <1 there exists a constant C
independent of a, &, and y such that

[(0/0&)* ¥(&)| < CC

a
— (] —l’
g \/y'(a)y'(a/z)( b

where C, < x|l +1x'llh if |al =0, and C, < {xll.c + lxlli + Ix' 1 if o = 1.

(2.2)
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Remark 2.2. For each fixed a >0 the fact that (2.2) holds with some
constant C is a trivial consequence of the classical result, since the cur-
vature of .§ does not vanish on the support of y (see, e.g., Theorem 1 in
[S27 or Theorem 7.7.14 in [H]).

An analog of Theorem 2.1 in R? is well known (see Section 6 in
[ BNW]). Therefore the following corollary holds.

COROLLARY 2.3. Let n=2 or 3. Let v, g, and a be as in Theorem 2.1. If
o] <1

a
¥'(af2)

If n=73 assume in addition that ' (1) = ty"(t/2) for t >0. Then

{(n—1)2
(8/0E)* 9(&)] < ccx( ) (T4+1E)-"-D2  (22)

(8/05)* #(&) < CC,[x(a/2)]1 712 (1 + &)~ D2,

where r(t) =inf{ |K(y, 5(|yI)| : |y =1}.

Proof of Theorem2.1. We first prove the case « =0 and comment on
the other cases at the end. It is enough to take £=A{ with A>0,
{=(0, —¢ 1), and 0 <¢< 1. Then |¢|~4. We may assume b=0. Using
polar coordinates we obtain

ﬁ(é) - G(/‘lc) — JS ei)t{ X d\’(x) — j‘RZ eii{-(,\'. )’('J")]X( ‘y{) dy

o . 2n B .
:J‘ eiAy(r)rX(r) J’ e*l/\‘er sin ()dg dr

0 0

= fx e " py(r) Jol Aer) dr.
]

Here Jy(r)=e ~"F\(r) + e"F,(r) is the Bessel function of order 0, where F,
satisfy the following estimates (see, e.g., [BNW]).

|[F(r)| < Cj, (2.3a)
[F(r)|<Cr='?~/  for j>0 and I=1,2. (2.3b)

Thus #(&)=1, + I,, where

= j: e y(r) expl(( —1)! ider) F,(Aer) dr.
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Since |1,] < C, it suffices to prove

a
A7) y(af2)

Define the number p>0 by (p)=¢c We may also assume |yl +
Il <1

We first prove (2.4) for I,. Write F(ry=F(r). Let y(r)=y(r)—y(p)—
Y (p)r—p). Then Y(p)=y'(p)=0, and ' r)>0 for r>p. And (2.1)
implies that

1| <C (2.4)

w'(r)

r

is strictly increasing for r> p. (2.5)

We also need the following consequence of (2.1): If r = 2p, then

since y'(r) =y (p)r/p 22y'(p).
Write

o L 2p ee
e”"[""”””"‘”]llzj‘ e'“’"'F(),sr)r)((r)dr=J +J .

0 0 2p

We estimate the second term first. Put ff=max{a, 2p}. By integration by
parts

o 1 opmd r
— __ L (ptAw(r) —
J\Zp —Jﬁ l)n J‘/] dr (e )F(Agr) wl(r)X(r) dr

| - r *
— _ plAd(r) . N
i F(’L").p'(r)’((r)L

1 e d
o iy
7, e 7 [ ()Lr)w( )} dr.

Using (2.3a), (2.6), and (2.1) gives the following estimate for the boundary
term BT.

g B _. a

BT|\<C <C - £<C s
BI<C OB < wmsma
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since f>2p and B> a. Likewise, the integrated term /7 is estimated by
using (2.3}, (2.6), and (2.1).

1 x> , r 1l rx| d y .
IITI<C; L Ae lF(isr)lmdr+szﬁ lﬁ[t/f’(r)H |F(ier)| dr
1 = . a ,
HC S [ IR s ) dr

Observe that by (2.3)
j% Je |F'(Jer)| dr < Cfr (1+r) " dr<C
B 0

Hence the first term is bounded by Ca/[ Ay'(a)] just like the boundary
term. For the second we use (2.3a), (2.6), and the fact that the
monotonicity (2.5) of y'(r)/t implies

,

For the third term we again use (2.3a) and (2.6). Combining these we
obtain

d r

dr y'(r)

wd r
L M'(r)d”y'

a
T <C .
1T Ay (a)
Therefore
fi eI Fer) ry(r)dr| < C fl .
2p AV (a)

Next we estimate the term . Note that we may assume a < 2p, since
otherwise the integrand vanishes identically. Put

H(r)= Jr e ds.

a

Since (2.1) implies y"(¥) =3"(r) = ' (r)/r = y'(a)/a for r = a, it follows from
van der Corput’s lemma that

\Hrj<C |2 (2.7)
iy (a)
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if r>a (see, e.g, [BNW, Section 6]). Now we integrate [3# by parts as
follows:

2p 2p 2p
J =J =H(r)F()~ar)r;((r)]f/’——'|- H(r)—[F Aer) rx(r)] dr.
1]

a a

The boundary term is estimated using (2.3b), (2.7), and (2.1).

e [ fEc 5 [ o
|BT| Ay'(a) N 4y'(p) /1 y(a)v a2y

We estimate the integrated term also by using (2.1), (2.3b), and (2.7).

2p 2p
\IT] sj |H(r) F(Zer)| x(r) dr +j \H(r) FQer) ry' ()] dr

+pr |H(r) 46" Ger)| ry(r) dr

C\/ a <f2p(i£r)"/'2dr sup [(der) ‘/%]J 7' ()] dr

iy'(a) re[0,2p]

2
—+—J ’ Ae(Aer) = rdr)

N7 \/- a) JY@ y(a2)

Hence (2.4) holds for 7,. This completes the estimation of the term I,.
We now give an outline of the estimation of the term 7,, since it is
analogous to I,. We write

® 2p o
12=f e T E Jery ry(r) dr=.[ +
4] 0

2p

As before we integrate the second term f;f) by parts. Recall the notation
f=max{a, 2p}.

f:f MJ g (Y Fr) s ) dr

2p

U i +an ¥
= — Myn+enpy 2 o o
iz,e ( Er) y,(r)+£X(r)]p

1

w d
o iAlpr)+er) F A
id V] ¢ dr{ ( Er)

V'(r;+sx(r)] ar
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Here unlike the quotient r/yy'(r) that arises in the case of I,, the quotient
r/(y'(r) + &) is not monotone, but we may write it as the product of the
monotone functions r/y'(r) and Y'(r)/(y'(r)+€)=1—{2¢/(y'(r)+¢)]. The
rest of the argument is parallel to that for 7,. To estimate the first term jf)”
put

H(r) =J‘r ei}.lr(s)+e.v) dS

a

and proceed as in /,. This completes the proof of the theorem in the case
a=0.
Finally, suppose |¢|=1. If a=(1,0,0) or (0, 1, 0) we get

(0/08)" §8) = (0/05) HE) =co [ € Lry(r)] Jy(sr) b,

Where éz}‘Ca C:(Cl’£2’ 1)’ 8=|(C11{2)L ‘C()‘Sl, and J](r) denotes the
Bessel function of order 1. If x = (0, 0, 1) we get

(0/02)" &) = (8/083) WE) =i [ ~ ™ rlytr) 2ir)] Joler) b
Thus, (8/6£)* ¥(£) involves only a new cutoff function and possibly a Bessel
function of different order, and hence we obtain similar estimates. ||

3. THE MAXIMAL FUNCTIONS ASSOCIATED TO FLAT SURFACES IN R?

Let y be as in the first paragraph in Section 2. Recall the notation 7(¢) =
1+ y(r) (with b=1), =(y, % (|y])), and S={(py, 1+¥(|y)):yeR" "'}
Let du(7)=y(|y|) dv, where Y e CF(R) is a nonnegative function with
Y()=11if Jt| <1 and ¥(r)=0 if |t| =2. Let the maximal function .# be
defined by (0.1). We obtain the following result for .#.

THEOREM 3.1. Letr S be given as above with n = 3. Assume that for each
Ax>1

YAy (t) is nondecreasing for 1>0. (3.1)

Put G(t)=1tY'(t). For >1 and d>0 let ¢:[0, o) — [0, oc) be a non-
decreasing function such that ¢(1) =t '[ G(+~4)] # if t is sufficiently large,
$(6)>0 if t>1, and $(1)=0 if 0<t< 1. Let D(u)=[s¢(1)dr. Then for
every d > 1 there exists a constant C such that

”-j/f“ L®R3) < C ”f”L‘°(R3)’ fE ,V(R3), (32)
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For some necessary conditions see Example 3.3. To prove this result we
need the following lemma, whose proof closely follows that of Theorem 3
m [SS].

LeEMMA 3.2. Let n=3. Let S be as above and let dv( 7) = x() y]) dy, where
1€ Cy(R), and assume that there exists a constant A such that for all £ e R”

(B/0F)* &) < A(1 +|&]) D2 (3.3)

whenever |a| < 1. Let

Af(xy=sup |(f *v,)(x)| = sup

>0 t>0

J S o).

Then for every small 6 >0 and r with (n— 1)/n> 1/r>(n—1)/n—~56/2 there
exists a constant C= C(n, 0, r) independent of A such that

1-Zf | g S CA” 1F | e (34)
where b=(n—1)/n+ 4.

Proof. Write x=(x",x,) and x'=(x,..,x,_,). Fix a function
ne CyY(R) which equals | near the origin. Define an analytic family of
operators by

e”

’ = Ty — 3 nyl=—1 ’ o5 ’
(v =g | S 818, = J0EDI 1D e, =701 dz,

for fe #(R") (initially for Re = > 0, then analytically continued to all ze C).
Let

M f(x)=sup |(f*v. Nx)|

>0

We have

o e e, = RN D X)) i, = TN D) d

\’:(5)=1_(:/2) .

By the change of variables x, — x, + 7(|x'])

)

Cor sr el £ € * o & z
A =] e +>"'-*“wx(|x'|)dx'~mf e |x, |* 7 nlx,) dx,

=W&)- LS.

The first factor is bounded by A(1 + |&]) "~ V7?2 by the hypothesis (3.3).
And by analytic continuation {, is an entire function in - and {,=1, so
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My f= S Also | (&) < C(1+[&])Re=, if Re < is bounded (see p. 327 in
[S21). Hence it follows that

[9.(8)] < CA(1 + &)~ 12°
if Rez=—-—n/2+1+¢ for some &>0. Similar estimates hold for
(6/0&;) ¥.($). Hence by Proposition 1 in [SS]
~ ) n
WA SN pommy < CA LN 2mmys if Re:z> —§+1.

If Rez=1 then .Z f(x)< CM(|f|)(x), where M is the Hardy-Littlewood
maximal function, and hence

I Zf1l,<C, 111,

for 1 < p < oo. Interpolating the last two estimates (with p sufficiently close
to 1 and ¢ small enough) using Stein’s analytic interpolation theorem (see
[SWe]) we obtain

.71, <cA” | f],,

where r and b are as above. ||

Proof of Theorem 3.1. Fix a nonnegative function y,€ C;((2, 8)) such
that 37 xl2*0=1 for 1>0. Put y.(1)=yx,(2"1), and du,(5)=
D du( 7). Set

My f(x)y=sup [( [ * p; x)| =sup

t>0 >0

[ 1= 18) duyt)

Since du=Y7_, du,;, we have . #f{x)<3 7| . (f)x)

Note that du (F)=yx.([yD¥([y)dy=yx,(Iy])dy for k=3, and y, is
supported in the interval (a,, 4a,), where a, =2 ¥ *!. Therefore it follows
from Theorem 2.1 that

UB/BEY g ()] < Ap(1 +|E]) " (3.5)

if Jof <1, where

ay

A, <C—-—
T Y a/2)

for some constant C independent of k. (Note that |(d/dt)yx.{,=
I{d/idr) yoll; for all k.} It then follows from (3.5) and Lemma 3.2 that

| S e < CAL IS s (3.6)
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where b=3%+4 and r> 3 may be chosen such that br/f < 1. We also have
the trivial estimate

-t [ e < CaP 1Sl - (3.7)

It is easy to see that the function ¢ as defined above satisfies the
hypotheses of Lemma 1.1 if r is chosen close enough to 3. In fact the condi-
tions (1.3') and (1.4’) in Remark 1.2(a) are direct consequences of (2.1) (if
f>1and d>1) and (3.1), respectively. Now (5(14/2) < ®(u) < B(u), where
S(u)=up(u)=[Gu 9)]"? for large u. Hence @ ‘(u)x® Yu)=
[G Y uYP)] " for large u. Put Gs(t)=1t*""'y(t). Then G,;(1)"* =
G,;(1)=G(r) if t<1. Interpolating the estimates (3.6) and (3.7) using
Lemma 1.1 we obtain

A fllo < Caz® (CLAR /A1) 1o
SCai[G[Gs(a/)1") ] I fll o
SCai[G NG /2)] Y o < Cai” Y | fll o

Therefore

I #flle< 2 1t e<C Z 27KV fl < Clflls

k=1 k=1

ifd>1 1

ExampLE 3.3. Put y(0)=0 and define y by the given expressions for
sufficiently small ¢z > 0. Note that each y in (a)—(c) gives rise to a flat surface
S (with curvature vanishing to infinite order at the origin), since y'/(0) =0
forallj=1.

(a) y(t)=e "’ b>0. By Theorem 3.1 (3.2) holds for every d > L.
(Actually here we may take @(u)~[y(u~?)]#=exp(pu®?), or simply
®(u) ~ exp(u®) (for large u), since these functions define the same Orlicz
space.) This is sharp in the sense that (3.2) fails whenever d< 1. To see this
take f(x)=f(x;, x5, x3)=n(x) D "(|x5] ="' **), for small >0, where
ne CF(R?) satisfies 0 <n(x) <1 for all x, n(x)=11if |x|<}and n(x)=0if
|x|>1. Then [&(|f)dx<Clyxy'**dxy;<oo, so [fllg<oo. On the
other hand for |x| small with x;> 0,

AMf(x)=sup

>0

J =16 au(@)| > [ fiv=xs) dut)

> | @ (Lxap(yD] ') dy
{reR¥:|yl<c}
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>[ e

yl<c

ZC‘[ |yl Ydy =0
(¥l <e
ifd<i.

(b) y(z)=1/[exp---exp(1/t")], b>0. As in (a) the estimate (3.2)
holds if and only if d > }.

(c) y(t)y=e U8 b1 Note that this y is “less flat” (at
the origin) than the preceding two examples. We can show that (3.2)
actually holds with f=1 and d>3 And the example f(x)=
n(x) @7 ()x;] 7 [log{1/]x3])] ' **) shows that (3.2) fails if f<1 and
d<i.

(d) y(¢)=1", m=2. The conclusion that (3.2) holds when d >} may
be restated as [.#f|,<C|fll, for p>(m+1)/2. This range of p is not
sharp if m>2 (see [NSW]). For best known results to date for finite type
hypersurfaces see [ NSW 1.
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