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a b s t r a c t

Aspect Oriented Programming can arbitrarily distort the semantics of programs. In
particular, weaving can invalidate crucial safety and liveness properties of the base
program. In this article, we identify categories of aspects that preserve some classes of
properties. Specialized aspect languages are then designed to ensure that aspects belong
to a specific category and, therefore, that woven programs will preserve the corresponding
properties.

Our categories of aspects, inspired by Katz’s, comprise observers, aborters, confiners
and weak intruders. Observers introduce new instructions and a new local state but they
do notmodify the base program’s state and control-flow. Aborters are observerswhichmay
also abort executions. Confiners only ensure that executions remain in the reachable states
of the base program. Weak intruders are confiners between two advice executions. These
categories (along with two others) are defined formally based on a language independent
abstract semantics framework. The classes of preserved properties are defined as subsets of
LTL for deterministic programs and CTL* for non-deterministic ones.We can formally prove
that, for any program, the weaving of any aspect in a category preserves any property in
the related class.

We present, for most aspect categories, a specialized aspect language which ensures
that any aspect written in that language belongs to the corresponding category. It can
be proved that these languages preserve the corresponding classes of properties by
construction. The aspect languages share the same expressive pointcut language and are
designed w.r.t. a common imperative base language.

Each category and language is illustrated by simple examples. The appendix provides
semantics and two instances of proofs: the proof of preservation of properties by a category
and the proof that all aspects written in a language belong to the corresponding category.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Aspect oriented programming (AOP) proposes to modularize concerns that crosscut the base program [1]. Typically, an
aspect selects join points in the program flow (using its pointcut) and inserts additional code (its advice). However, aspects
can in general distort the semantics of the base program. In AspectJ [2] for instance, an aspect can replace a method call by
an arbitrary Java code. In consequence, the programmermay have to inspect the woven program (or to debug its execution)
to understand its semantics.

In this article, we consider several categories of aspects that alter the semantics of the base program in a tightly controlled
manner. For each category of aspects Ax, we identify a corresponding class of properties ϕx that is preserved by weaving
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these aspects. In other words, let P be a program that satisfies a property ϕ ∈ ϕx, then weaving any aspect A ∈ Ax on P will
produce a program satisfying ϕ. Our categories of aspects, inspired by Katz’s [3], comprise observers, aborters, confiners and
weak intruders.

• Observers do not modify the base program’s state and control-flow. Advice may only modify the aspect’s local variables.
• Aborters are observers which may also abort executions. The program’s state is not modified but its control flow may be

terminated.
• Confinersmaymodify the state and control-flowbut ensure that states remain in the reachable states of the base program.
• Weak intruders may modify states and control-flow with no restriction within the advice code. However, the execution

of the base program code must involve only states already reachable by the unwoven program.

Typically, persistence, debugging, tracing, logging and profiling aspects are observers whereas aspects ensuring safety
properties such as security aspects are aborters. Some optimization aspects (whichmay use shortcuts to reach future states)
or fault-tolerance aspects (which roll-back to past states) may belong to the last two categories.

Observers, the less invasive category, insert advice that can only modify its own local variables. Intuitively, they should
preservemany properties but cautionmust be exercised. For example, properties involving the absence of unwanted events
(such as specific method calls) are often not preserved since the advice inserts new events. Liveness properties may also be
violated if the advice fails to terminate. Further, we must ensure that base programs are not reflective (i.e., cannot observe
their own behavior at runtime) otherwise the base program control-flow could be indirectly modified by themost harmless
looking advice. These examples should make it clear that such a taxonomy asks for a formal treatment.

We define the categories precisely based on a language independent abstract semantics framework. The classes of
properties are defined as subsets of LTL [4] for deterministic programs and CTL* [5] for non deterministic ones. We can
formally prove that, for any program, the weaving of any aspect in a category preserves any property in the related class.

To put these results into practice, we need to be able to determine whether an aspect belongs to a category. This
process can rely on static analyses (a posteriori approach) or on specialized aspect languages (a priori approach). The static
analysis approach does not require a change of programming habits but it is complex and, in essence, approximate. For
example, checking that an advice does not modify the variables of the base program may involve costly and incomplete
program analyses (e.g., alias analysis). We choose the a priori approach and present for each aspect category a restricted
aspect language which ensures that any aspect written in that language belongs to the corresponding category. Therefore,
these languages ensure that the corresponding properties are preserved by construction. For presentation purposes, we
use a simple imperative base language but more complex languages (e.g., Java) could be considered as well. Each aspect
language makes use of the same expressive pointcut language and is illustrated by simple aspects applied on imperative
base programs.

Section 2 introduces the formal framework used in the rest of the paper. It presents, in particular, our common aspect
semantics model (Section 2.1), the base and woven execution traces (Section 2.2), and the temporal logics used to define
classes of properties (Section 2.3).

We define in Section 3 the categories of aspects and their corresponding classes of temporal properties: observers
(Section 3.1.1), aborters (Section 3.1.2), confiners (Section 3.1.3) and weak intruders (Section 3.1.4). Non determinism
suggests two new categories of aspects: selectors (Section 3.2.1) and regulators (Section 3.2.1). Our presentation of aspect
categories concludes with a study of composition and interactions between the different kinds of aspects (Section 3.3).

Section 4 introduces an imperative (base and advice) language (Section 4.1), its associated pointcut language (Section 4.2)
and several aspect languages corresponding to observers (Section 4.3.1), aborters (Section 4.3.2) and confiners (Section 4.3.3)
for a deterministic setting, and selectors (Section 4.4.2) and regulators (Section 4.4.4) for a non deterministic extension of
the base language.

Section 5 reviews some related work and Section 6 discusses possible future research directions and concludes. The
Appendices provide the semantics of the base language and two examples of proofs: the preservation of properties by
observers and the proof that all aspects written in the observer language are indeed observers.

This article combines, revises and extends two conference papers presented in PEPM’08 [6] and SEFM’08 [7]. It is also
based on a French PhD thesis [8].

2. Framework

In order to prove that properties are preserved by weaving, we first have to define the semantics of base and woven
programs. We do so using a Common Aspect Semantics Base (CASB) for AOP [9]. That abstract framework applies to any
base and aspect languages as long as they can be equipped with a small step semantics. We define execution traces of base
and woven programs and we show how they are related. We then recall the main characteristics of linear and branching
temporal logic used to express properties of deterministic and non deterministic programs respectively.

2.1. The common aspect semantics base

The CASB relies on the small step semantics of the base language which is supposed to represent the semantics of
advice as well. That semantics is described through a binary relation →b on configurations (C,Σ)made of a program and
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a state:

• a program C is a sequence of basic instructions i terminated by •:

C ::= i : C | •

• a state Σ may contain environments (e.g., associating variables to values, procedure names to code, etc.), stacks
(e.g., evaluation stack), heaps (e.g., dynamically allocated memory), etc.

A single reduction step of the base language semantics is written

(i : C,Σ) →b (C ′,Σ ′)

Intuitively, i represents the current instruction and C the continuation. The component i : C can be seen as a control stack.
The operator ‘‘:’’ sequences the execution of instructions. The semantics of the base language used in Section 4.1 is expressed
along those lines (see Appendix B). The interested reader will also find in [9] the semantic description of a core Java language
(Featherweight Java with assignments) in that form.

In the following, woven configurations (C,Σ) are supposed to be made of the following components:

• C is the sequence of instructions of the woven program. We write ib for a base program instruction and ia for an advice
instruction. The instruction ϵ, which represents the final instruction of a program, is considered as an ib instruction;

• Σb is the part of the state Σ corresponding to the state of the base program (i.e., the variables, environment, heap,
accessed (i.e., read and written) by ib instructions and possibly by ia instructions);

• Σa is the part ofΣ that corresponds to the local state of aspects (i.e., the variables, environment, heap, etc.which cannot
be accessed by ib but only ia instructions);

• Σψ is the part ofΣ that represents aspects. It is a function that decides whether the current instruction should bewoven
and transforms the configuration accordingly.When a new instance of an aspect is created, bothΣa andΣψ aremodified.

Let (C,Σ) be awoven configuration thenΣ = Σb
∪Σa

∪Σψ . Reduction ofwoven programs has the following properties:

∀(C,Σ).(ib : C,Σ) →b (C ′,Σ ′) withΣ ′
= Σ ′b

∪Σa
∪Σψ

that is, the reduction of a base program instruction can only modify the state of the base program.
Advice is reduced using the same semantic relation:

∀(C,Σ).(ia : C,Σ) →b (C ′,Σ ′) withΣ ′
= Σ ′b

∪Σ ′a
∪Σψ

that is, the reduction of an advice instruction can, in general, modify both the state of the base program and the local state
of aspects.

The semantics of woven reduction is represented by the binary relation → defined by:

Reduce
(C,Σ) →b (C ′,Σ ′) w(C ′,Σ ′) = (C ′′,Σ ′′)

(C,Σ) → (C ′′,Σ ′′)

A reduction step → of the woven program first reduces the first instruction of the current configuration using →b, then
weaves the reduced configuration using the functionw. The weaving functionw is defined by two rules:

• either, the current instruction is not matched by the aspects (Σψ returns nil) andw returns the configuration unchanged

weave0
Σψ (C,Σ) = nil
w(C,Σ) = (C,Σ)

• or the current instruction is matched by the aspects andΣψ returns a new configuration (C ′,Σ ′)

weave1
Σψ (C,Σ) = (C ′,Σ ′) w(C ′,Σ ′) = (C ′′,Σ ′′)

w(C,Σ) = (C ′′,Σ ′′)

where
– C ′ is the new code in which an advice is inserted before, after or around the current instruction of C (see [9] for more

details);
– Σ ′

= Σb
∪Σ ′a

∪Σ ′ψ , withΣ ′ψ which may contain a new aspect instance andΣ ′a its corresponding new state.
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Note that weaving can be recursively applied on the code of a newly introduced advice. In some cases, we should prevent
some instructions to bematched. For example, an aspectmatching an instruction i and inserting a ‘‘before advice’’ adv should
not match i again just after executing adv. We use tagged instructions such as iwhich have exactly the same semantics as i
except that it is not subject to weaving. Formally

Tagged
(i : C,Σ) →b (C ′,Σ ′)

(i : C,Σ) → (C ′,Σ ′)

We assume that weaving only depends on the current instruction (not on the continuation). The interested reader will find
in [9] a detailed description of the CASB aswell as the semantics of commonaspectual features in that framework (e.g.,before,
after and around aspects, cflow pointcuts, aspects on exceptions, aspect deployment, aspect instantiation, etc.).

Since weaving is always performed after a →b reduction, it is not possible to weave the very first instruction. In some
cases, it might be useful to start the program by a before-advice. In order to allow such weaving, we introduce a skip-like
instruction start and we assume that initial configurations are of the form (start : C,Σ). The semantics of start is:

(start : C,Σ) →b (C,Σ)

So, a base program always starts by the reduction step

(start : C0,Σ0) →b (C0,Σ0)

whereas a woven execution starts by the reduction step

(start : C0,Σ0) → (C ′

0,Σ
′

0) withw(C0,Σ0) = (C ′

0,Σ
′

0)

which enables weaving of the very first instruction.

2.2. Base and woven execution traces

In the following, programs are represented by their execution traces. Terminating programs end by a final instruction ϵ
and final configurations are of the form (ϵ : •,Σ). For simplicity and regularity, we only consider infinite traces. In order to
do so, the final instruction ϵ is supposed to have the following reduction rule:

∀Σ .(ϵ : •,Σ) →b (ϵ : •,Σ)

This way, non-terminating and terminating programs will be both represented as infinite execution traces.
A base program execution trace, with (C0,Σ0) as initial configuration, will be denoted by B(C0,Σ0) (Definition 2.1).

Definition 2.1.
B(C0,Σ0) = (i1,Σ1) : (i2,Σ2) : . . .
with ∀(j ≥ 0).(ij : Cj,Σj) →b (ij+1 : Cj+1,Σj+1)

We write W(C0,Σ0) for the infinite woven execution trace (Definition 2.2).

Definition 2.2.
W(C0,Σ0) = (i1,Σ1) : (i2,Σ2) : . . .
with ∀(j ≥ 0).(ij : Cj,Σj) → (ij+1 : Cj+1,Σj+1)

Since traces are used to define properties which concern only states and current instructions, the continuation (the control
stack) does not appear in traces. Note that in both definitions, the initial instruction i0 (i.e., start) does not appear.

The semantics of non-deterministic programs is defined as sets of (infinite) execution traces. We abstract the base and
woven program executions as sets of infinite traces written B∗(C0,Σ0) (Definition 2.3) and W∗(C0,Σ0) (Definition 2.4).

Definition 2.3.

B∗(C0,Σ0) = {(i1,Σ1) : (i2,Σ2) : . . . | ∀(j ≥ 0).(ij : Cj,Σj) →b (ij+1 : Cj+1,Σj+1)}

Definition 2.4.

W∗(C0,Σ0) = {(i1,Σ1) : (i2,Σ2) : . . . | ∀(j ≥ 0).(ij : Cj,Σj) → (ij+1 : Cj+1,Σj+1)}

In the rest of the paper, if α is a trace then its ith element is denoted by αi and prefix, postfix and subtraces are written
as follows:

α→j = α1 : . . . : αj
αj→ = αj : αj+1 . . .
αi→j = αi : . . . : αj

with i > 0 and j > 0. The empty trace can be written α→0.



S. Djoko Djoko et al. / Science of Computer Programming 77 (2012) 393–422 397

The relation between the base andwoven execution traces is expressed using the functions projb and preserveb. Wewrite
TracesB , TracesW and Sequenceib to denote the sets of base program execution traces, woven execution traces and sequences
of base instructions respectively.

The function projb projects a base or woven trace on the sequence of the base instructions which have been
executed.

projb : TracesB ∪ TracesW → Sequenceib
projb((ib,Σ) : T ) = ib : (projb T )
projb((ia,Σ) : T ) = projb T

The predicate preserveb checks whether the advice instructions in a woven trace modifyΣb. Each ia instruction must leave
the state of the base program (Σb) unchanged.

preserveb : TracesW → bool
preserveb(α̃) = ∀(j ≥ 1). α̃j = (ia,Σj) ⇒ α̃j+1 = (i,Σj+1) ∧ Σb

j = Σb
j+1

These functions are used to define aspect categories.

2.3. Properties

Temporal logic permits to define a wide range of properties of program executions [4]. Security properties or more
generally, invariant, liveness or safety properties are naturally expressed in temporal logic.

Temporal properties are defined over execution traces. We start by defining the atomic propositions considered in this
article.Wedefine the syntax and semantics of LTL formulaew.r.t. our (base andwoven) execution traces.We review standard
classes of LTL properties and briefly discuss why these classes are not, in general, preserved by weaving. We conclude by
presenting along the same lines the branching temporal logic CTL∗ that we use to express properties of non-deterministic
programs.

2.3.1. Atomic propositions
In our context, an atomic proposition ap of LTL is either an atomic proposition sp on states Σ (e.g., x ≥ 0 which is true

when the variable x is positive is the current state), or an atomic proposition ep on instructions (e.g., foo which is truewhen
the current instruction is a call to method foo).

An atomic proposition ap is true at a step of a (base or woven) trace αj iff αj satisfies ap denoted by αj |= ap. This is
defined based on the two following auxiliary functions:

• The functionm :: Instruction×Ep → bool, where Instruction is the set of instructions and Ep the set of atomic propositions
on instructions, returns true if the proposition matches the current instruction. The functionm is overloaded in order to
take a trace step as parameter:

m :: Step × Ep → bool
m((i,Σ), ep) = m(i, ep)

• The function l :: StateB × Sp → bool, where StateB is the set of Σb and Sp the set of atomic propositions on Σb, returns
true if the proposition is satisfied by the state passed as parameter. The function l is overloaded in order to take a trace
step as parameter:

l :: Step × Sp → bool
l((i,Σ), sp) = l(Σb, sp)

Then, αj |= ap is defined as follows:

αj |= ep ⇔ m(αj, ep) = true
αj |= ¬ep ⇔ m(αj, ep) = false
αj |= sp ⇔ l(αj, sp) = true
αj |= ¬sp ⇔ l(αj, sp) = false

2.3.2. Semantics of LTL
We consider LTL formulae in positive normal form i.e., where negation occurs only on atomic propositions (Grammar

2.5). In ϕ, the operator ⃝ is read ‘‘next’’, U is read ‘‘until’’, and W is read ‘‘weak until’’.

Grammar 2.5.

ϕ ::= ap | ¬ap | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ⃝ ϕ | ϕ1 Uϕ2 | ϕ1 Wϕ2
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The semantics of an LTL formula is defined on a trace α as follows:
α |= ap ⇔ α1 |= ap
α |= ¬ap ⇔ α1 |= ¬ap
α |= ϕ1 ∨ ϕ2 ⇔ α |= ϕ1 ∨ α |= ϕ2
α |= ϕ1 ∧ ϕ2 ⇔ α |= ϕ1 ∧ α |= ϕ2
α |= ⃝ϕ ⇔ α2→ |= ϕ
α |= ϕ1 Uϕ2 ⇔ ∃(j ≥ 1).αj→ |= ϕ2 ∧ ∀(1 ≤ i < j).αi→ |= ϕ1
α |= ϕ1 Wϕ2 ⇔ ∀(j ≥ 1). αj→ |= ϕ1 ∨ α |= ϕ1 Uϕ2

The atomic proposition ap (resp. ¬ap) is true on α if ap is true (resp. false) on the first element of α; ϕ1 ∨ ϕ2 is true if ϕ1 is
true or ϕ2 is true; ϕ1 ∧ϕ2 is true if ϕ1 is true and ϕ2 is true; ⃝ϕ is true if ϕ is true on the trace immediately following; ϕ1 Uϕ2
is true if ϕ1 is true until ϕ2 becomes true; finally ϕ1 Wϕ2 is true if ϕ1 is always true or ϕ1 Uϕ2 is true.

For the sake of readability, derived operators can be defined:

• ♦ϕ = trueUϕ is read ‘‘eventually ϕ’’ i.e., in the future, there is a (postfix) trace that satisfies ϕ;
• �ϕ = ϕW false is read ‘‘always ϕ’’ i.e., all (postfix) traces in the trace satisfy ϕ.

2.3.3. Standard classes of temporal properties
Standard classes of temporal properties [10] comprise:

• liveness properties: ‘‘something (good) eventually happens’’. In LTL, liveness properties are often expressed as ♦ϕ .
Liveness properties can also be repeated to express fairness (i.e., ‘‘something eventually happens infinitely often’’). In
this case, they are of the form �♦ϕ or or �(ϕ1 ⇒ ♦ϕ2);

• safety properties: ‘‘something (bad) never happens’’. Safety properties are often expressed as �ϕ where ϕ has no future
operators;

• Invariant properties: ‘‘something always happens’’. They are of the form�ϕ where ϕ is composed of atomic propositions,
negations, disjunctions and conjunctions but no temporal operators. This defines a subset of safety properties which do
not relate to the history of the computation.

These classes are very expressive since any LTL property can be expressed as a conjunction of a safety and a liveness property.
In general, they are not preserved by aspect weaving. For instance, consider the liveness property ♦backup meaning that
the backup procedure is eventually called (i.e., ‘‘the state of the system is eventually saved’’). An around aspect replacing
calls to the function backup by different calls will violate the liveness property. Regarding safety properties, consider a base
program that never calls the function diskformat and therefore satisfies the property �¬diskformat. An aspect that
calls this function in its advice will violate the property.

Section 3 is devoted to identifying categories of aspects that preserve large classes of temporal properties.

2.3.4. Branching temporal logic CTL*
In the non-deterministic case, classes of properties are subsets of the branching temporal logic CTL* [5]. Grammar 2.6

defines the positive normal form of CTL* formulae.
Grammar 2.6.

θ ::= ap | ¬ap | θ1 ∨ θ2 | θ1 ∧ θ2 | ∃ω | ∀ω

ω ::= θ | ω1 ∨ ω2 | ω1 ∧ ω2 | ⃝ ω | ω1 Uω2 | ω1 Wω2

Whereas LTL specifies properties on an execution trace, CTL* specifies properties on a set of execution traces. CTL* extends
LTL with the logical quantifiers ∃ω (‘‘there exists traces satisfying ω’’) and ∀ω (‘‘all traces satisfy ω’’). It is strictly more
expressive than LTL. Any LTL property p for a trace α is equivalent to the CTL* formula ∀p for the set {α}. In Grammar 2.6, θ
represents properties on trace steps and ω properties on traces.

The semantics of CTL* is quite similar to the semantics of LTL defined above. The semantics of logical quantifiers is defined
as follows:

T , αj |= ∃ω ⇔ ∃(α ∈ T ).T , α |= ω
T , αj |= ∀ω ⇔ ∀(α ∈ T ).T , α |= ω

In these definitions, the environment T is the set of traces starting fromαj. In our context, T will be initially eitherB∗(C0,Σ0)
or W∗(C0,Σ0). A step αj satisfies ∃ω if there exists an execution α ∈ T (i.e., traces from αj) that satisfiesω. A step αj satisfies
∀ω if all execution traces α ∈ T satisfy ω. The derived operators ♦ and � are defined in CTL* in the same way as in LTL.

3. Aspect categories

Our aspect categories comprise observers, aborters, confiners and weak intruders starting from the least to the most
expressive/invasive. For each category Ax, we present a class of properties ϕx (a subset of LTL) which are preserved by
the weaving of any aspect of Ax. Non determinism brings two new categories: selectors and regulators. The classes of
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preserved properties are in this case subsets of CTL*.We conclude the section by studying the composition (and the potential
interaction) of aspects belonging of different categories.

3.1. Deterministic case

The four aspect categories observers (Ao), aborters (Aa), confiners (Ac) andweak intruders (Aw) are related by inclusion:

Ao ⊂ Aa ⊂ Ac ⊂ Aw

The observer category is the most restricted category; it is included in all the others. The weak intruder category is the
most expressive category; it includes all the others. For instance, an aborter is also a confiner and a weak intruder. The
corresponding classes of properties are also related by inclusion:

ϕo
⊃ ϕa

⊃ ϕc
⊃ ϕw

Not surprisingly, the most restricted category of aspects (Ao) preserves the largest class of properties (ϕo) and the inclusion
chain is in the opposite direction.

An important point to keep in mind is that our preservation proofs should stand for any program, any aspect of the
category and anyproperty of the class. Of course, for a specific programandaspectmanymorepropertiesmight bepreserved.
The advantage of this approach is when an aspect is shown to belong to a category, then we know a large class of properties
that will be preserved whatever the program is. Preservation is robust w.r.t. base program changes.

For these reasons, as already noted in [3], the classes of preserved properties cannot include the temporal operator ⃝.
Indeed, a trace satisfies ⃝ϕ only if the sequence immediately following satisfies ϕ. The weaving of even the most harmless
aspect (for example, an aspect inserting a no operation (nop) instruction) fails to preserve this kind of property. It suffices to
weave it just before ϕ becomes satisfied. Since all aspects introduce extra steps in the execution trace, no category of aspects
preserves ⃝-properties for all programs.

In the following, we explain our categories and classes using small examples of execution traces where only the relevant
satisfied properties are shown. For example:

x = 0 : x = 0 : (x = 1, print) : ϵ : ϵ : . . .

represents an execution trace where the first and the second steps satisfy x = 0 and the third step satisfies x = 1 (i.e., the
second instruction has changed the value of x) and it has print as its current instruction. This trace satisfies, for example, the
property (x = 0)W print .

3.1.1. Observers
An observer (Definition 3.1) does not modify the control-flow of the base program but only inserts advice instructions

ia. The woven and the base execution traces can be projected (using projb) onto the same sequence of base instructions. An
observer does not modify the state of the base program: advice instructions ia do not change the base state Σb. This is the
property checked by the predicate preserveb.

Definition 3.1.

∀(C,Σ). Σψ
∈ Ao ⇔ projb(α) = projb(α̃) ∧ preserveb(α̃)

with α = B(C,Σb) and α̃ = W(C,Σ)

Definition 3.1 states that observers may only modify execution traces by inserting new advice instructions (ia) and a new
local state (Σa). Note that this definition also implies that the advice terminates.

The class of properties ϕo preserved by observer aspects are defined by the Grammar 3.2.

Grammar 3.2.
ϕo

::= sp | ¬sp | ϕo
1 ∨ ϕo

2 | ϕo
1 ∧ ϕo

2 | ϕo
1 Uϕ

o
2 | ϕo

1 Wϕo
2 | trueUϕ′o

ϕ′o
::= ep | ¬ep | sp | ¬sp | ϕ′o

1 ∨ ϕ′o
2 | ϕ′o

1 ∧ ϕ′o
2 | ϕo

1 Uϕ
o
2 | ϕo

1 Wϕo
2 | trueUϕ′o

As in the previous section, the variables sp and ep refer to atomic propositions on the base state and instructions respectively.
The language ϕo is LTL without the ⃝ operator when atomic propositions are state propositions (sp). So, it can express all
safety, liveness and invariant properties (without ⃝) on base statesΣb.

The class is more restricted when the property involves atomic propositions on instructions (ep). These properties can
only occur as trueUϕ′o. This makes it possible to define liveness properties on instructions. Indeed, a liveness property ♦ϕ′o

can be rewritten as trueUϕ′o and a liveness fair property �♦ϕ′o can be rewritten as (trueUϕ′o)W false. On the other hand,
this language forbids safety properties on instructions. A safety property �¬ϕ is of the form (¬ϕ)W false which does not
belong to Grammar 3.2. Intuitively, safety properties on instructions forbid some sequences of instructions. An observer
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introduces sequences of instructions, so it may introduce a forbidden sequence of instructions in particular. For example,
the base program sequence

x = 0 : x = 0 : (x = 1, print) : ϵ : ϵ : . . .

satisfies (x = 0)U print and (x = 0)W print , but after the weaving of the advice instructionwrite just before print

x = 0 : x = 0 : (x = 1, write) : (x = 1, print) : ϵ : ϵ : . . .

both properties are not satisfied any more. Also, the property readW false (i.e., always read) is satisfied by the infinite trace
of read instructions

read : read : read : . . .

but after the weaving of the advicewrite after the first read

read : write : read : read : . . .

the property is not satisfied any more.
The Property 3.3 formally states that the weaving of an observer preserves all properties in ϕo which were satisfied by

the base program.

Property 3.3.

∀(C,Σ). Σψ
∈ Ao ⇒ ∀(p ∈ ϕo). α |= p ⇒ α̃ |= p

with α = B(C,Σb) and α̃ = W(C,Σ)

Proof. The proof is done by induction on the structure of the preserved properties. Actually, a more general property is
proven :

• the premises (Σψ
∈ Ao and α and α̃ starting from the same initial base configuration) are replaced by a condition on

traces stating that α̃ preserves base states and can be projected on α. This condition is easier to check when applying the
induction hypothesis.

• Since properties are defined by two mutually recursive non-terminals ϕo and ϕ′o, the property is extended to also cover
ϕ′o properties. Properties of ϕ′o appear only as ‘‘eventually’’ properties. We show that if a property is satisfied by a
subtrace αi→ then there exists a subtrace α̃j→ satisfying it.

The proof is described in detail in Appendix A. �

Persistence, debugging, tracing, logging and profiling aspects typically belong to the class of observers. Persistence
aspects which only store the states of the base program in a data base during its execution are clearly observers. Debugging
aspects printing variables of the base program or inserting breakpoints which pause execution are observers. However, a
debugger aspect allowing the user to interactively change the base program state would fail to be an observer. Tracing,
logging or profiling aspects usually only observe the execution of the base program and write information on this execution
(e.g., method calls, parameters values, etc.) in a file. An example of profiling aspects is runtime analysis aspects such as
intrusion detection aspects which observe the execution, detect suspicious behaviors and warn administrators.

In the documentation of AspectJ, there are many profiling aspects such as telecom/TimerLog, tracing/lib/
TraceMyClasses, tjp/GetInfo. . . In [11], Govidranj et al. present a tool named InfraRED. It is based on several observer
AspectJ aspects to monitor J2EE applications and to detect and analyze performance problems.

3.1.2. Aborters
An aborter (Definition 3.4) does not modify the state of the base program. As in the previous definition of observers, the

predicate preserveb holds for thewoven trace. However, an aborter canmodify the control-flowby terminating the execution
of the woven program. This is modeled by an ia instruction abortwhich reduces any configuration into the final one:

∀(C,Σ). (abort : C,Σ) →b (ϵ : •,Σ)

If abort is never executed, the projections of the base and woven traces are equal; the aborter behaves like an observer.
The projection of an aborted woven trace on ib is a prefix of the projection of the base program trace. After this point, all
instructions are equal to ϵ.

Definition 3.4.
∀(C,Σ).Σψ

∈ Aa ⇔ preserveb(α̃) ∧ (projb(α) = projb(α̃)
∨ ∃(i ≥ 0).∃(j ≥ i). projb(α→i) = projb(α̃→j) ∧ ∀(k > j).α̃k = (ϵ, _))

with α = B(C,Σb) and α̃ = W(C,Σ)

Note that this definition enforces the advice to terminate. Indeed, either the projected traces are equivalent (projb(α) =

projb(α̃)) which holds only if all advice terminates, either the advice aborts the woven execution (∃j.∀(k > j).α̃k = (ϵ, _)).
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Observers are included in the category of aborters. The set of properties preserved by aborters (Grammar 3.5) is a subset
of the set of properties preserved by observers (Grammar 3.2).
Grammar 3.5.

ϕa
::= sp | ¬sp | ϕa

1 ∨ ϕa
2 | ϕa

1 ∧ ϕa
2 | ϕa

1 Wϕa
2 | trueUϕ′a

ϕ′a
::= ¬ep | ϕ′a

∨ ϕa
| ϕ′a

1 ∧ ϕ′a
2 | trueUϕ′a

The language ϕa is LTL without U and ⃝ operators for atomic propositions on states (sp). This includes invariant and safety
properties on states.

Atomic propositions on instructions (ep) occur only under a negation and only as an ‘‘eventually’’ formula (i.e., in
trueUϕ′a). This language makes it possible to define liveness properties on ¬ep. For instance, the property trueU¬print
which is satisfied by the sequence

print : print : print : read : ϵ : . . .

is preserved by any aborter. An aborterwill either leave the read instruction or abort the execution; in both cases, the current
instruction will be eventually different from print (ϵ is not print). We assume here that ep cannot match ϵ; trueU¬ϵ would
not be preserved by an aborter stopping the program before the first instruction. Note that atomic propositions on states
and instructions can be mixed in an eventually formula. For example, the property trueU (¬print ∨ x = 0) is preserved: if
the execution is not aborted, the aspect behaved as an observer which preserves this kind of properties; if the execution is
aborted, the trace will eventually become ϵ : ϵ : . . . and satisfies ¬print . This explains why the rule for disjunction in ϕ′a is
not symmetric.

Many properties preserved by observer aspects are not preserved by aborters. Of course, this comes from their ability to
abort programs. For example, x = 0U x = 1 is satisfied by the following sequence

x = 0 : x = 0 : x = 1 : . . .

but if an aborter advice terminates the execution before x = 1 then the woven trace becomes

(x = 0, abort) : (x = 0, ϵ) : (x = 0, ϵ) : . . .

and the property x = 0U x = 1 is not satisfied anymore. On the other hand, properties of the form x = 0W x = 1 are
preserved.

The preservation of Grammar 3.5 properties by aborter aspects is formalized by Property 3.6.
Property 3.6.

∀(C,Σ). Σψ
∈ Aa ⇒ ∀(p ∈ ϕa). α |= p ⇒ α̃ |= p

with α = B(C,Σb) and α̃ = W(C,Σ)

Proof. The proof by induction is similar to the one for observers. The property is generalized as follows:

• the premises (Σψ
∈ Aa and α and α̃) are replaced by conditions on traces expressing that Σψ is either an observer

or the trace α̃ preserves base states and can be projected on a prefix of the base trace α (this prefix corresponds to the
execution until it aborts).

• Since the preserved properties are defined by twomutually recursive definitions, ϕa and ϕ′a, the property is extended to
cover both definitions.

We have to prove that either the aborter behaves as an observer and therefore verifies the general property, either thewoven
trace α̃ can be projected on a prefix of the base trace α and therefore satisfies the general property. The first implication has
been proven in the proof of Property 3.3. The second implication follows from the following facts:

• the properties of the form ϕa
1 Wϕa

2 are preserved even if the aspect aborts the execution. Indeed, the trace after the
execution of an abort is always of the form (ϵ,Σn) : (ϵ,Σn) : . . .. If the base execution satisfies ϕa

1 Wϕa
2 and the

aspect aborts the execution before the satisfaction of ϕa
2 , the property ϕa

1 remains satisfied by the repeating state and
then ϕa

1 Wϕa
2 is preserved. Of course, if the aspect aborts the execution after the satisfaction of ϕa

2 , then ϕ
a
1 Wϕa

2 is also
preserved;

• the ‘‘eventually’’ event properties of the form trueUϕ′a are preserved because if the aspect aborts the execution, the
woven trace will eventually be of the form (ϵ,Σn) : (ϵ,Σn) : . . . and no ep matches the empty instruction ϵ (i.e., ¬ep
will eventually be true). �

Examples of aborters are security aspects that detect forbidden states or sequences of instructions or aspects that
guarantee that a computation stops after a time-out. In general, an aspect which checks if a condition is violated by the
base program and throws an exception that halts execution without modifying the base state is an aborter. In [12], aspects
are local security policies which can be woven on untrusted applets. Aspects only update their own state but abort the
applet should it try to violate the policy. In [13], aspects are timed constraints which may terminate programs to guarantee
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availability of shared resources. In [11], Wampler presents a tool named Contract4J that takes invariants and generates
aspects enforcing user-defined contracts. An aspect observes the execution and aborts it as soon as a contract is violated.

3.1.3. Confiners
An aspect is a confiner (Definition 3.7) if the state of any configuration of the woven program is a reachable state from

the same initial configuration. In general, confiners can modify the control-flow and the state of the base program.
The set of reachable states from the configuration made of the program C and the stateΣb is denoted by Reachb(C,Σb)

with:

Reachb(C,Σb) = {Σb′
| (C,Σb)

∗
→b (C ′,Σb′

)}

Definition 3.7 formalizes the fact that the base state of any configuration in thewoven trace is reachable by the base program.

Definition 3.7.
∀(C,Σ).Σψ

∈ Ac ⇔ ∀(j ≥ 1). α̃j = (i,Σj) ∧ Σb
j ∈ Reachb(C,Σb)

with α̃ = W(C,Σ)

Observers and aborters are included in the category Ac of confiners. The set of properties preserved by confiners (Grammar
3.8) is a subset of the set of properties preserved by aborter aspects (Grammar 3.5).

Grammar 3.8.

ϕc
::= sp | ¬sp | ϕc

1 ∨ ϕc
2 | ϕc

1 ∧ ϕc
2 | ϕc

1 W false

The language ϕc is restricted to invariant properties (i.e., �ϕ or ϕW false) on states. Since confiner aspects can modify
the control flow of instructions without restriction, no properties involving atomic propositions on instructions in ϕc are
preserved. For the same reason, safety properties such as ϕc

1 Wϕc
2 are not preserved by confiners.

Confiners reach reachable states but in a different order than the base program. For example, the base program trace

x = 0 : x = 1 : x = 2 : ϵ : ϵ : . . .

satisfies the safety property x = 0W x = 1. However, after the weaving of a confiner that remains in Reachb, the woven
sequence can be

x = 0 : x = 2 : x = 0 : x = 1 : ϵ : . . .

which does not satisfy the safety property x = 0W x = 1.
The preservation of properties of Grammar 3.8 by confiners is formalized by Property 3.9.

Property 3.9.

∀(C,Σ). Σψ
∈ Ac ⇒ ∀(p ∈ ϕc). α |= p ⇒ α̃ |= p

with α = B(C,Σb) and α̃ = W(C,Σ)

Proof. Like the previous properties, the proof is done by induction on the structure of the preserved properties. Here, the
property does not have to be generalized because the class of properties is defined by a single recursive definition. Confiners
aspects ensure that the base state always remains in the reachable set Reachb(C,Σb). The base states remain in the set
Reachb(C,Σb) for the base trace α as well as for the woven trace α̃ . If the base program satisfies ‘‘always’’ properties on
states, the woven program preserves them. �

Examples of confiners are reset aspects that restore the initial state of the base program, fault-tolerance aspects that restore
a safe execution state from a previous checkpoint, or memo aspects that shortcut a computation (or an already performed
request) and return its cached result. In all cases, in order to always remain in the reachable states, the reset (roll-back or
caching) action must be considered as atomic. For example, a non-atomic roll-back is likely to create unreachable states
in the middle of the restoration. When the result is in the cache, a memo aspect is also likely to fail to change some
temporary variables that are used during the result original computation. In such cases, aspects are confiners only if we
restrict properties to a subset of the base program state. Without these restrictions, such aspects belong to the category of
weak intruders presented below.

3.1.4. Weak intruders
An aspect is a weak intruder (Definition 3.10) if states of configurations whose current instruction is an ib are always

reachable states. In otherwords, aweak intruder aspectmay produce unreachable states during advice execution but always
returns to reachable states when it returns to the base program. Confiners are special cases of the weak intruder aspect
category.

Definition 3.10 formalizes the fact that the base state of any configurationwith a current instruction ib in thewoven trace
is reachable by the base program.
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Definition 3.10.
∀(C,Σ).Σψ

∈ Aw ⇔ ∀(j ≥ 1). α̃j = (ib,Σj) ⇒ Σb
j ∈ Reachb(C,Σb)

with α = B(C,Σ) and α̃ = W(C,Σ)

Since a weak intruder can modify the control-flow and the state of the base program, it can violate invariants during the
execution of advice. There is no LTL property preserved for all weak intruders and programs. However, if the (weaving of)
weak intruder aspect terminates (Definition 3.11) then it preserves properties of the form ♦ϕc . That is, the woven program
eventually preserves invariant properties (i.e., after the last advice).

An aspect terminates not only if its advice terminates but also its weaving. Therefore, an execution woven with a
terminating aspect will eventually be made of base instructions only.
Definition 3.11.

∀(C,Σ).Σψ terminates ⇔ ∃(j ≥ 1).∀(k > j). α̃k = (ib,Σk)
with α = B(C,Σ) and α̃ = W(C,Σ)

For example, the base program trace

x = 0 : x = 1 : x = 0 : (ϵ, x = 1) : (ϵ, x = 1) : . . .

satisfies the ϕc property (x = 0 ∨ x = 1)W false. The woven sequence

x = 0 : x = 1 : x = 0 : x = 2 : (ϵ, x = 0) : (ϵ, x = 0) : . . .

violates the property when x = 2 (a possible state produced during the execution of an advice). However, the final
configuration (ϵ, x = 0) has a state (x = 0) reachable by the base program. So, (x = 0 ∨ x = 1)W false is eventually
satisfied (i.e., ♦((x = 0 ∨ x = 1)W false)).

Property 3.12 formalizes the fact that if the base program satisfies an invariant property p then thewoven executionwith
a terminating weak intruder aspect eventually satisfies p.
Property 3.12.

∀(C,Σ).Σψ
∈ Aw ∧ Σψ terminates ⇒ ∀(p ∈ ϕc). α |= p ⇒ α̃ |= ♦p

with α = B(C,Σ) and α̃ = W(C,Σ)

Proof. The proof is similar to the proof for confiners. Here, we assume in addition that the aspect terminates (i.e., the
weaving and advice executions terminate). Since weak intruders ensure that the base program state is in the reachable set
Reachb(C,Σb) when the aspect returns to the base program, if the aspect terminates then there exists a point from where
the base state of the woven execution becomes and remains in Reachb(C,Σb). Therefore, if the base program satisfies an
‘‘always’’ property on states then the woven program will eventually satisfy that ‘‘always’’ property. �

Fault tolerant aspects performing non atomic rollbacks are typical weak intruder aspects. Theymay produce unreachable
states during advice execution (i.e., the rollback) but eventually reach a previous safe state. Similarly, aspects performing
non atomic resets are weak intruders.

3.2. Non-deterministic case

Non-determinism brings two new aspect categories: selectors (A∗
s ) which select some executions among the set of

possible executions, and regulators (A∗
r ) which can select but also abort executions.

The categories of observers, aborters, selectors, regulators, confiners and weak intruders form a hierarchy

A∗
a

⊂
UUU

UUU
A∗

o

⊂iii
iii

⊂
UUU

UUU
A∗

r ⊂ A∗
c ⊂ A∗

w

A∗
s

⊂iii
iii

where aborters A∗
a and selectors A∗

s cannot be compared. Properties are defined using CTL* which permits to quantify
formulae over the set of execution traces. This logic is strictly more expressive than LTL.

The classes of properties θ o, θ a, θ s, θ r , θ c, θw preserved by the corresponding aspect categories are related by a dual
inclusion hierarchy. Each class of preserved properties in the non-deterministic case generalizes its deterministic version
(e.g., θ o strictly includes ϕo).

As in the deterministic case, an observer does notmodify the control-flow and the state of the base program. In particular,
thewoven and the base programhave the same set of traces of base instructions (i.e., after projection by projb). The examples
of aspects discussed before to illustrate the different categories remain valid in the non-deterministic case. For instance,
profiling (resp. security) aspects are also typical observer (resp. aborter) aspects for non-deterministic programs. In this
section, we do not (re)present all categories but focus instead on the two new categories (selectors and regulators) and their
corresponding classes of properties.
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3.2.1. Selectors
A selector does not modify the state of the base program. However, a selector can modify the control-flow of the base

programby selecting a subset of execution traces among the set of all possible execution traces. Obviously, this new category
of aspect only makes sense for non-deterministic programs since its effect is to suppress some non-deterministic choices.

A selector (Definition 3.13) cannot introduce new execution traces: for any trace in the set of woven executions, there
exists a trace in the set of base executions with the same sequence of base instructions (i.e., related by projb).

Definition 3.13.

∀(C,Σ).Σψ
∈ A∗

s ⇔ ∀(α̃ ∈ W∗(C,Σ)). ∃(α ∈ B∗(C,Σb)). projb(α̃) = projb(α) ∧ preserveb(α̃)

The properties defined by θ s in Grammar 3.14 are preserved by selectors.

Grammar 3.14.
θ s ::= sp | ¬sp | θ s1 ∨ θ s2 | θ s1 ∧ θ s2 | ∀ωs

ωs
::= θ s | ωs

1 ∨ ωs
2 | ωs

1 ∧ ωs
2 | ωs

1 Uω
s
2 | ωs

1 Wωs
2 | trueUω′s

ω′s
::= ep | ¬ep | θ s | ω′s

1 ∨ ω′s
2 | ω′s

1 ∧ ω′s
2 | ωs

1 Uω
s
2 | ωs

1 Wωs
2 | trueUω′s

Grammar 3.14 can be described as a generalization to CTL* of the class preserved by observers (i.e., ϕo). It does not
include the ∃ operator because an execution of the base program that satisfies a property ∃ω can be removed by a selector.
The preservation of θ s by selectors is expressed by the Property 3.15.

Property 3.15.

∀(C,Σ).Σψ
∈ A∗

s ⇒ ∀(p ∈ θ s).∀(α ∈ Γ ).Γ , α1 |= p ⇒ ∀(α̃ ∈ Γ̃ ).Γ̃ , α̃1 |= p
where Γ = B∗(C,Σb) and Γ̃ = W∗(C,Σ)

Proof. The proof is a generalization of the proof for observers for non-deterministic programswhere only ‘‘for all’’ properties
are preserved. The general property proved for observers is extended to the set of possibles base andwoven execution traces.
It also includes a new property since selectors properties are defined by three mutually recursive definitions θ s, ωs and ω′s:

• the premises (Σψ
∈ A∗

s and Γ and Γ̃ ) are replaced by a condition on traces stating that all possible woven traces α̃ can
be projected on base traces α and preserve base states;

• to prove that the initial state of the woven program preserve ∀ωs, all traces of the woven program have to satisfy ωs

properties if they are satisfied by traces of the base execution;
• like in the proof for observers, ω′s properties appear only as ‘‘eventually’’ properties. It is shown that if a property is

satisfied by a subtrace αi→ then there exists a subtrace α̃j→ satisfying it. �

Examples of selectors are scheduling aspects or refinement aspects that remove some non-determinism. The scheduling
aspects of [14] specify and enforce scheduling policies to networks of communicating processes. A scheduling aspect selects
a subset of desired execution traces out of the set of all possible interleavings. These aspects are typical selectors.

3.2.2. Regulators
Regulators are both aborters and selectors. A regulator (Definition 3.16) does not modify the state of the base program

(preserveb). However, it can modify the control-flow of the base program, either by aborting the program or by selecting a
subset of the execution traces. For any trace α̃ of the woven program executions:

• either there exists a trace α among the base executions that has the same base instructions as α̃ (i.e., the aspect does not
modify the control-flow of the base program);

• or there exists a prefix α→i in a base execution trace and a prefix α̃→j in the woven execution trace that have the same
base instructions and the rest of the woven trace has only final instructions ϵ.

Definition 3.16.

∀(C,Σ).Σψ
∈ A∗

r ⇔ ∀(α̃ ∈ W∗(C,Σ)).∃(α ∈ B∗(C,Σb)).
preserveb(α̃) ∧ (projb(α̃) = projb(α)

∨ ∃(i ≥ 0). ∃(j ≥ i).projb(α→i) = projb(α̃→j) ∧ ∀(k > j). α̃k = (ϵ, _))

Note that, this definition does not relate all base execution traces with a woven one, since regulator aspect can select out
base execution similarly to selector aspects.

The properties defined by θ r in Grammar 3.17 are preserved by regulator aspects.
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Grammar 3.17.
θ r ::= sp | ¬sp | θ r1 ∨ θ r2 | θ r1 ∧ θ r2 | ∀ωr

ωr
::= θ r | ωr

1 ∨ ωr
2 | ωr

1 ∧ ωr
2 | ωr

1 Wωr
2 | trueUω′r

ω′r
::= ¬ep | ω′r

∨ θ r | ω′r
1 ∧ ω′r

2 | trueUω′r
| ∀ω′r

Grammar 3.17 can be seen as the intersection of the class of properties preserved by selectors (i.e., θ s) and the class preserved
by aborters (i.e., θ a, the generalization of ϕa).

As before, the ∃ operator is excluded since a regulator aspect may remove execution traces from the set of all possible
traces. The state properties of the form ωr

1 Uω
r
2 are not preserved since the aspect may abort the program before ωr

2. As far
as instruction properties are concerned, only liveness properties involving ¬ep are preserved. For example, trueU¬ep is
preserved since if the aspect aborts the execution ¬epwill be satisfied after abortion (i.e.,when the configuration becomes
(ϵ : •,Σ)).

The preservation of θ r by regulative aspects is expressed by Property 3.18.
Property 3.18.

∀(C,Σ).Σψ
∈ A∗

r ⇒ ∀(p ∈ θ r).∀(α ∈ Γ ).Γ , α1 |= p ⇒ ∀(α̃ ∈ Γ̃ ).Γ̃ , α̃1 |= p
where Γ = B∗(C,Σb) and Γ̃ = W∗(C,Σ)

Proof. The proof is similar to the proof of selectors but each woven execution can be aborted as with aborters aspects. So,
the premises of the general property are replaced by a condition stating that any trace among the woven traces preserves
base states and can be projected on a base trace or a prefix of a base trace. The other properties do not change. All woven
traces, as in the proof of aborters aspects, preserve ‘‘weak until’’ properties and ‘‘eventually’’ event properties ¬ep. �

3.3. Interactions between aspects

For simplicity reasons, the aspect functionΣψ introduced in Section 2.1 does not distinguish between a single or several
aspects; it just inserts an advice at the appropriate place. We study in this section the issues raised by the composition of
several aspects.

In the following, wewrite A1; A2 for the composed aspectwhere A1 has precedencewhen bothmatch the same join point.
For example, the composition of two before aspects Σψ

= A1; A2 is such that when A1 and A2 match the same instruction
i then Σψ (i : C,Σ) = (a1 : a2 : i : C,Σ) with a1 (resp. a2) denoting the advice of A1 (resp. A2). The description of the
composition of around aspects requires a proceed stack to store the code to be executedwhen a proceed instruction is called.
For a formal treatment of aspect composition see [15].

Even if the framework of Section 2 is too abstract to represent explicitly aspect composition, we discuss informally two
issues:

• the composition of two aspects. In particular, knowing the categories of two aspects, can we determine the category of
their composition?

• the commutativity of weaving. In particular, are there categories of aspects ensuring that the weaving of two aspects can
be performed in any order ?

3.3.1. Composition
At first sight, the composition of two aspects A1 ∈ Ax and A2 ∈ Ay with Ax ⊆ Ay should belong to Ay. That is to say, the

category of A1; A2 should be the largest (less constrained) category of the two aspects. For instance, the composition of two
observers should be an observer, or the composition of an observer and an aborter should be an aborter. However, some
precautions should be taken.

First, we must assume that an aspect cannot modify the local state of another aspect. Observers and aborters, whose
advice must always return to the base program, require another constraint. Indeed, the composition of two observers A1
and A2 can produce a non-terminating aspect.

Consider, for example, the aspect

A1 : before foo(∗) nA1 := bar(nA1)

matching calls to foo and updating its local state using the function bar and the aspect A2

A2 : before bar(∗) nA2 := foo(nA2)

matching calls to bar and updating its local state using the function foo. Assuming that foo and bar are pure terminating
functions, both aspects are observers. But the weaving of A1; A2 loops as soon as a call to foo or bar is encountered; the
execution never returns to the base program. One should ensure that no cycle can occur in the composition of aspects. This
can be done by analyzing the aspects’ pointcuts and advice. A simpler but more constrained option could be to enforce that
aspects can only match base instructions.
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These constraints ensure that different observers/aborters are independent. Weaving two observers (resp. an observer
and an aborter or two aborters) A1; A2 can be seen as weaving a single observer (resp. aborter). Even if our framework is
too abstract to treat this issue rigorously, we believe that a composition of aspects should belong to the most expressive
category involved.

3.3.2. Commutativity
If two aspects never match the same join point then their weaving order is irrelevant. Shared join points has been

studied by many authors (e.g., [16–18], . . . ). In [19,20], we have proposed an analysis to determine whether two aspects
are independent i.e., never match the same join point.

When two aspectsmatch the same join point, theweaver usually relies on a precedence relation to ensure a deterministic
behavior. The question here is whether such precedence is still necessary with our restricted categories of aspects.

The answer depends on the definition of commutativity or equivalence between programs. If we consider trace
equivalence, then as soon as two aspects match the same join point, their weaving never commutes. Executing A1 before A2
produces a different trace than the other way around.

A more relaxed definition of program equivalence is to enforce that the traces after projection by projb are identical and
the states of the base program and aspects are identical at each base instruction. This ensures that the base program and the
aspects compute the same results. Even with this relaxed notion, the weaving of two observers does not commute. Consider
for instance the following two observers

A1 : before foo(∗) n := n + 1

matching calls to foo and incrementing its local variable n and the aspect A2

A2 : before foo(∗) b := (n > 0)

matching calls to foo and setting its local variable b to true if n > 0. Then, assuming an initial state of A1 where n = 0, the
first call to foo will change the state of A2 to b = true or b = false depending on the precedence. This comes from the fact
that an aspect can read the local state of another one.

Consider now the observer

A1 : before (foo(β) ∧ β ≠ 0) foo(0)

matching calls to the (pure) function foowith a non null parameter and calling foo(0) and the observer

A2 : before foo(β) n :=β

matching all calls to foo and updating its local variable n to the value of the parameter. The sequence of advice executed
before the call foo(1)will be either n := 0; foo(0); n := 1 or
n := 1; n := 0; foo(0) depending on precedence. The local state of A2 varies depending on the weaving order. This comes
from the fact that the aspect A2 can match the advice of A1. Two conditions ensure that the weaving of two observers
commutes:

1. the observers cannot read the local state of each other;
2. the observers cannot match an instruction of each other.

With these restrictions, observers are semantically independent: their executions are unaffected by the weaving of another
observer and therefore weaving commutes. Similarly, an observer and a selector cannot interfere and their weaving
commutes. Still, the weaving of other categories does not commute. For example, weaving an aborter before an observer
may prevent the observer to execute its advice compared to the other weaving order. The observer’s final local state will
differ depending on which is woven first.

Another even more relaxed definition of equivalence is to enforce that traces after projection on base instructions and
base states are identical. This ensures that the effect of aspects on the base program are equivalent regardless of theweaving
order. With this definition, two observers commute since, even if they may influence each other, they cannot change the
base program’s control flow and state. In general, the weaving of an observer and aborter does not commute. For example,
an aborter may terminate the program depending on the observer’s local state. However, with the restrictions (1) and (2)
above, an observer commutes with any other aspect, an aborter commutes with any other aspect which does not change
the base state. Selectors do not commute since they are in competition to select a non deterministic choice and therefore
precedence matters. Confiners (or weakly invasive aspects) do not commute since they share (read and write) access to the
base state.

4. Specialized aspect languages

In this section, we present specialized aspects languages for our different classes of properties. All aspects defined in
these languages belong to one of our categories: observer, aborter, etc. Each language ensures the preservation of the
corresponding class of properties by construction. Proving that an aspect preserves a property boils down to simple syntactic
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checks ensuring that the aspect (resp. property) belongs to the corresponding language (resp. class). As pointed out in the
introduction, a more flexible approach would be allow general purpose aspect languages and design complex analyses to
verify that an aspect belongs to a specific category. We believe that our DSL-based approach is much more tractable.

We choose a simple, expressive enough and standard imperative language as our base language (Section 4.1). It is very
close to languages used in formal semantics books such as the IMP language in [21] or theWhile language in [22].We present
a generic pointcut language shared by our aspect languages in Section 4.2. The languages differ by themore or less restrictive
constraints on their advice definitions. We introduce in Section 4.3 the constraints corresponding to the observer, aborter
and confiner categories. Section 4.4 proposes aspect languages for the selector, regulator and weak intruder categories in a
non deterministic context. Finally, we discuss in Section 4.5 how more advanced features of base and aspect languages can
be taken into account.

4.1. Base language

As shown in Grammar 4.1, a base program P is a sequence D of declarations of global variables (var g) and procedures
(proc I , where I denotes procedure identifiers p) followed by a main statement S. Statements comprise usual commands
(assignment, procedure call, sequencing, conditional, while loop), the instruction abort that ends a program execution,
skip that does nothing and loop(A) S that repeats A times the statement S. Arithmetic and boolean expressions are
described by nonterminals A and B respectively. There are two distinguished kinds of variables V :

• global variables (g) which are declared in D;

• local variables (l) declared as parameters of procedures.

Both kinds of variables can be used in assignments and expressions.
Grammar 4.1.

P ::= D {S}
D ::= var g:=A | proc I(l1, . . . ln) S | D1;D2
S ::= V :=A | I(A1, . . . An) | S1;S2 | if(B) then S1 else S2 | while(B) S

abort | skip | loop(A) S
A ::= n | V | A1 + A2
B ::= true | A1=A2 | A1<A2 | B1&B2 | !B
V ::= g | l
I ::= p

We consider only integer variables to avoid typing issues. However, the language could be easily extended and equipped
with a type system. The operational semantics of this language is very similar to the While language of [22]. As required by
our framework (Section 2.1), its semantics is defined by a relation →b on configurations (C,Σb) where C is a sequence of
statements and Σb is made of an environment associating global variables and parameters to their values and of a return
stack used by procedure calls and returns. It is described in detail in Appendix B. More complex languages, such as Java,
could be described in the same framework. For example, dynamic instantiation (i.e., new) would maintain inΣ a counter of
fresh addresses and a list of pairs (address,tuple of fields) to represent the heap.

Example 4.2 illustrates the base language with a simple program which will be used throughout.
Example 4.2. The following program computes the fourth Fibonacci number in the variable result:

var result := 0;
proc fib(x)

if(x = 0) then result := result + 1 else
if(x = 1) then result := result + 1 else
fib(x − 1); fib(x − 2)

{fib(4)}

4.2. Generic pointcut language

Our aspect languages share the same pointcut language which is defined by Grammar 4.3.
Grammar 4.3.

P ::= Sp | if (Bp) | P1 ∨ P2 | P1 ∧ P2
Sp ::= V p

:=Ap
| Ip(Ap

1, . . . , A
p
n) | Sp1; S

p
2 | if(Bp) then Sp1 else Sp2 | while(Bp) Sp |

abort | skip | loop(Ap) Sp | βS | ¬Sp

Ap
::= n | V p

| Ap
1 + Ap

2 | βA | ¬Ap

Bp
::= true | Ap

1=Ap
2 | Ap

1<Ap
2 | Bp

1&B
p
2 | !B | βB | ¬Bp

V p
::= g | l | βV | ¬V p

Ip ::= p | βI | ¬Ip
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A pointcut is either a statement with pattern variables Sp (a static pointcut), or a predicate if (Bp) (a dynamic pointcut),
or a logical composition of pointcuts. A statement pattern Sp is a statement which enables, for each syntactic category
(expressions, variables, . . . ), pattern variables as well as negative patterns (e.g., ¬S). For example, Ap defines patterns on
arithmetic expressions with pattern variables (βA) (able to match any arithmetic expression) and negations. Ip defines
patterns of procedure identifiers. Matching of a pattern Sp w.r.t. a current instruction assigns values to pattern variables
βS, βA, . . . These values will be substituted for the occurrences of pattern variables occurring in dynamic pointcuts if (b) as
well as in advice. The semantics of patterns with negation (called anti-patterns) is described in detail in [23]. The anti-
pattern operator ¬ should not be confused with the boolean negation operator !. The pattern !(x = y)matches any boolean
expression that checks that x and y are different, while the anti-pattern ¬(x = y)matches any boolean expression but the
one that checks that x and y are equals.

Dynamic pointcuts if (b) should represent valid boolean expressions after substitution. To ensure this property, negation
of patterns (e.g., ¬Bp) are not allowed to occur within dynamic pointcuts. Also, variables occurring in dynamic pointcuts
(and advice) should also occur outside the scope of a negation in the static pointcut (to have a unique substitution).

Example 4.4. To provide some intuition, here are a few examples of patterns:

• x :=βA matches all assignments to x;
• (¬x):=βA matches all assignments but those to x;
• ¬(x := y)matches all statements but x := y;
• while(βB) βS matches all while statements;
• p(3,βA) ∧ if(βA= 0)matches all calls to pwith 3 and an arithmetic expression whose value is 0.

Our implementation of pointcuts relies on a preliminary transformation described in [15]. A pointcut p is transformed into
an equivalent pointcut of the form

(p1 ∧ if (b1)) ∨ · · · ∨ (pn ∧ if (bn))

where the static patterns pi are mutually exclusive. Each static pattern is matched to the current instruction using the
anti-pattern algorithm [23] written matchs until a match is found. The function matchs returns a substitution which is
applied to the corresponding dynamic pointcut and advice that will be evaluated relatively to the state. If no match exists,
the function matchs returns Fail. For instance, matchs(p(3,βA), p(3, 0)) returns [βA → 0] and matchs(¬βA, 0) returns
Fail.

4.3. Aspects for deterministic languages

In this section, we define three restricted aspect languages that ensure that all aspects defined in these languages are
observers, aborters and confiners respectively. The first and second languages are general purpose; they can be used to
describe any kind of observers or aborters. The third one is a confiner language dedicated to memoization.

4.3.1. Observer language
As seen in Section 3.1.1, an observer does not modify the control flow of the base program but only inserts advice

instructions (ia). We consider around aspects composed of an arbitrarily complex statement of ia instructions, followed by
the command proceed to execute the matched statement, followed by another arbitrarily complex statement of ia. When
the advice execution is over, the base program execution is resumed after the matched statement.

Note that our proceed instruction does not have parameters. Otherwise, observers would be able to modify the
parameters of procedures and arbitrarily change the state or the control-flow of the base program. Furthermore, the advice
should terminate, otherwise the base program execution is never resumed and its control flow is not preserved. We ensure
termination by disallowing while statements in advice, checking that there is no loop in the call graph of advice and
ensuring that the pointcut cannot match any statement of its own advice. In the following, we assume that these checks
are performed and that advice terminates. Another option could be to permit while-loops and recursion in advice andmake
the programmer responsible for ensuring termination.

The second condition an observer should obey is to not modify the state of the base program (i.e., ia instructions should
not change the stateΣb). In the aspect language, we distinguish the base program variables (that can be read by an advice)
from the aspect variables (that can be read andwritten by a ia instruction).

The semantics of proceed is expressed using a proceed stack (writtenΣP ) in the global state (see [15]). When an around
advice applies, thematched instruction is pushed onto that stack. Theproceed instruction pops and executes the instruction
on top on the proceed stack as follows:

Proceed
ΣP

= i : Σ
′P

(proceed : C, X ∪ΣP) → (i : C, X ∪Σ
′P)

The syntax of observers is defined by Grammar 4.5.
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Grammar 4.5.
Aspo ::= Do around P {So1; proceed; So2}
Do

::= var go
:= Ao

| proc Io(lo1, . . . , l
o
n) S

o
| Do

1;D
o
2

So ::= V o
:=Ao

| Io(Ao
1, . . . , A

o
n) | So1; S

o
2 | skip | if(Bo) then So1 else So2 |

loop(Ao) So
Ao

::= n | V ′
| Ao

1 + Ao
2 | βA

Bo
::= true | Ao

1=Ao
2 | Ao

1<Ao
2 | Bo

1&B
o
2 | !Bo

| βB

V o
::= go

| lo
V ′

::= V o
| g | βV

Io ::= po

An observer Aspo defines variables go and procedures po to form the local state of the aspect. Then, around associates a
pointcut with an advice which contains exactly one proceed. We have considered that an aspect has one pointcut and one
advice to simplify the presentation but this could be easily generalized to several pointcuts and advice. The declarations Do

must not contain any occurrence of pattern variables. Other statements So are similar to statement patterns Sp but without
negation ¬. Indeed, an advice must be a valid executable code after substitution of its pattern variables (βA, βB, βV). Note
that the statement abort is not allowed in advice since it would change the control flow of the base program. Similarly,
pattern variables βS for statements are forbidden since they could be used to execute assignments to base program variables
in the advice. Note that, assignment statements in advice can only modify variables of the aspect (V o). Of course, aspect and
base variables (V ′) can both be read. Finally, an advice can only call a procedure defined in the aspect (Io) since calling a base
program procedure could modify the base program state.

An aspect that counts calls to fib (Example 4.2) is defined in Example 4.6. This profiling aspect respects the grammar
Aspo and is therefore an observer.

Example 4.6. Profiling calls to fib

var n := 0 around (fib(βA)) n := n + 1

The semantics of weaving (Section 2.1) represents an aspect as a functionΣψ that takes the current configuration (C,Σ)
as a parameter and returns either a new woven configuration (C ′,Σ ′), or nil when the pointcut does not match. We define
the semantics of our aspect language in order to generate Σψ from an aspect definition as follows. The resulting function
takes the current configuration as a parameter andmatches the first instruction i. First, asmentioned in the previous section,
the pointcut p of the aspect is transformed into an exclusive disjunction of the form (p1 ∧ if (b1))∨ · · · ∨ (pn ∧ if (bn)). The
function tests if the current instruction i is matched by one of the static pointcuts pi. If i is not matched, the function returns
nil. Otherwise, the current instruction i is replaced by a code a and i is pushed on the proceed stackΣP . When it is executed,
the conditional a tests the dynamic part bi of the matched pointcut. If bi is satisfied the advice s is executed, otherwise
the execution proceeds with the original instruction i (the advice is not executed). The pattern variables in b and s are
substituted by their matched values using the substitution σ returned bymatchs.

[[around (p) s]] =

let (p1 ∧ if (b1)) ∨ · · · ∨ (pn ∧ if (bn)) = Transf (p) in
λ(i : C, X ∪ΣP). case matchs(p1, i) = σ1 → (ā1 : C, X ∪ ī : ΣP)

· · ·

matchs(pn, i) = σn → (ān : C, X ∪ ī : ΣP)
otherwise → nil

where ai = σi(if(bi) then s else proceed)

The instruction ī and the conditional āi are tagged (see Section 2.1) to prevent infinite weaving by matching them again
and again.

The semantics distinguishes evaluation of the static part of a pointcut from the evaluation of its dynamic part. This
faithfully models AspectJ-like languages where the dynamic part of a pointcut can depend on a previous advice execution.
Property 4.7 formalizes the fact that any aspect in Aspo is an observer.

Property 4.7. ∀a ∈ Aspo.[[a]] ∈ Ao

Proof. The two properties corresponding to the preservation of base states and projection of traces (preserveb and projb)
must be checked. The preservation is showed by checking that no advice instruction can modify the base state. That base
and woven traces can be projected on the same sequence of base instructions follows from the fact that advice of Aspo are
always of the form So1; proceed; So2 where So1 and So2 are terminating sequences of ia instructions. The proof is detailed in
Appendix C. �

If the language Aspo is expressive, it is not strictly speaking maximal. Indeed, let us consider an observer aspect that
must use a (terminating) while-loop in its advice. Our language cannot express it since it does not provide while, but only



410 S. Djoko Djoko et al. / Science of Computer Programming 77 (2012) 393–422

terminating loop. We believe that in practice most of these fixpoint-based aspects can be translated into equivalent loop-
based aspects in Aspo. However, termination is not decidable in general and such translation does not always exist. Note
that, all our aspect languages share this limitation (aspects that rely on a fixpoint algorithm must be reformulated).

4.3.2. Aborter language
An aborter is an observer which may abort the execution. The aborter language is therefore very similar to the observer

language. Its grammar Aspa is expressed exactly as Aspo except that the statement abort is allowed in Sa. The abort
instruction reduces any configuration to a final configuration (see Section 3.1.2).

Example 4.8 specifies an aspect counting the number of calls to the procedure fib (of the Example 4.2). If the number
of calls reaches 100.000 the program is aborted. This aspect can be used to enforce some computation quota. It is defined in
Aspa, so it is an aborter.
Example 4.8. Regulating calls to fib

var nbCalls := 0; around (fib(βA)) {
nbCalls := nbCalls + 1;
if(nbCalls = 100000) then abort else skip;
proceed;
skip }

Property 4.9 states that any aspect in Aspa is an aborter.
Property 4.9. ∀a ∈ Aspa.[[a]] ∈ Aa

Proof. The proof is similar to the proof for the observer language. The semantic of the instruction abort ensures
that the woven execution can be projected on a prefix of the base execution and terminates with the abstract empty
instruction ϵ. �

Similarly to observers, Aspa is an expressive general purpose aborter language. However, the restrictions imposed to
ensure termination prevent it to express all possible aborters.

4.3.3. A confiner language
Confiners can arbitrarily modify the control flow and the state of the base program as long as the base state remains in

the set of originally reachable states. A general purpose language ensuring this property is very hard to imagine. However,
two specialized confiner languages come to mind:

• optimization dedicated languages whose advice would jump directly to a future reachable state;

• fault-tolerant dedicated languages whose advice would roll-back to a previous reachable state.

Fault tolerance makes sense for a deterministic program when the runtime environment is non-deterministic (i.e., faults
can occur). In the next section, we discuss about an aspect language for fault tolerance for non-deterministic programs. We
propose here a specialized language dedicated to definingmemo aspects. A memo aspect is an optimizing aspect that caches
computation. It introducesmemoization in thewoven program:when a computation is performed for the first time, it stores
its arguments and results. When the same computation is performed again, it shortcuts it and directly returns its previously
stored result. Grammar 4.10 presents the syntax of this language reduced to a single construction.
Grammar 4.10.

Aspm ::= memo (Im(Ap
1, . . . , A

p
n) ∧ if (Bo))

Im ::= p | βI

Amemo aspect is a primitivememo applied to a pointcut whose static part denotes the procedure calls to be memoized,
anddynamic part is an arbitrary predicate. In order to implement sophisticated strategies ofmemoization amemoaspect can
be combined with an observer. For example, the base program could be first woven with an observer that collects statistics
regarding procedure calls (e.g., number of calls, depth of recursion,. . . .) in its variables. It is then woven with a memoization
aspect whose predicate accesses the variables holding statistics.

To give the semantics of a memoization aspect, we need to compute the lists of variables a procedure reads and writes.
We assume these two lists are computed by the functions read and write that visit the abstract syntax tree of the program
and collect variables. We can now define the semantics of a memo aspect as a program transformation T taking the aspect
and the declarations (D) of the base program:

T [[memo (p(a1, . . . , an) ∧ if (Bo))]]D =

var cache := empty
around (p(a1, . . . , an) ∧ if (Bo)) {
if contain(p, a1 : . . . : an, read[[D]]p)
then write[[D]]p := lookup(p, a1 : . . . : an, read[[D]]p)
else proceed;

store(p, a1 : . . . : an, read[[D]]p,write[[D]]p) }
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The transformation T defines an initially empty cache variable to store computation results. A cache entry associates a
triplet (p, a1 : . . . : an, read[[D]]p) (a procedure identifier, the list of its arguments and the list of the variables read) to the
list of values of its written variable write[[D]]p.

When the pointcut ismatched, the resulting substitution σ is applied to the advice and it fully instantiates the procedure,
its arguments, as well as the lists of read (read[[D]]p) and written (write[[D]]p) variables. When the advice is executed, if the
cache contains the result of the computation (contain(p, a1 : . . . : an, read[[D]]p)) then the written variables are assigned
with the result stored in the cache (lookup(p, a1 : . . . : an, read[[D]]p)), otherwise the computation is performed and the
cache is updated (store(p, a1 : . . . : an, read[[D]]p,write[[D]]p)). Actually, such an aspect is a confiner only if the updating
(write[[D]]p := lookup(...)) is considered as atomic. Otherwise the updating of several variables can produce temporary
unreachable states. In a concurrent context, updating should also be atomic.

Our aspect definitions rely on data structures (i.e.,cache implements a hash table, and lists to represent the values of read
and written variables) and returns values for procedures (e.g., contain, lookup). Our language could easily be extended
with such features, but we do not detail this here for the sake of conciseness.

Example 4.11 defines a memo aspect for the fib procedure defined in the Example 4.2. It is easy to check that the
procedure fib reads no variable and writes the single variable result.

Example 4.11. Memoizing fib

memo (fib(βA) ∧ if (βA > 10))

This aspect memoizes calls to fib only if its argument is greater than 10 (to amortize the cost of caching). The program
transformation T would generate the following lower level aspect:

var cache := empty
around (fib(βA) ∧ if (βA > 10)) {
if(contain(fib,[βA], []))
then result := lookup(fib,[βA], [])
else proceed; store(fib,[βA], [], [result]) }

Our version of fib (Example 4.2) computes many times the same calls and has exponential time complexity. The previous
memo aspect suffices to change its complexity to linear time.

Obviously, all confiner aspects cannot be expressed in Aspm which is dedicated solely formemo-aspects. For instance, the
fault-tolerant aspects, mentioned at the beginning of this section as confiners, would require another DSL to be expressed.

4.4. Aspects for non-deterministic languages

Non-deterministic (or concurrent) programs bring new interesting categories of aspects and classes of properties. In
particular, Section 3.2 presents the categories of selectors and regulators.

Herewe extend our base languagewith a non-deterministic construct andwe present three specialized aspect languages
taking into account this extension. The selector and regulator languages are general purpose languages that extend our
observer and aborter languages. The weak intruder language is dedicated to the exploration of the non deterministic
executions of a program with a rollback mechanism.

4.4.1. Extension of the base language
We extend the imperative base language of the Section 4.1 with the non-deterministic statement S1 or S2. This new

statement executes non-deterministically either S1 or S2. Its semantics is defined by the two transition rules:

OR1
(S1 or S2 : C,Σ) →b (S1 : C,Σ)

and
OR2

(S1 or S2 : C,Σ) →b (S2 : C,Σ)

Observers and aborters as described in Section 4.3 apply to the new base language without any further extension than
adding Sp1 or Sp2 to the pointcut language. Regarding our memo aspects, the functions read and write must be extended
in order to collect variables in both branches of non-deterministic or statements. As in the deterministic case, this static
analysis of read and written variables always terminates.

We now present two aspect languages with features specific to non-determinism: a selector and a weak intruder
language.

4.4.2. A selector language
Selectors are observers that can select some executions in the set of all possible executions. In order to define the language

Asps, we extend the advice language of observers by replacing the instruction proceed by the following non-terminal:

P s
::= proceedLeft | proceedRight | proceed | if(Bo) then P s

1 else P s
2
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When the non-deterministic instruction S1 or S2 is at the top of the proceed stack ΣP , the instruction proceedLeft
executes the left hand side S1 (Rule ProceedLeft), and proceedRight executes the right hand side S2 (Rule ProceedRight).
When a deterministic instruction is at the top of the proceed stack, these new instructions have the same semantics as
proceed.

ProceedLeft
(proceedLeft : C, X ∪ S1 or S2 : ΣP) → (S1 : C, X ∪ΣP)

ProceedRight
(proceedRight : C, X ∪ S1 or S2 : ΣP) → (S2 : C, X ∪ΣP)

The if statement allows to choose between these versions (left, right or standard) of proceed depending on a dynamic
test. An advice in the selector language still executes the original matched instruction (or one of its branches) exactly
once.

Example 4.12 defines a selector aspect that can be woven with non-deterministic base programs in order to make it fair.

Example 4.12. The following aspect balances the computation of serve for two users. It uses an integer variable u to count
the difference in number of serve for user1 and user2. The aspect ensures that the difference never exceeds 5.

var u := 0 : around(serve("User1") or serve("User2"))
{if(−5 < u < 5) then u−−; proceedLeft or u++; proceedRight
else if(u ≥ 5) then u−−; proceedLeft else u++; proceedRight}

That selector language Asps shares much the same characteristics and expressiveness as the observer language
Aspo.

4.4.3. A regulator language
The regulator language Aspr is the selector language Asps extended with the command abort.

Example 4.13. The following aspect balances the computation of serve for two users. It uses an integer variable u to count
the difference in number of serve for user1 and user2. The aspect ensures that the difference never exceeds 5.

var u := 0 : around(serve("User1") or serve("User2"))
{if(u < 10) then u++; {proceedLeft or proceedRight}
else abort}

4.4.4. A weak intruder language
In this section, we define a specialized weak-intruder language to manage failures. Obviously, many weak intruders

cannot be programmed in this dedicated language. The idea is to save the state at some non-deterministic choices (using a
proceedcommit instruction) so that in case of a failure of the chosen choice (detected by the fail pointcut) the program can
go back to the saved state and try the other choice (using a rollback instruction).

We first introduce an auxiliary observer language in order to save pending branches for the non-deterministic
or instruction. The Grammar 4.14 modifies the observers grammar (Grammar 4.5) by replacing patterns P by a
pattern whose static part is Sp1 or Sp2 and the instruction proceed is replaced by a new instruction proceedCommit.
The syntax of declarations and statements remain the same. This restricted observer language is dedicated to failure
management.

Grammar 4.14.

Aspo ::= Do around (Sp1 or Sp2) ∧ if (Bo) {So1; proceedCommit; So2}
Do

::= . . .
So ::= . . . | So1 or So2

The semantics of such aspects is defined as follows:

[[around sp1 or sp2 ∧ if (Bo) s]] = λ(i : C, X ∪ΣP
∪ΣS). if matchs(sp1 or sp2, i) = σ

then (a : C, X ∪ ī : ΣP
∪ΣS)

else nil
with a = σ(if(Bo) then s else proceed)

When the static pattern Sp1 or Sp2 is notmatched, nil is returned (i.e., nothing iswoven).When the static pattern ismatched
but the dynamic condition Bo is false, the command proceed resumes the original execution. Finally, when both the static
pattern and the dynamic condition are satisfied, the advice s is executed. The advice can perform some profiling (with its
advice parts So1 and So2) and always calls the command proceedCommit exactly once.
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This command transforms the matched instruction S1 or S2, which has been placed at the top of the proceed stack, into
another non-deterministic instruction (Rule ProceedCommit) that executes the command S1 or S2 and saves in the stack
ΣS the non selected branch by calling the function commit (Rule Commit).

ProceedCommit
(proceedCommit : C, X ∪ S1 or S2 : ΣP

∪ΣS)

→ ((commit(S2 : C, X ∪ΣP
∪ΣS); S1) or

(commit(S1 : C, X ∪ΣP
∪ΣS); S2) : C, X ∪ΣP

∪ΣS)

Commit
(commit(C ′,Σ ′) : C, X ∪ΣP

∪ΣS) → (C, X ∪ΣP
∪ (C ′,Σ ′) : ΣS)

When a failure occurs before the end of the advice, the state stored inΣS is used to rollback the program execution and
try the other alternative branch. Such aspects are defined by the Grammar 4.15, where the pointcut fail denotes error events.
These events, not formalized here, can be exceptions, function calls, specific values of variables, invariant violations, etc.
Grammar 4.15.

Aspr ::= around fail rollback

The semantics of these aspects are defined as follows:

[[around fail rollback]] = λ(i : C, X ∪ΣP
∪ΣS). if matchs(fail, i) = σ

then (rollback : C, X ∪ΣP
∪ΣS)

else nil

The advice rollback executes the configuration at the top of ΣS (Rule Rollback). This configuration corresponds to the
state at the previous non-deterministic choice.

Rollback
(rollback : C, X ∪ΣP

∪ (C ′,Σ ′) : ΣS) → (C ′,Σ ′)

When an error ismatched andΣS is empty (i.e., there is nomore pending branch to try), it is considered as a global failure
and the command rollback ends the execution.

Fail
(rollback : C, X ∪ΣP

∪ ϵ) → (•, X ∪ΣP
∪ ϵ)

The command rollback can only execute saved branches, so the program remains in the set of accessible states of all
possible executions. Hence, such aspects are weak intruders. If the Rule Rollback is atomic, then the language Aspr is a
confiner language.

4.5. Base and aspect languages extensions

For simplicity, we have considered a small imperative base language. However, as long as a base language can be
described by a small step semantics along the lines of Section 2.1 it can be taken into account. For instance, extending
our base language with dynamic construction of objects would require to add a new statement V := new C(A1, . . . An). The
semantics should be extended with a heap of allocated objects and a counter to generate fresh references. More generally,
Java should not pose any conceptual problem as illustrated by our treatment of Featherweight Java with assignments in [9].

Our aspect languages can be seen as subsets of AspectJ (for instance, observers advice executes exactly once proceed).
The generic pointcut language can easily be extended in order to take into account new constructions of the base language
(e.g., V p

:= new Cp(Ap
1, . . . , A

p
n)). New constructions (e.g., new) can also be added to the advice languages. However, since

each advice language is tailor-made to constrain appropriately the effects of aspects (e.g., an observer advice must not be
able to modify the variables of the base program), any extension should preserve these constraints.

Another interesting extensions are inter-type declaration and dynamic instantiation:

• inter-type declaration introduces extra fields andmethods in the base program classes. This feature can be emulatedwith
dynamic hash tables to represent the associations (object reference, inter-type fields/methods). We should ensure that
the new fields and methods can only be accessed by advice instructions (which should be extended to enable lookups
in table. In the case of observers, new fields should be treated as local variables of aspects and new methods should be
defined in So. For aborters, new methods could be allowed to also abort the program. Inter-type declarations make no
sense in the context of our memo aspects (confiner) since the advice is automatically generated and does not access the
extra fields or methods;

• dynamic instantiation of aspects allows to create instances of aspects each time a class is instantiated. This feature can
also be emulated with dynamic hash tables to represent the associations (object reference, aspect instance fields). The
advice languages should also be extended with table lookup abilities.
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We believe that such extensions should preserve the constraints and properties of the advice languages although this
should be carefully done and formally proved.

Of course, extensions beyond Java and AspectJ can also be considered. Actually we have already done so in Section 4.4.
Our base language was extended with a non-deterministic statement and our pointcut and advice languages equipped with
new features to deal with it.

5. Related work

The starting point of our study is seminal work by Katz [3] that introduces the categories spectative aspects
(corresponding to observers), regulative aspects (close to our aborters and regulators) and weakly invasive aspects (similar
to our weak intruders). For each category, Katz indicates which standard classes of properties (safety, liveness and
invariants) are preserved. However, that study is largely informal. Categories of aspects, classes of properties and proofs
are not formalized. Moreover, only the atomic propositions on states (sp) are treated. Katz states that spectative aspects
preserve safety properties, and that regulative aspects preserve safety but do not preserve liveness properties. Our study
confirms these claims when properties involve exclusively state propositions. The situation is different when proposition
on instructions (ep) are also considered. For instance, we have shown that observers and aborters do not preserve safety
properties on instructions, and that aborters preserve liveness properties involving only negation of instructions (¬ep).

Other works focus on a specific aspect category. Dantas and Walker [24] formally describe an aspect category named
harmless advice. This category corresponds to our aborters. The emphasis is on analyzing when an aspect is harmless. They
propose a type system to ensure that advice does not change the final values of the base programwhen the woven program
is not aborted. Krishnamurthi et al. [25] focus on aspects whose advice always returns to the join point in the original base
program. They propose a modular verification technique that generates conditions to verify advice in isolation for a given
property to be preserved by weaving. So, each aspect must be analyzed contrary to our approach that considers categories
of aspects. This work is extended by Goldman and Katz [26] for weakly invasive aspects (weak intruders). Furthermore, Katz
et al. [27] show how to perform modular verification of correctness for strongly invasive aspects (i.e., all aspects without
restrictions). The specification of an aspect have to describe assumptions and restrictions about the base system. These
restrictions are expressed in LTL and model checked with NuSMV. The (modular) analysis is performed once-for-all base
systems that satisfies the aspect hypotheses.

Rinard et al. [28] propose categories of aspects based on an informal classification of their interactions with the base
program. They distinguish two classes. The first one dealswith control-flowmodifications: an augmentation aspect does not
modify the control-flow, a narrowing aspect can skip the functionmatched by the pointcut, a replacement aspect can replace
the matched function by another one, a combination aspect combines the matched function and the advice to generate the
actual advice. The second class deals with state modifications: an independent aspect or the function it matches cannot
write a variable that is read or written by the other, an observation aspect can read a variable that the matched function
writes, an actuation aspect can write a variable that the matched function reads, an interference aspect can write a variable
that the matched method writes. These categories help to get a better idea of the potential impact of an aspect but the
preservation of properties is not considered. Augmentation-independent aspects and augmentation-observation aspects
resemble observers. Other categories can arbitrarily modify the semantics of the base program.

Clifton and Leavens [29] propose two categories: observers and assistants. As ours, observers cannot modify the
specification of the base program whereas assistants can. From their examples, assistants are similar to aborters. Although
they rely on Hoare-logic to explain the behavior of woven programs, the categories themselves are not formalized.

Barthe et al. [30] consider AOP in a proof carrying code context that accommodates an incremental development
process. They define a class of specification-preserving advice that support verification and modular reasoning. This class
is expressive enough to define many security aspects. It generalizes slightly the harmless advice of Dantas and Walker by
generating proof-obligations for execution paths that do not call proceed.

Oliveira et al. [31] extend Aldrich’s openmodules [32] with support for effects while allowingmodular reasoning and the
control of interference. The approach is formalized in Haskell and uses open recursion,monads and types. It enables to check
equivalence of advice by equational reasoning and to prove basic theorems about Dantas and Walker’s harmless advice.

Our work is based on an abstract (i.e., language independent) small step semantics of woven execution. There have been
many formalizations of aspect languages and weaving. For example, Wand et al. [33] propose a denotational semantics
for a subset of AspectJ, Bruns et al. [34] present a formal aspect calculus µABC, and Clifton and Leavens [35] define
an operational semantics for a core aspect-oriented imperative OO language. Aksit et al. [36] define a semantics using
graph-based rewriting rules. The rules are used to detect aspects interaction. When several aspects share a join point
and rewriting is not confluent then the aspects interact. Most of existing semantics for AOP consider object oriented base
programs [37–40]. Some others consider functional languages (call-by-value λ-calculus, ML, Scheme, . . . ) [41–43]. Our
framework, the CASB (Section 2.1), describes weaving as independently as possible from the base and aspect language.
The CASB could be applied tomany different types of programming languages (object-oriented, imperative, functional, logic,
assembly, . . . ) and aspect languages. We committed to a specific imperative base language only to illustrate the design of
specialized aspect languages.

There have also been many proposals of domain specific aspect languages. For example, Lopes [44] proposes two
specialized languages RIDL and COOL for remote data transfer and synchronization. Mendhekar et al. [45] present an aspect
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language which makes use of a memoization primitive to optimize image processing systems. Fradet and Ha [13] define an
aborter-like language to prevent the denials of service such as starvation caused by resource management. However, these
languages only address a specific application domain and the preservation of properties is not studied.

6. Conclusion and future work

In this article, we have used a language independent semantics framework to formally define several aspects categories:
observers, aborters, confiners and weak intruders. Observers do not modify the control-flow and state of the base program,
aborters may in addition abort executions, confiners may modify the control-flow but remain in the reachable states and
weak intruders may further leave the domain of reachable states during the execution of advice. For each category, we gave
a subset of LTL properties preserved by weaving for any base program and for any aspect in the related category.

The above categories have been completed and generalized for non-deterministic programs. Selectors can select a subset
of execution traces among the set of all possible traces. This category includes observers but is not comparable to aborters.
Regulators are selectors that may also abort the program. The corresponding class of preserved properties are expressed as
subsets of CTL* properties.

We provided examples to illustrate each category of aspects. Typically, persistence, debugging, tracing, logging and
profiling aspects are observers; aspects enforcing security policies are aborters; fault-tolerance or memo aspects are either
confiners or weak intruders depending on their implementation. Of course, many common aspects do not belong to our
categories. For example:

• Exception aspects (see e.g., [46]) can be observers if they only detect and log errors or aborters if they handle error
by aborting the program (e.g., contract enforcement is often implemented as aborters). However, error handling can also
involve returning a default value (e.g., initialization error) or retrying an action (without a proper roll-back) or terminating
only a portion of the trace. In these cases, completely new states can be reached and no temporal property holds in
general.

• Security aspects can be observers if they just log critical events (e.g., intrusion detection aspects) or aborters when they
enforce a security policy. When aspects are used to implement security mechanisms, such as access control rules, they
generally modify the base program semantics.

• Context passing and change monitoring (see e.g., [47,2]) are two classical examples of production aspects. They usually
change the base functionality.

Program transformations (optimizations) could be regarded as semantic-preserving aspects. Since they change the
algorithm (and therefore the execution trace) they do not belong to our categories. On one hand, they preserve properties
on the relevant part of the final state. On the other hand, they may violate important temporal (e.g., security) properties.
A special result-preserving category could be introduced. However, the class (grammar) of properties preserved would be
trivial (state properties on the final result). Further, itwould be hard to define a generic aspect language ensuring that aspects
belong to that category.

Besides the preservation of properties, our categories have other interesting features. For example, with a few additional
constraints, observers are completely independent from each other and can be composed and woven in any order. The
composition of aspects produces an aspect belonging to the most category involved.

We defined restricted aspect languages that ensure that aspects in a language belong to a specific category and therefore
preserve a class of property. In particular, we have proposed a general language for observers and aborters and a domain-
specific language for memo aspects (which belong to confiners). We also presented a selector aspect language to control
non determinism and a domain-specific language for rollback aspects (belonging to weak intruders). Using that language
approach, the programmer does not have to prove a posteriori that an aspect belongs to a category. The programmer uses
the specialized aspect language that ensures a priori that the aspect belongs to the category.

Our work suggests several research directions. First, our classes of properties should be shown to bemaximal. We should
prove that each class can express exactly all properties that may be preserved by the the corresponding category. The task
is not trivial since maximality is not a syntactic but a semantic criterion. For example, the property (ep ∨ ¬ep)Uϕ′o which
is preserved by observers is not a property of ϕo. However, it is semantically equivalent to trueUϕ′o which belongs to ϕo.

Our approach focuses on the preservation of classes of properties for any aspect of a category and for any program. It
could be interesting to study less general approaches to preservation by fixing either a property, an aspect or a program. For
example, the class of properties preserved by observers for a specific program is likely to be much larger than ϕo. Similarly,
a fixed observer is likely to preserve a larger class than ϕo even for any program. Of course, we can also fix two parameters
(e.g., the program and the aspect). The case where the program, the aspect and the property are fixed boils down to standard
static analysis or model checking of the woven program.

The expressiveness of our languages of aspects should be studied. For instance, it is likely that all observers (resp. aborters)
can be defined in the observer (resp. aborter) language. Of course, our memo language is not general: it does not enable the
definition of rollback aspects that can also be confiners. However, other specialized languages belonging to the confiner
family, like other dynamic optimizations and fault-tolerance aspects, could be studied. Finally, these languages could be
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implemented an integrated into an aspect programming workbench allowing to reason about aspect composition and the
preservation of properties.
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Appendix A. Proof for the observer category

This appendix presents in some details the proof of Property 3.3. The proofs of the other preservation properties are
similar. The proof makes use of two auxiliary functions traceb and rib.

The function traceb projects woven traces on their corresponding base trace. It removes steps with an advice instruction
(ia) and projects the states on their corresponding base program state (Σb).

traceb :: TracesW → TracesB
traceb(ib,Σ) : S = (ib,Σb) : traceb S
traceb(ia,Σ) : S = traceb S

The function rib α̃ i returns the rank of the ith base instruction in the woven trace α̃. If n advice instructions have been
executed before reaching the ith base instructions then rib α̃ i = i + n. We use the notation ĩ for rib α̃ i.

The proof of Property 3.3 relies on several lemmas. The first one states that the execution trace woven with an observer
can be projected using traceb on the original base execution trace.
Lemma A.1.

∀(C,Σ). Σψ
∈ Ao ⇒ traceb(α̃) = α

with α = B(C,Σb) and α̃ = W(C,Σ)

Proof. Using the functions projb and preserveb defined in Section 2.2, we have by definition

∀(C,Σ). Σψ
∈ Ao ⇔ projb(α) = projb(α̃) ∧ preserveb(α̃)

The lemma follows from the facts that (1) both traces start with the same base state, (2) projb ensures that both traces share
the same sequence of base instructions (and all advice terminate) and (3) preserveb(α̃) ensures that advice instructions
cannot change the base store. �

The next lemma states that any base and woven traces such that traceb(α̃) = α ∧ preserveb(α̃) share the same initial
base state (Σb

1 ).
Lemma A.2.

∀α : TracesB . ∀α̃ : TracesW . traceb(α̃) = α ∧ preserveb(α̃) ⇒ α1 = (∗,Σb
1 ) ∧ α̃1 = (∗,Σ1)

Proof. If the two traces start with a base instruction (ib) then the projection using traceb enforces that α̃1 = (ib,Σ1) and
α1 = (ib,Σb

1 ). Otherwise, the woven trace is of the form

(ia1 ,Σ1) : · · · : (iak ,Σk) : (ib,Σk+1) : · · ·

that is, α̃ starts with k advice instructions before executing the first base instruction ib. Let α1 = (ib,Σ), then the projection
using traceb ensures thatΣb

k+1 = Σ whereas preserveb(α̃) ensures that

Σb
1 = · · · = Σb

k = Σb
k+1

Therefore, α̃1 = (ia1 ,Σ1)withΣb
1 = Σ . �

The following lemma states that when a woven execution trace can be projected on a base execution trace:

• the jth step of the base trace corresponds to the j̃th step of the woven trace;
• any subtrace of the base execution corresponds to a subtrace of the woven execution.

Lemma A.3.
∀α : TracesB . ∀α̃ : TracesW .

traceb(α̃) = α ⇒ ∀(j ≥ 1). αj = (ib,Σb) ⇔ α̃j̃ = (ib,Σ)
∧ ∀(i ≥ 1). ∀(i − 1 < j ≤ ĩ). traceb(α̃j→) = αi→

The proof is trivial using the definition of rib and traceb.

The proof of Property 3.3 is done by structural induction on the definitions of the preserved LTL formulae. These
formulae are described by twomutually recursive definitionsϕo andϕ′o. We prove amore general propertywhich expresses
properties on both ϕo and ϕ′o formulae.
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Property A.4.

∀α : TracesB . ∀α̃ : TracesW .
traceb(α̃) = α ∧ preserveb(α̃) ⇒ ∀(p ∈ ϕo). α |= p ⇒ α̃ |= p (1)

∧ ∀(p′
∈ ϕ′o). ∀(j ≥ 1). αj→ |= p′

⇒ α̃j̃→ |= p′ (2)

When a woven trace can be projected on a base trace and advice instructions keep the base state unchanged then two
properties follow:

• (1) corresponds to Property 3.3;
• (2) states that for all formula p′

∈ ϕ′o: all subtraces satisfying p′ have their corresponding woven subtraces satisfying p′.

It is easy to check that this more general property implies Property 3.3. Indeed,

∀(C,Σ). Σψ
∈ Ao ⇒ projb(α) = projb(α̃) ∧ preserveb(α̃) by Definition 3.1

⇒ traceb(α̃) = α ∧ preserveb(α̃) by Lemma A.1
⇒ (1) ∧ (2) by Property A.4
⇒ ∀(p ∈ ϕo). α |= p ⇒ α̃ |= p

with α = B(C,Σb) and α̃ = W(C,Σ)

Proof. By structural induction on the formulae of ϕo and ϕ′o.
Base cases

• p = sp ∈ ϕo

α |= sp ⇒ α1 |= sp ⇔ l(Σ1, sp) = true with α1 = (i1,Σ1)

By Lemma A.2, the first state of the woven trace α̃1 = (i′1,Σ
′

1) is such thatΣ ′b
1 = Σ1. Since state properties (sp) depend

only on the base state, then

l(Σ1, sp) = true ⇒ l(Σ ′

1, sp) = true ⇒ α̃1 |= sp ⇒ α̃ |= sp

• p = ep ∈ ϕ′o

∀(j ≥ 1). αj→ |= ep ⇒ αj |= ep ⇔ m(αj, ep) = m(ij, ep) = true with αj = (ij,Σj)

By Lemma A.3 αj = (ij,Σj) ⇒ α̃j̃ = (ij,Σ)withΣb
= Σj

so, m(ij, ep) = m(α̃j̃, ep) = true ⇒ α̃j̃ |= ep ⇒ α̃j̃→ |= ep

• p = ¬sp ∈ ϕo and p = ¬ep, sp,¬sp ∈ ϕ′o are similar to the previous cases.

Induction

For any subformula δ of ϕo the induction hypothesis is α |= δ ⇒ α̃ |= δ and for any subformula δ of ϕ′o
∀(j ≥ 1). αj→ |=

δ ⇒ α̃j̃→ |= δ.
Note that, for all i ≥ 1, preserveb(α̃) ⇒ preserveb(α̃i→) so the preserveb condition is satisfied for all subtraces. To apply

the induction hypothesis we will just check that the corresponding subtraces satisfy the traceb condition.

• p = ϕo
1 ∧ ϕo

2 ∈ ϕo

α |= ϕo
1 ∧ ϕo

2 ⇒ α |= ϕo
1 ∧ α |= ϕo

2
⇒ α̃ |= ϕo

1 ∧ α̃ |= ϕo
2 by induction hypothesis

⇒ α̃ |= ϕo
1 ∧ ϕo

2

• Similarly for p = ϕo
1 ∨ ϕo

2 ∈ ϕo

• p = ϕo
1 Uϕ

o
2 ∈ ϕo

α |= ϕo
1 Uϕ

o
2 ⇒ ∃(j ≥ 1). αj→ |= ϕo

2 ∧ ∀(1 ≤ i < j). αi→ |= ϕo
1 by Definition of U

traceb(α̃) = α ⇒ traceb(α̃j−1+1→) = αj→ by Lemma A.3
⇒ α̃j−1+1→ |= ϕo

2 by induction hypothesis
⇒ ∃(k ≥ 1).α̃k→ |= ϕo

2 with k = j − 1 + 1

∀(1 ≤ l < j − 1 + 1). ∃(1 ≤ i < j). i − 1 < l ≤ ĩ
we have traceb(α̃l→) = αi→ by Lemma A.3
and since αi→ |= ϕo

1 for all i < j, α̃l→ |= ϕo
1 by the induction hypothesis

So, ∃(k ≥ 1). α̃k→ |= ϕo
2 ∧ ∀(1 ≤ l < k). α̃l→ |= ϕo

1 therefore α̃ |= ϕo
1 Uϕ

o
2 .
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• p = trueUϕ′o
∈ ϕo

α |= trueUϕ′o
⇒ ∃(j ≥ 1). αj→ |= ϕ′o

∧ ∀(1 ≤ i < j). αi→ |= true by Definition of U

traceb(α̃) = α ⇒ α̃j̃→ |= ϕ′o by the induction hypothesis
⇒ ∃(k ≥ 1).α̃k→ |= ϕ′o with k = j̃

trivially ∀(1 ≤ l < j̃). α̃l→ |= true
therefore α̃ |= trueUϕ′o

• Similarly for p = ϕo
1 Wϕo

2 ∈ ϕo

• p = ϕ′o
1 ∧ ϕ′o

2 ∈ ϕ′o

∀(j ≥ 1). αj→ |= ϕ′o
1 ∧ ϕ′o

2 ⇒ ∀(j ≥ 1). αj→ |= ϕ′o
1 ∧ ∀(j ≥ 1). αj→ |= ϕ′o

2
By induction hypothesis

⇒ ∀(j ≥ 1). α̃j̃→ |= ϕ′o
1 ∧ ∀(j ≥ 1). α̃j̃→ |= ϕ′o

2
⇒ ∀(j ≥ 1). α̃j̃→ |= ϕ′o

1 ∧ ϕ′o
2

• Similarly for p = ϕ′o
1 ∨ ϕ′o

2 ∈ ϕ′o

• p = ϕo
1 Uϕ

o
2 ∈ ϕ′o

∀(j ≥ 1). αj→ |= ϕo
1 Uϕ

o
2 ⇒ ∃(k ≥ j). αk→ |= ϕo

2
∧ ∀(j ≤ l < k). αl→ |= ϕo

1 by Definition of U

traceb(α̃) = α ⇒ traceb(α̃k−1+1→) = αk→ by Lemma A.3

αk→ |= ϕo
2 ⇒ αk−1+1→ |= ϕo

2 by the induction hypothesis
⇒ ∃(m ≥ j̃).α̃m→ |= ϕo

2 with m = k − 1 + 1

∀(j ≤ n < k − 1 + 1). ∃(j ≤ l < k). l − 1 < n ≤ l̃
so, traceb(α̃n→) = αl→ by Lemma A.3

and, since αl→ |= ϕo
1 for all such l, α̃n→ |= ϕo

1 by the induction hypothesis

Thus ∀(j ≥ 1). ∃(m ≥ j̃). α̃m→ |= ϕo
2 ∧ ∀(j̃ ≤ n < m). α̃n→ |= ϕo

1
and therefore α̃j̃→ |= ϕo

1 Uϕ
o
2

• p = trueUϕ′o
∈ ϕ′o

∀(j ≥ 1). αj→ |= trueUϕ′o
⇒ ∃(k ≥ j). αk→ |= ϕ′o

∧ ∀(j ≤ i < k). αi→ |= true by Definition of U

traceb(α̃) = α ⇒ α̃k̃→ |= ϕ′o by the induction hypothesis
and since trivially ∀(1 ≤ l < k̃). α̃l→ |= true and k̃ ≥ j̃

then ∀(j ≥ 1). α̃j̃→ |= trueUϕ′o

• Similarly for p = ϕo
1 Wϕo

2 ∈ ϕ′o �

Appendix B. Semantics of prog

This appendix provides the semantics of the base language introduced in Section 4.1. That simple imperative language
is very standard and so is its semantics. However, we present it to illustrate how the semantics of a realistic language can
respect the form imposed by the common semantic base (Section 2.1)

The semantics of expressions is given in a denotational style. The semantics of declarations (D) and statements (S) are
given by a small-step structural operational semantics.

B.1. Expressions

The semantics of arithmetic expressions is given by the function Ea that takes a syntactic expression A, the states of global
and local variables represented by the functionsΣb

g andΣb
l1 and returns an integer.

Ea[[n]]Σb
g Σ

b
l1 = N [[n]]

Ea[[g]]Σb
g Σ

b
l1 = Σb

g (g)
Ea[[l]]Σb

g Σ
b
l1 = Σb

l1(l)
Ea[[A1+A2]]Σ

b
g Σ

b
l1 = (Ea[[A1]]Σ

b
g Σ

b
l1)+ (Ea[[A2]]Σ

b
g Σ

b
l1)

The function N takes a syntactic integer and returns the corresponding mathematical integer in Z.
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The semantics of boolean expressions is given by a function Eb that takes an expression B, the functionsΣb
g andΣb

l1 (used
to evaluate the arithmetic expressions) and returns a boolean in Bool = {tt, ff}. This function is very similar to Ea and we
do not describe it here.

B.2. Declarations

The operational treatment of declarations produces two environments:

• Σb
g records the value of global variables and is read and written by assignments;

• Σb
proc is used by call statements to fetch the name of parameters and the body of the procedure.

DVar
Ea[[A]]Σb

g ⊥ = ν

(var g:=A,Σb
g ,Σ

b
proc) →d (Σ

b
g [g → ν],Σb

proc)

DProc
(proc I(l1, . . . ,ln) S,Σb

g ,Σ
b
proc) →d (Σ

b
g ,Σ

b
proc[I → ((l1, . . . , ln), S)])

DSeq1

(D1,Σ
b
g ,Σ

b
proc) →d (D′

1,Σ
′b
g ,Σ

′b
proc)

(D1;D2,Σ
b
g ,Σ

b
proc) →d (D′

1;D2,Σ
′b
g ,Σ

′b
proc)

DSeq2

(D1,Σ
b
g ,Σ

b
proc) →d (Σ

′b
g ,Σ

′b
proc)

(D1;D2,Σ
b
g ,Σ

b
proc) →d (D2,Σ

′b
g ,Σ

′b
proc)

B.3. Statements

The semantics of statements is given by the relation→b used inmanydefinitions andproofs of this article. A configuration
(C,Σ) is made of the code and a store made of two functions Σb

g and Σb
l representing the stores for global and local

(i.e., parameters) variables respectively. The initial Σb
g depends on the declarations of global variables and is computed

by the semantic relation (→d). The initial Σb
l is a stack with an empty context (i.e., associating ⊥ to any local variable).

Each time a procedure is called, a new context associating values to parameters is pushed to Σb
l . Each time a procedure

returns, a context is popped. The semantics also usesΣb
proc (computed by →d) for calls. This environment is left implicit in

configurations since it is only read and never modified.
In the following, the operator ‘‘:’’ is supposed associative and programs are supposed to in the form (i1 : i2 : . . . : •).

Writing an expression such as S : C may involve implicit applications of associativity rule to get the previous linear form.
The skip instruction leaves the store unchanged and the continuation is executed.

Skip
(skip : C, (Σb

g ,Σ
b
l )) →b (C, (Σb

g ,Σ
b
l ))

The abort instruction terminates the programs: the current instruction becomes the final instruction, the stack of local
variables is flushed, the global variables stay unchanged.

Abort
(abort : C, (Σb

g ,Σ
b
l )) →b (ϵ : •, (Σb

g ,⊥ : ϵ))

The final instruction just keeps looping leaving global variables unchanged. The stack of local variables must be empty since
all procedures have returned (or the stack has been flushed by an abort instruction.

Final
(ϵ : •, (Σb

g ,Σ
b
l )) →b (ϵ : •, (Σb

g ,⊥ : ϵ))

The assignment instruction is specified by two rules depending whether the assigned variable is local or global. The
assignment takes place inΣb

g or in the first contextΣb
l1 of the stackΣb

l .

Set1
Ea[[A]]Σb

g Σ
b
l1 = ν

(g:=A : C, (Σb
g ,Σ

b
l1 : Σb

ls)) →b (C, (Σb
g [g → ν],Σb

l1 : Σb
ls))
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Set2
Ea[[A]]Σb

g Σ
b
l1 = ν

(l:=A : C, (Σb
g ,Σ

b
l1 : Σb

ls)) →b (C, (Σb
g ∪Σb

l1[l → ν] : Σb
ls))

A procedure call involves fetching the formal parameters and body in the environment Σb
proc . The actual parameters are

evaluated and a new context (associating formal parameters to their value) is pushed onto the stack. The body of the
procedure followed by return is placed before the continuation C .

Call
Σb

proc(p) = ((l1, . . . , ln), S) Ea[[A1]]Σ
b
g Σ

b
l1 = ν1, . . . , Ea[[An]]Σ

b
g Σ

b
l1 = νn

(p(A1, . . . , An) : C, (Σb
g ,Σ

b
l1 : Σb

ls)) →b (S : return : C, (Σb
g , {l1 → ν1, . . . , ln → νn} : Σb

l1 : Σb
ls))

The special instruction return marks the end of a procedure evaluation. It pops the context before proceeding to the
continuation.

Return
(return : C, (Σb

g ,Σ
b
l1 : Σb

ls)) →b (C, (Σb
g ,Σ

b
ls))

The sequencing is formalized by linearizing the statements in the code component.

Seq
(S1; S2 : C, (Σb

g ,Σ
b
l )) →b (S1 : S2 : C, (Σb

g ,Σ
b
l ))

The rules for conditional are standard.

If1
Eb[[B]]Σb

g Σ
b
l1 = tt

(if(B) then S1 else S2 : C, (Σb
g ,Σ

b
l1 : Σb

ls)) →b (S1 : C, (Σb
g ,Σ

b
l1 : Σb

ls))

If2
Eb[[B]]Σb

g Σ
b
l1 = ff

(if(B) then S1 else S2 : C, (Σb
g ,Σ

b
l1 : Σb

ls)) →b (S2 : C, (Σb
g ,Σ

b
l1 : Σb

ls))

While loops are evaluated by duplicating their body until the condition is false.

While1
Eb[[B]]Σb

g Σ
b
l1 = tt

(while(B) S : C, (Σb
g ,Σ

b
l1 : Σb

ls)) →b (S : while(B) S : C, (Σb
g ,Σ

b
l1 : Σb

ls))

While2
Eb[[B]]Σb

g Σ
b
l1 = ff

(while(B) S : C, (Σb
g ,Σ

b
l1 : Σb

ls)) →b (C, (Σb
g ,Σ

b
l1 : Σb

ls))

Loops are evaluated by replicating their body the number of times specified by their arithmetic expression.

Loop1
Ea[[A]]Σb

g Σ
b
l1 = n ∧ n ≥ 1

(loop(A) S : C, (Σb
g ,Σ

b
l1 : Σb

ls)) →b (S : . . . : S  
n times

: C, (Σb
g ,Σ

b
l1 : Σb

ls))

If this number is less or equal to zero, it amounts to skip to the next instruction.

Loop2
Ea[[A]]Σb

g Σ
b
l1 ≤ 0

(loop(A) S : C, (Σb
g ,Σ

b
l1 : Σb

ls)) →b (C, (Σb
g ,Σ

b
l1 : Σb

ls))

Appendix C. Proof for the observer language

This appendix presents the proof of Property 4.7. It actually proves Property C.1 which implies directly Property 4.7 by
definition of Ao.

Property C.1.

∀(a ∈ Aspo).∀(C,Σ). Σψ
= [[a]] ⇒ projb(α) = projb(α̃) ∧ preserveb(α̃)

with α = B(C,Σb) and α̃ = W(C,Σ)

Property C.1 is proved using Lemmas C.2 and C.4 which show respectively that observers do not modify the base state
and the base control flow.

Lemma C.2.
∀(a ∈ Aspo).∀(C,Σ). Σψ

= [[a]] ⇒ preserveb(α̃)
with α̃ = W(C,Σ)
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Proof. It is easy to see (proof by cases) that all ia instructions of {So; proceed; So} modify only Σa after reduction by →.
Indeed, instructions of So write only aspects variables and the proceed stack ΣP (modified by proceed) is a subset of Σa

(ΣP
⊂ Σa). �

To prove Lemma C.4, we first prove Lemma C.3 which expresses that for any prefix of α, there exists a prefix of α̃ with
the same projection on base program instructions. Recall that, if α is a trace then its prefix α1 : . . . : αj is denoted by α→j.

Lemma C.3.
∀(a ∈ Aspo). ∀(C,Σ).Σψ

= [[a]] ⇒ ∀(i ≥ 1). ∃(j ≥ i). projb(α→i) = projb(α̃→j)

with α = B(C,Σb) and α̃ = W(C,Σ)

Proof. When an instruction ib is matched by an observer of Aspo, the instruction ib is pushed onto the proceed stack and
the advice, always of the form So1; proceed; So2 , is executed. Since the language ensures that advice are made only of ia
instructions and terminate (see Section 4.3.1), the woven reduction is of the form

(ia1 : . . . : proceed : So2 : C,Σ) → . . . → (proceed : C,Σ ′) → (ib : So2 : C,Σ")

where all instructions between the match of ib and its actual execution are of type ia. For any instruction ib of a base trace α,
the corresponding woven execution will consist in the execution of a finite sequence of ia instructions (the before advice)
followed by the execution of ib followed by the execution of a finite sequence of ia instruction (the after advice). This woven
execution can be projected on the instruction ib. So, the base control flow remains the same and the property follows. �

Lemma C.4.
∀(a ∈ Aspo). ∀(C,Σ).Σψ

= [[a]] ⇒ projb(α) = projb(α̃)
with α = B(C,Σb) and α̃ = W(C,Σ)

Proof. Using Lemma C.3 and the coinduction relation [48] below

projb(α) = projb(α̃) ⇔ ∀(k ≥ 1). approx k projb(α) = approx k projb(α̃)

where approx k s is a function returning the k-first elements of the sequence s. �
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