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Perhaps no tissue is so physically maligned by processing
for light/electron microscopy as is the stratum corneum
(SC). To further complicate matters, no tissue of such critical
importance for survival has been so intellectually maligned
as well. Because routine microscopic images of normal SC
depict loosely attached corneocytes (‘‘basket-weave pat-
tern’’), until the 1960s the barrier was thought to reside not
in the SC but rather in the outer stratum granulosum (Table
I). The key breakthroughs came from Albert Kligman’s
group, who found isolated SC to be not friable but instead
extremely durable (Christophers and Kligman, 1964), and
from the work of Irvin Blank and Robert Scheuplein in Dr
Fitzpatrick’s department at Harvard, who further demon-
strated the highly impermeable nature of the SC (Blank,
1969; Scheuplein and Blank, 1971). Because Blank and
Scheuplein found the water-transport characteristics of
human SC to be similar to plastic wrap, the SC soon was
analogized to a sheet of plastic or ‘‘Saran’’ wrap (Table I).
According to this model, which still dominates the world
view of skin biophysicists and physical chemists, hydro-
philic and lipophilic molecules traverse a uniform SC
‘‘membrane’’ via a transcellular route without regard to
tissue architecture or metabolic activity (Blank, 1969).
Accordingly, percutaneous penetration is determined by
the chemical characteristics of the penetrating molecule, as
well as the diffusion path-length across the SC (¼ thickness
of the membrane), as embodied in Fick’s law (Scheuplein
and Blank, 1971). Although commonsense alone (e.g., the
hyperpermeability of the thickened SC of the palms and
soles to water) immediately invalidates the ‘‘plastic wrap’’
model, the seminal work of Blank and Scheuplein never-
theless established the importance of the SC as the critical
tissue determinant of the cutaneous permeability barrier.
Perhaps of greater importance, it spawned an entirely new
industry, devoted to transdermal drug delivery.

Developments after 1970 showed that the ‘‘plastic wrap’’
model did justice neither to the structural heterogeneity nor
to the metabolic activity of the SC. Frozen sections of SC
revealed the compression of corneocytes into exquisite
geometric stacks of interlocking tetracaidodecahedra (24-
sided cells) (Christophers and Kligman, 1964; Menton and
Eisen, 1971). Frozen sections and freeze-fracture images
revealed lipid stacks, localized to the intercellular spaces
(Elias and Friend, 1975), which were shown to derive from
the secreted contents of epidermal lamellar or Odland
bodies (George Odland first realized the novelty and
potential importance of this organelle, previously thought
to be an effete mitochondrion; Odland and Holbrook, 1981).

Lipid biochemistry, coupled with lipid histochemistry,
revealed a unique extracellular membrane system, devoid
of phospholipids, relying instead on an equimolar mixture of
ceramides, cholesterol, and nonessential free fatty acids to
form extracellular membranes (Gray and Yardley, 1975;
Elias et al, 1979), which are riveted into parallel structures
by linoleic-acid-bearing o-hydroxy-esterified ceramides
(acylceramides) (Wertz and Downing, 1987) � hence, the
still-current, two-compartment ‘‘bricks and mortar’’ model
of the SC (Table I).

Awareness that the lamellar body is enriched in hydro-
lytic enzymes initially led to speculation that this organelle
could be a modified lysosome, whose primary function lay
in desquamation (Wolff and Holubar, 1967; Wertz and
Downing, 1987). Indeed, that suspicion has been borne
out by recent studies, which have demonstrated a role for
lamellar-body-derived enzymes (and structural proteins) in
desquamation (see below). Yet, the lamellar body is clearly a
secretory organelle, not a lysosome (Elias et al, 1998). Even
more important than its role in desquamation is its role in the
delivery to the SC interstices of a family of lipid hydrolases,
which metabolize polar lipid precursors (cholesterol sulfate,
phospholipids, sphingomyelin, and glucosylceramides) into
their more nonpolar products, which together form the
extracellular lamellar membrane system (Elias and Menon,
1991). This critical sequence, together called ‘‘lipid proces-
sing’’, also provides powerful evidence that the SC is not
metabolically inert, i.e., the ‘‘living stratum corneum’’ (Table
I). Finally, recent studies have shown that localized changes
in acidity, i.e., within SC extracellular ‘‘microdomains’’,
regulate lipid processing leading to barrier formation (Fluhr
et al, 2001; Behne et al, 2002) (Fig 1). In fact, each SC
subcellular compartment, i.e., corneocyte cytosol, cornified
envelope, and extracellular domains, contains specific
types of metabolic activity (Table II). Yet amazingly, the SC
is still considered ‘‘dead’’ by regulatory agencies, such as
the Food and Drug Administration.

Not only lipids, but also specialized junctional structures,
corneodesmosomes, are segregated within SC intercellular
domains. These simplified junctions lack many of the
proteins of their counterparts in lower epidermal layers,
but they are enriched in desmoglein 1, desmocollin 1, and
a novel protein, corneodesmosin, which appears to coat
their external surfaces (Lundstrom et al, 1994). By making
corneodesmosomes initially resistant to proteolysis, this
protein mediates the initial cohesiveness of corneocytes in
the lower SC (Lundstrom et al, 1994). Corneodesmosomes
eventually succumb to the relentless attack of secreted
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proteases (primarily serine, but also aspartate and thiol
proteases), which degrade not only corneodesmosin but
also desmoglein 1 and desmocollin 1 (Horikoshi et al, 1999;
Eckholm et al, 2000). Many of the key participants in SC
cohesion/desquamation, including corneodesmosin, as well
as the serine protease SCCE and other proteases and
glycosidases, whose specific roles are less well under-
stood, are also lamellar body products. Like every known
structure in the SC, however, even the lacunae that result
from corneodesmosome degradation mediate a key func-
tion, i.e., they form an aqueous, expansile ‘‘pore’’ penetra-
tion pathway that bypasses both corneocytes and adjacent
lamellar bilayers (Menon and Elias, 1997).

Recent studies suggest that both the initial cohesion and
the ultimate desquamation of corneocytes from the SC
surface may be orchestrated by localized changes in pH,
which selectively activate different classes of extracellular
proteases in a pH-dependent fashion (Fig 2). The most
rigorously studied participants are the epidermis-specific
serine proteases, the SC chymotryptic (SCCE) and SC
trypic (SCTE) enzymes (Eckholm et al, 2000), which both
exhibit neutral-to-alkaline pH optima. Because an acidic pH
dominates in normal SC, we suspect that two other
protease family members, thiol (cysteine) proteases (cathe-
pspin L2) and an aspartate protease, cathepsin D (Cath D)

(Horikoshi et al, 1999; Bernard et al, 2003), mediate
desquamation in the outer layers of normal SC, whereas
SCCE/SCTE could initiate corneodesmosome degradation
in the lower layers of normal SC, and in diseased SC where
a neutral pH predominates at all levels (Fig 2). Thus,
permeability barrier homeostasis and cohesion/desquama-
tion are both exquisitely self-regulated and pH-dependent
processes that localize to the SC interstices.

Meanwhile, the SC cytosol is also far from inert. A
cascade of hydrolytic and deiminating enzymes that localize
to the corneocyte cytosol have been linked to several key
SC functions, including SC hydration, UV filtration, and UV-
induced immunosuppression, favoring skin cancer devel-
opment, as well as possibly both antimicrobial activity and
cytokine activation (Fig 3). The filaggrin�histidine�urocanic
acid (UCA) pathway generates not only critical humectants
but also the Hþ donor, UCA, which could mediate one or
more functions shown in Figs 1 and 3 (Scott and Harding,
1986; Krien and Kermici, 2000). Importantly, the putative
aspartate protease (cathepsin) that initiates this cascade is
inversely regulated by changes in external humidity (Scott
and Harding, 1986). Thus, the capacity of the corneocyte to
hydrate above the stratum compactum is largely dependent
upon activation of this pathway in response to a reduced
external humidity (Fig 3). Yet, several other mechanisms,
e.g., glycine deimination to pyrrolidone carboxylic acid,
arginine deimination to citrulline by arginase, and glycerol
generation from sebaceous-gland-derived glycerol (Fluhr
et al, 2003), also contribute to hydration of the corneocyte
cytosol (Fig 3).

Table I. Evolving concepts of SC

Outdated 1. Disorganized; no functional significance
(‘‘basket-weave’’)

2. Homogeneous film (‘‘plastic wrap’’)

Current 3. Two-compartment organization (‘‘bricks and mortar’’)

4. Persistent metabolic activity (‘‘living stratum

corneum’’)

5. Homeostatic links to nucleated cell layers (barrier

requirements regulate metabolic processes in

underlying epidermis)

6. Stratum corneum as a biosensor (external humidity

alone regulates proteolysis of filaggrin; epidermal

DNA/lipid synthesis; and initiation of inflammation)

7. Pathophysiologic links to deeper skin layers (barrier

abrogation initiates inflammation)

Figure 1
Endogenous pathways of SC acidification: regulated functions.

Table II. Examples of metabolic activity in SC

Corneocyte
cytosol

1. Proteolysis of filaggrin to amino acids

2. Deimination of amino acids into humectants and
other bioactive molecules

3. Primary cytokine activation

Corneocyte
envelope

1. Progressive transglutaminase-mediated
cross-linking (increased rigidity)

2. Formation of corneocyte-bound lipid envelope
(ceramidation, deglucosylation of
o-hydroxyceramides)

Extracellular
matrix

1. Proteolysis of corneodesmosomes

2. Conversion of lamellar-body-derived, polar lipid
precursors into non-polar products

Figure2
Proposed pH-dependent role of different proteases in desquamation.
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The most current view of the SC depicts this tissue as an
exquisite biosensor (Table I). In response to barrier abroga-
tion, external injury, altered pH alone, and even extremes of
humidity, the SC elaborates a set of homeostatic responses
that rapidly normalize permeability barrier homeostasis in
normal skin (Elias et al, 1999). The rate of barrier recovery
after acute abrogations constitutes a type of stress test (the
Cutaneous ‘‘Treadmill’’ Exam), which was deployed first to
discern a sequence of metabolic processes, such as
increased lipid synthesis, lamellar body production/secre-
tion, DNA synthesis, and lipid processing, linked specifically
to maintenance of barrier function (Elias et al, 1999) (Fig 4).
Subsequently, the cutaneous stress test was also used to
identify underlying pathology in situations such as aged skin
(Ghadially et al, 1995), where basal function is normal (Fig
5). Finally, this dynamic approach has also proved useful in
the development and comparison of various ‘‘barrier repair’’
preparations (Mao-Qiang et al, 1995), and to identify
metabolic approaches that enhance transdermal drug
delivery (Elias et al, 2002) (Fig 4).

The ‘‘biosensor’’ concept implies the existence of
signaling mechanisms between the SC and the nucleated
cell layers, and recent studies have identified both extra-
cellular and intracellular processes that are stimulated by
barrier abrogation (Table III). One of the best-characterized
classes of extracellular signaling molecules are primary
cytokines, principally IL-1a and IL-1b, released in a non-
energy-dependent fashion from their preformed pools in

corneocytes subsequent to barrier abrogation (Wood et al,
1996), which then appear to regulate downstream pro-
cesses, such as keratinocyte proliferation and lipid synth-
esis (Elias et al, 1999). A second, unrelated class of
extracellular signals comprises alterations in calcium con-
centration in the outer epidermis, which regulate both
lamellar body secretion (Menon et al, 1994) and epidermal
differentiation (Elias et al, 2002). Two key intracellular
signaling mechanisms are (1) a family of transcription
factors, the class 1 and 2 families of nuclear hormone
receptors; and (2) the sterol element binding proteins. These
mechanisms regulate several specific steps in keratinocyte
protein and lipid synthesis (Table III), which together lead to
epidermal differentiation (Elias and Feingold, 2001).

The primary purpose of all these signaling events is to
stimulate metabolic events in the underlying epidermis that
normalize permeability barrier function, the principal func-
tion of the skin, without which life would not be possible in a
terrestrial environment. Although much effort has been
expended in elucidating the specific metabolic events that

Figure 3
Functions potentially impacted by filaggrin metabolism in SC.

Figure 4
Cutaneous stress test: applications.

Figure5
Cutaneous stress test reveals additional risk factors.

Table III. Signals of the repair response

Signal Regulated response
Pathogenic

signal

EXTRACELLULAR

Ions: Ca2þ , Kþ Lamellar body secretion;
keratinocyte differentiation

No

Cytokines: TNFa, IL-1a,
b, IL-1ra, GM-CSF,
IL-6, IL-8

DNA synthesis;
lipid synthesis (IL-1a)

Yes

Growth factors: NGF,
TGFb1,
amphiregulin

DNA synthesis Not known

INTRACELLULAR

Sterol regulatory
element
binding proteins

Cholesterol/fatty acid
synthesis; LDLr expression

No

Nuclear hormone
receptors

Epidermal differentiation;
epidermal proliferation;
cutaneous inflammation

No

xxxviii ELIAS THE JOURNAL OF INVESTIGATIVE DERMATOLOGY



restore barrier homeostasis, the signals that stimulate
homeostatic responses can, if sustained, initiate a ‘‘cytokine
cascade’’ that leads to inflammation and epidermal hyper-
plasia (Elias et al, 1999). Yet, although these cytokines are
readily released from the SC, e.g., in response to an
elevated pH, curiously their release alone does not lead to
inflammation (Hachem et al, in press). Thus, the down-
stream regulation of SC-initiated inflammation comprises
yet another insufficiently studied aspect of this tissue.

In summary, while the enzymatic processes that gen-
erate the mechanical and permeability barriers, as well as
SC cohesion/desquamation, have been the subject of
intense study, the regulation and localization of several
other key defensive functions of the SC, such as the
antimicrobial, antioxidant, and ultraviolet barriers, pathways
of antigen access, the links between primary cytokine
activation and inflammation, as well as the relative roles and
compartmentalization of SC hydration, remain largely
unexplored.
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