
J. Differential Equations 246 (2009) 4702–4730

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Pullback attractors for a semilinear heat equation
on time-varying domains ✩

Peter E. Kloeden a,∗, José Real b, Chunyou Sun c

a Institut für Mathematik, Johann Wolfgang Goethe-Universität, D-60054 Frankfurt am Main, Germany
b Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080 Sevilla, Spain
c School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 September 2008
Available online 13 December 2008

MSC:
35Q30
35K90
37L30

Keywords:
Semilinear heat equation
Time-varying domain
Nonautonomous dynamical system
Pullback attractor

The existence of a pullback attractor is established for the nonau-
tonomous dynamical system generated by the weak solutions
of a semilinear heat equation on time-varying domains with
homogeneous Dirichlet boundary conditions. It is assumed that
the spatial domains Ot in R

N are obtained from a bounded
base domain O by a C2-diffeomorphism, which is continuously
differentiable in the time variable, and are contained, in the past,
in a common bounded domain.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

A semilinear heat equation on a time-varying domain is intrinsically nonautonomous even if the
terms in the equation do not depend explicit on time. Investigations of its attractor thus require the
concept of a nonautonomous attractor, specifically, that of a pullback attractor [3–8,10,12]. In a recent
paper [13] Kloeden, Marín-Rubio and Real established the existence of a global pullback attractor for a
semilinear heat equation with a homogeneous Dirichlet boundary condition in the case that the spa-
tial domains Ot are bounded and increase with time. Much of the effort required there was to prove

✩ Partly supported by Ministerio de Educación y Ciencia (Spain) project MTM2005-01412, and Consejería de Innovación,
Ciencia y Empresa (Junta de Andalucía, Spain) under the Proyecto de Excelencia FQM-02468. Chunyou Sun was supported
by the DAAD and NSFC grant 10601021.

* Corresponding author.
E-mail addresses: kloeden@math.uni-frankfurt.de (P.E. Kloeden), jreal@us.es (J. Real), sunchy@lzu.edu.cn (C. Sun).
0022-0396/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2008.11.017

https://core.ac.uk/display/82567193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jde
mailto:kloeden@math.uni-frankfurt.de
mailto:jreal@us.es
mailto:sunchy@lzu.edu.cn
http://dx.doi.org/10.1016/j.jde.2008.11.017


P.E. Kloeden et al. / J. Differential Equations 246 (2009) 4702–4730 4703
the existence and uniqueness of a variational solution satisfying an energy equality. It built on the
extensive existence and regularity theory of partial differential equations on non-cylindrical domains,
especially with nested spatial domains, see for example [1,11,17,16,19] and the bibliography therein.

In the present paper we do not require the domains Ot to increase in time, but instead assume
they are obtained from a bounded base domain O by a C2-diffeomorphism, which is continuously
differentiable in the time variable, and are all contained, in the past, in a common bounded domain.
We follow the ideas and methods sketched in a paper of Límaco, Medeiros and Zuazua [15]. Here
much of our effort is also directed at appropriately formulating the problem and in proving the ex-
istence and uniqueness of strong and weak solutions in appropriate functions spaces as well as in
establishing energy inequalities. In particular, we need to define what we mean, for example, by the
continuity and differentiability of a function t �→ u(t) ∈ L2(Ot).

We present the basic equations and notation in Section 2 and then, in Section 3, consider in some
detail the appropriate function space setting and properties of functions under the time variable co-
ordinate transformation. A compactness result is also presented there. Strong and weak solutions are
considered in Sections 4 and 5, respectively, in particular their existence and uniqueness. In Section 6
we show that the weak solutions generate a process, that is a 2-parameter semi-group which defines
the nonautonomous dynamical system. This is shown to satisfy an asymptotic compactness condi-
tion in Section 7, which is then used to establish the existence of the pullback attractor. Finally, the
transformed equations are derived in Section 8 for a spatially linear domain transformation.

2. Equations and notation

Let O be a nonempty bounded open subset of R
N with C2 boundary ∂O, and r = r(y, t) a vector

function

r ∈ C1(O × R;R
N), (2.1)

such that

r(·, t) : O → Ot is a C2-diffeomorphism for all t ∈ R. (2.2)

We define

Q τ ,T :=
⋃

t∈(τ ,T )

Ot × {t} for any T > τ (2.3)

and denote

Q τ :=
⋃

t∈(τ ,+∞)

Ot × {t} ∀τ ∈ R,

Στ,T :=
⋃

t∈(τ ,T )

∂Ot × {t}, Στ :=
⋃

t∈(τ ,+∞)

∂Ot × {t} ∀τ < T .

For any T > τ , the set Q τ ,T is an open subset of R
N+1, with boundary

∂ Q τ ,T = Στ,T ∪ (
Oτ × {τ })∪ (

OT × {T }).
We will also assume that the function r̄ = r̄(x, t), where r̄(·, t) = r−1(·, t) denotes the inverse of

r(·, t), satisfies

r̄ ∈ C2,1(Q τ ,T ;R
N) for all τ < T , (2.4)

i.e., r̄, ∂ r̄
∂t , ∂ r̄

∂x and ∂2 r̄
∂x ∂x belong to C(Q τ ,T ;R

N ), for all 1 � i, j � N , for any τ < T .

i i j
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We consider the following initial boundary value problem for a semilinear parabolic equation with
homogeneous Dirichlet boundary condition,⎧⎪⎪⎨⎪⎪⎩

∂u

∂t
− �u + g(u) = f (t) in Q τ ,

u = 0 on Στ ,

u(τ , x) = uτ (x), x ∈ Oτ ,

(2.5)

and, for each T > τ , the auxiliary problem

⎧⎪⎪⎨⎪⎪⎩
∂u

∂t
− �u + g(u) = f (t) in Q τ ,T ,

u = 0 on Στ,T ,

u(τ , x) = uτ (x), x ∈ Oτ ,

(2.6)

where τ ∈ R, uτ : Oτ → R and f : Q τ → R are given, and g ∈ C1(R,R) is also a given function for
which there exist nonnegative constants α1, α2, β and l, and p � 2, such that

−β + α1|s|p � g(s)s � β + α2|s|p ∀s ∈ R (2.7)

and

g′(s) � −l ∀s ∈ R. (2.8)

For later observe that, by (2.7), there then exist nonnegative constants α̃1, α̃2, β̃ such that

−β̃ + α̃1|s|p � G(s) � β̃ + α̃2|s|p ∀s ∈ R, (2.9)

where

G(s) :=
s∫

0

g(r)dr.

3. Preliminaries

3.1. Functional spaces and preliminary lemmas

We consider a fixed finite time interval [τ , T ]. Let (Xt,‖ · ‖Xt ) (t ∈ [τ , T ]) be a family of Banach
spaces such that Xt ⊂ L1

loc(Ot) for all t ∈ [τ , T ]. For any 1 � q � ∞, we denote by Lq(τ , T ; Xt) the
vector space of all functions u ∈ L1

loc(Q τ ,T ) such that u(t) = u(·, t) ∈ Xt a.e. t ∈ (τ , T ), and the function
‖u(·)‖X· defined by t �→ ‖u(t)‖Xt , belongs to Lq(τ , T ).

By definition, we consider on Lq(τ , T ; Xt) the norm given by

‖u‖Lq(τ ,T ;Xt ) := ∥∥∥∥u(·)∥∥X·
∥∥

Lq(τ ,T )
.

For each u ∈ L1
loc(Q τ ,T ), we can extend u trivially to R

N × (τ , T ) by

û(x, t) =
{

u(x, t), (x, t) ∈ Ot × (τ , T ),

0, (x, t) ∈ (RN \ O ) × (τ , T ).
t
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Then, for any 1 � p,q � ∞, we have

u ∈ Lq(τ , T ; L p(Ot)
) �⇒ û ∈ Lq(τ , T ; L p(

R
N)),

and

u ∈ Lq(τ , T ; H1
0(Ot)

) �⇒ û ∈ Lq(τ , T ; H1
0

(
R

N)),
with

∂ û

∂xi
= ∂̂u

∂xi
∀1 � i � N. (3.1)

For any u ∈ L1
loc(Q τ ,T ), we will denote u′ = ut the derivative of u with respect to time t in the

sense of distributions in Q τ ,T , defined by

〈u′, φ〉 := −
T∫

τ

∫
Ot

φ′(x, t)u(x, t)dx dt for all functions φ ∈ C∞
c (Q τ ,T ),

where φ′ = ∂φ
∂t is the classical partial derivative.

We have the following result.

Lemma 3.1. If u ∈ L2(τ , T ; H1
0(Ot)) and u′ ∈ L2(τ , T ; L2(Ot)), then the trivial extension û belongs to

H1(RN × (τ , T )), satisfies (3.1), and its derivative with respect to time is given by

û′ = û′. (3.2)

Proof. Evidently, we must only prove (3.2). Observe that u ∈ L2(τ , T ; H1
0(Ot)) and u′ ∈

L2(τ , T ; L2(Ot)), means that u ∈ H1(Q τ ,T ). Applying integration by parts, and using that u(t) ∈
H1

0(Ot) a.e. t ∈ (τ , T ), for any function ϕ ∈ C1
c (RN × (τ , T )) we have∫

RN ×(τ ,T )

û(x, t)ϕ′(x, t)dx dt =
∫

Q τ ,T

u(x, t)ϕ′(x, t)dx dt

= −
∫

Q τ ,T

u′(x, t)ϕ(x, t)dx dt

= −
∫

RN ×(τ ,T )

û′(x, t)ϕ(x, t)dx dt,

and thus, (3.2) holds. �
Definition 3.2. We say that a function u ∈ L1

loc(Q τ ,T ) belongs to C([τ , T ]; L2(Ot)) if its trivial
extension û belongs to C([τ , T ]; L2(RN )) and we say that a sequence {um} converges to u in
C([τ , T ]; L2(Ot)) as m → ∞, if the sequence {ûm} converges to û in C([τ , T ]; L2(RN )) as m → ∞.

Definition 3.3. We say that a function u ∈ L1
loc(Q τ ,T ) belongs to C([τ , T ]; H1

0(Ot)) if its trivial
extension û belongs to C([τ , T ]; H1(RN )) and we say that a sequence {um} converges to u in
C([τ , T ]; H1

0(Ot)) as m → ∞, if the sequence {ûm} converges to û in C([τ , T ]; H1(RN )) as m → ∞.
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From now on, we will use (·,·)t and | · |t to denote the usual inner product and associated norm
in L2(Ot) or (L2(Ot))

N , indistinctly.
As a consequence of Definition 3.2 and Lemma 3.1, we have

Corollary 3.4. If u ∈ L2(τ , T ; H1
0(Ot)) and u′ ∈ L2(τ , T ; L2(Ot)), then u belongs to C([τ , T ]; L2(Ot)) and

satisfies the energy equality

∣∣u(t2)
∣∣2
t2

− ∣∣u(t1)
∣∣2
t1

= 2

t2∫
t1

(
u′(t), u(t)

)
t dt ∀τ � t1 � t2 � T . (3.3)

Proof. It is enough to observe that by Lemma 3.1, in particular û and û′ belong to L2(τ , T ; L2(RN )),
and as a consequence, û belongs to C([τ , T ]; L2(RN )), and by (3.2),

∣∣û(t2)
∣∣2

L2(RN )
− ∣∣û(t1)

∣∣2
L2(RN )

= 2

t2∫
t1

(
û′(t), û(t)

)
L2(RN )

dt ∀τ � t1 � t2 � T .

But this last equality is exactly (3.3). �
3.2. Coordinate transformations

Following [15], we consider a finite time interval [τ , T ], and set

v(y, t) = u
(
r(y, t), t

)
for y ∈ O, t ∈ [τ , T ], (3.4)

or, equivalently,

u(x, t) = v
(
r̄(x, t), t

)
for x ∈ Ot , t ∈ [τ , T ]. (3.5)

By the assumptions on r and r̄, it is immediate to obtain the following result.

Lemma 3.5. For any 1 � p,q � ∞, u ∈ Lq(τ , T ; L p(Ot)) ⇔ v ∈ Lq(τ , T ; L p(O)). Moreover, there exist two
positive constants C1(p,q) and C2(p,q) (which depend only on p, q, r and τ , T ) such that

C1(p,q)‖u‖Lq(τ ,T ;Lp(Ot )) � ‖v‖Lq(τ ,T ;Lp(O)) � C2(p,q)‖u‖Lq(τ ,T ;Lp(Ot )), (3.6)

for any u ∈ Lq(τ , T ; L p(Ot)).

On the other hand, by Proposition IX.6 in [2], one has that if for some t ∈ (τ , T ) the function
u(t) = u(·, t) belongs to H1(Ot), then the function v(·, t) = u(r(·, t), t) belongs to H1(O), and

∂v

∂ y j
(y, t) =

N∑
i=1

∂u

∂xi

(
r(y, t), t

)∂ri(y, t)

∂ y j
, (3.7)

and analogously, if for some t ∈ (τ , T ) the function v(t) = v(·, t) belongs to H1(O), then the function
u(·, t) = v(r̄(·, t), t) belongs to H1(Ot), and

∂u

∂xi
(x, t) =

N∑
j=1

∂v

∂ y j

(
r̄(x, t), t

)∂ r̄ j

∂xi
(x, t). (3.8)
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From (3.7), (3.8), the denseness of C1
c (Ot) in H1

0(Ot), the denseness of C1
c (O) in H1

0(O), and the
properties of r and r̄, one easily obtain the following result:

Lemma 3.6. u ∈ L2(τ , T ; H1
0(Ot)) ⇔ v ∈ L2(τ , T ; H1

0(O)). Moreover, there exist two positive constants C1
and C2 (which depend only on r and τ , T ) such that

C1‖u‖L2(τ ,T ;H1
0(Ot ))

� ‖v‖L2(τ ,T ;H1
0(O)) � C2‖u‖L2(τ ,T ;H1

0(Ot ))
, (3.9)

for any u ∈ L2(τ , T ; H1
0(Ot)).

Analogously, one has:

Lemma 3.7. u ∈ L2(τ , T ; H2(Ot)) ⇔ v ∈ L2(τ , T ; H2(O)). Moreover, there exist two positive constants C ′
1

and C ′
2 (which depend only on r and τ , T ) such that

C ′
1‖u‖L2(τ ,T ;H2(Ot ))

� ‖v‖L2(τ ,T ;H2(O)) � C ′
2‖u‖L2(τ ,T ;H2(Ot ))

, (3.10)

for any u ∈ L2(τ , T ; H2(Ot)).

3.3. Continuity

Now we establish the equivalence of the continuity of u and v .

Lemma 3.8. Under the assumptions on r, the function u belongs to C([τ , T ]; L2(Ot)) if and only if the func-
tion v given by (3.4) belongs to C([τ , T ]; L2(O)).

Proof. (a) Assume first that v belongs to C([τ , T ]; L2(O)). By definition, we must prove that the
trivial extension û belongs to C([τ , T ]; L2(RN )).

For any pair t0, t ∈ [τ , T ], we have∫
RN

∣∣û(x, t) − û(x, t0)
∣∣2 dx

=
∫

Ot0 ∩Ot

∣∣u(x, t) − u(x, t0)
∣∣2 dx +

∫
Ot0 \Ot

∣∣u(x, t0)
∣∣2 dx +

∫
Ot\Ot0

∣∣u(x, t)
∣∣2 dx. (3.11)

In the following we will estimate the right-hand terms one by one.
At first, observe that as a consequence of the uniform continuity of r in O × [τ , T ],

mes(Ot0 \ Ot) → 0 as t → t0. (3.12)

On the other hand, as v(y, t0) ∈ L2(O), we have that u(x, t0) = v(r̄(x, t0), t0) ∈ L2(Ot0 ), and there-
fore, by (3.12) we obtain ∫

Ot0 \Ot

∣∣u(x, t0)
∣∣2 dx → 0 as t → t0. (3.13)

Secondly, observe that by (3.12) and the properties of r̄ we have mes(r̄(Ot \ Ot0 , t)) → 0 as t → t0.
Thus, by the continuity of v , we have
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∫
Ot\Ot0

∣∣u(x, t)
∣∣2 dx

=
∫

r̄(Ot\Ot0 ,t)

∣∣v(y, t)
∣∣2 Jac(r, y, t)dy

� Cr

(∫
O

∣∣v(y, t) − v(y, t0)
∣∣2 dy +

∫
r̄(Ot\Ot0 ,t)

∣∣v(y, t0)
∣∣2 dy

)
→ 0 as t → t0, (3.14)

where we have denoted Jac(r, y, t) the absolute value of the determinant of the Jacobi matrix
(

∂ri
∂ y j

(y, t))N×N .

Finally, we have

∫
Ot0 ∩Ot

∣∣u(x, t) − u(x, t0)
∣∣2 dx

=
∫

r̄(Ot∩Ot0 ,t0)

∣∣u(r(y, t0), t
)− v(y, t0)

∣∣2 Jac(r, y, t0)dy

=
∫

r̄(Ot∩Ot0 ,t0)

∣∣v(r̄(r(y, t0), t
)
, t
)− v(y, t0)

∣∣2 Jac(r, y, t0)dy

� Cr

∫
r̄(Ot∩Ot0 ,t0)

(∣∣v(r̄(r(y, t0), t
)
, t
)− v

(
r̄
(
r(y, t0), t

)
, t0

)∣∣2 + ∣∣v(r̄(r(y, t0), t
)
, t0

)− v(y, t0)
∣∣2)dy.

Note that

∫
r̄(Ot∩Ot0 ,t0)

∣∣v(r̄(r(y, t0), t
)
, t
)− v

(
r̄
(
r(y, t0), t

)
, t0

)∣∣2 dy

�
∫
Ut

∣∣v(z, t) − v(z, t0)
∣∣2 Jac

(
f −1, z, t

)
dz

� Cr

∫
Ut

∣∣v(z, t) − v(z, t0)
∣∣2 dz → 0 as t → t0, (3.15)

where z = f (y) = r̄(r(y, t0), t), (O ⊃)Ut := r̄(Ot ∩ Ot0 , t0) and we used the continuity of v .
On the other hand, for any arbitrary small ε � 1, we have

r̄
(
r(y, t0), t

) → y uniformly for y ∈ r̄

( ⋂
s∈[t0−ε,t0+ε]

Os, t0

)
as t → t0,

(Ot0 ∩ Ot) \
⋂

s∈[t −ε,t +ε]
Os ⊂ Ot0 \

⋂
s∈[t −ε,t +ε]

Os,
0 0 0 0
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and (since r̄(·,·) is Lipschitz)

mes

(
r̄

(
Ot0 \

⋂
s∈[t0−ε,t0+ε]

Os, t0

))
� Cr mes

(
O \ r̄

( ⋂
s∈[t0−ε,t0+ε]

Os, t0

))
→ 0 as ε → 0,

therefore, as t ∈ [t0 − ε, t0 + ε], from∫
r̄(Ot∩Ot0 ,t0)

∣∣v(r̄(r(y, t0), t
)
, t0

)− v(y, t0)
∣∣2 dy

�
∫

r̄(
⋂

s∈[t0−ε,t0+ε] Os,t0)

∣∣v(r̄(r(y, t0), t
)
, t0

)− v(y, t0)
∣∣2 dy

+ 2
∫

r̄((Ot∩Ot0 )\⋂s∈[t0−ε,t0+ε] Os,t0)

(∣∣v(r̄(r(y, t0), t
)
, t0

)∣∣2 + ∣∣v(y, t0)
∣∣2)dy,

we obtain ∫
r̄(Ot∩Ot0 ,t0)

∣∣v(r̄(r(y, t0), t
)
, t0

)− v(y, t0)
∣∣2 dy → 0 as t → t0. (3.16)

Substituting (3.13)–(3.16) into (3.11), we obtain that û belongs to C([τ , T ]; L2(RN )).
(b) Conversely, assume that û belongs to C([τ , T ]; L2(RN )). We must prove that then v ∈

C([τ , T ]; L2(O)).
For any t0, t ∈ [τ , T ],∫

O

∣∣v(y, t) − v(y, t0)
∣∣2 dy =

∫
Ot0

∣∣v(r̄(x, t0), t
)− u(x, t0)

∣∣2 Jac(r̄, x, t0)dx

=
∫

Ot0

∣∣u(r(r̄(x, t0), t
)
, t
)− u(x, t0)

∣∣2 Jac(r̄, x, t0)dx

� Cr
(

I1(t) + I2(t)
)
,

here

I1(t) :=
∫

Ot0

∣∣u(r(r̄(x, t0), t
)
, t
)− û

(
r
(
r̄(x, t0), t

)
, t0

)∣∣2 dx

=
∫

Ot

∣∣u(z, t) − û(z, t0)
∣∣2 Jac

(
h−1, z, t

)
dz → 0 as t → t0, (3.17)

where z = h(x) = r(r̄(x, t0), t) : Ot0 �→ Ot and we used the continuity of û; and

I2(t) :=
∫

Ot

∣∣û(r(r̄(x, t0), t
)
, t0

)− u(x, t0)
∣∣2 dx
0
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=
∫

⋂
s∈[t0−ε,t0+ε] Os

∣∣û(r(r̄(x, t0), t
)
, t0

)− u(x, t0)
∣∣2 dx

+
∫

Ot0 \⋂s∈[t0−ε,t0+ε] Os

∣∣û(r(r̄(x, t0), t
)
, t0

)− u(x, t0)
∣∣2 dx.

By a similar argument as that for (3.16) we can get that

I2(t) → 0 as t → t0. (3.18)

The continuity of v follows from (3.17) and (3.18) immediately. �
Similarly using Proposition IX.18 in [2], from (3.7) and (3.8) we can also get the following result:

Lemma 3.9. Under the assumptions on r, the function u belongs to C([τ , T ]; H1
0(Ot)) if and only if the func-

tion v given by (3.4) belongs to C([τ , T ]; H1
0(O)).

3.4. A compactness result

From Lemma 3.1 we know that if u ∈ L2(τ , T ; H1
0(Ot)) and u′ ∈ L2(τ , T ; L2(Ot)), then u belongs

to H1(Q τ ,T ), and consequently, by Proposition IX.18 in [2] we deduce that the function v defined
by (3.4) belongs to H1(O × (τ , T )), and in particular

v ′(y, t) = u′(r(y, t), t
)+ [

(∇xu)
(
r(y, t), t

)] · ∂r

∂t
(r, t),

where · denotes the inner product in R
N .

From this and Lemma 3.6, we obtain that if u ∈ L2(τ , T ; H1
0(Ot)) and u′ ∈ L2(τ , T ; L2(Ot)), then

the function v defined by (3.4) belongs to L2(τ , T ; H1
0(O)), and its time derivative v ′ belongs to

L2(τ , T ; L2(O)), with

‖v ′‖L2(τ ,T ;L2(O)) � C
(‖u′‖L2(τ ,T ;L2(Ot ))

+ ‖u‖L2(τ ,T ;H1
0(Ot ))

)
,

for some positive constant C independent of u.
We now generalize the above considerations.

Definition 3.10. We define the space L2(τ , T ; H−1(Ot)) as the vector space of all the distributions w
in Q τ ,T , of the form

w = f0 −
N∑

i=1

∂ f i

∂xi
, f i ∈ L2(Q τ ,T ), i = 0, . . . , N, (3.19)

i.e.,

〈w, φ〉 =
∫

Q τ ,T

f0φ dx dt +
N∑

i=1

∫
Q τ ,T

f i
∂φ

∂xi
dx dt ∀φ ∈ C∞

c (Q τ ,T ).
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If w is given by (3.19), let us denote

w(t) = f0(t) −
N∑

i=1

∂ f i(t)

∂xi
in the sense of distributions in Ot , a.e. t ∈ (τ , T ),

where f i(t) := f i(·, t).
Let us denote 〈·,·〉−1,t the duality product between H−1(Ot) and H1

0(Ot).
Observe that if ϕ ∈ C1

c (Ot), then

〈
w(t),ϕ

〉
−1,t =

∫
Ot

f0(x, t)ϕ(x)dx +
N∑

i=1

∫
Ot

f i(x, t)
∂ϕ

∂xi
(x)dx,

and consequently

∥∥w(t)
∥∥2

H−1(Ot )
�

N∑
i=0

∥∥ f i(t)
∥∥2

L2(Ot )
.

It is well known that, without loss of generality, we can assume that in fact the above inequality is
an equality. Thus, we define

‖w‖L2(τ ,T ;H−1(Ot ))
:=

( T∫
τ

∥∥w(t)
∥∥2

H−1(Ot )
dt

)1/2

, (3.20)

and we have

‖w‖2
L2(τ ,T ;H−1(Ot ))

=
N∑

i=0

‖ f i‖2
L2(Q τ ,T )

. (3.21)

Also, observe that if φ ∈ C1
c (Q τ ,T ), then φ(t) = φ(·, t) belongs to C1

c (Ot) for each t ∈ (τ , T ), and
therefore

〈w, φ〉 =
∫

Q τ ,T

f0φ dx dt +
N∑

i=1

∫
Q τ ,T

f i
∂φ

∂xi
dx dt

=
T∫

τ

∫
Ot

f0(x, t)φ(x, t)dx dt +
N∑

i=1

T∫
τ

∫
Ot

f i(x, t)
∂φ

∂xi
(x, t)dx dt

=
T∫ 〈

w(t),φ(t)
〉
−1,t dt. (3.22)
τ
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If u ∈ L2(τ , T ; H1
0(Ot)), in particular u ∈ L2(Q τ ,T ), then there exists the partial derivative u′ of u

with respect to t , in the sense of distributions on Q τ ,T . We say that u′ ∈ L2(τ , T ; H−1(Ot)), if there
exists a function w ∈ L2(τ , T ; H−1(Ot)), such that

T∫
τ

〈
w(t),φ(t)

〉
−1,t dt = −

∫
Q τ ,T

u(x, t)φ′(x, t)dx dt ∀φ ∈ C1
c (Q τ ,T ).

In such a case, w is unique. This last assertion is an immediate consequence of (3.22). Thus, we
identify u′ with w .

Lemma 3.11.

u ∈ L2
(
τ , T ; H1

0(Ot)
)

and u′ ∈ L2
(
τ , T ; H−1(Ot)

) } ⇐⇒
{

v ∈ L2
(
τ , T ; H1

0(O)
)

and v ′ ∈ L2
(
τ , T ; H−1(O)

)
.

Moreover, there are two positive constants C3 and C4 (which depend only on r and τ , T ) such that

‖v ′‖L2(τ ,T ;H−1(O)) � C3
(‖u′‖L2(τ ,T ;H−1(Ot ))

+ ‖u‖L2(τ ,T ;H1
0(Ot ))

)
(3.23)

and

‖u′‖L2(τ ,T ;H−1(Ot ))
� C4

(‖v ′‖L2(τ ,T ;H−1(O)) + ‖v‖L2(τ ,T ;H1
0(O))

)
. (3.24)

Proof. Suppose that u ∈ L2(τ , T ; H1
0(Ot)) and u′ ∈ L2(τ , T ; H−1(Ot)).

At first, from Lemma 3.6 we know that v(y, t) = u(r(t, y), t) satisfies

v ∈ L2(τ , T ; H1
0(O)

)
. (3.25)

Secondly, we have that there exist N + 1 functions f i ∈ L2(Q τ ,T ), i = 0, . . . , N , such that

T∫
τ

〈
u′(t),φ(t)

〉
−1,t dt =

T∫
τ

∫
Ot

f0(x, t)φ(x, t)dx dt +
N∑

i=1

T∫
τ

∫
Ot

f i(x, t)
∂φ

∂xi
(x, t)dx dt,

for all φ(x, t) ∈ C1
c (Q τ ,T ), and

‖u′‖2
L2(τ ,T ;H−1(Ot ))

=
N∑

i=0

‖ f i‖2
L2(Q τ ,T )

. (3.26)

Thus,

T∫
τ

∫
Ot

u(x, t)φ′(x, t)dx dt = −
T∫

τ

∫
Ot

f0(x, t)φ(x, t)dx dt −
N∑

i=1

T∫
τ

∫
Ot

f i(x, t)
∂φ

∂xi
(x, t)dx dt, (3.27)

for all φ(x, t) ∈ C1
c (Q τ ,T ).
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Let us denote f̃ i(y, t) = f i(r(y, t), t), φ̃(y, t) = φ(r(y, t), t), and ψ(y, t) = φ̃(y, t) Jac(r, y, t). Ob-
serve that ψ ∈ C1

c (O × (τ , T )), and from the identity φ(x, t) = φ̃(r̄(x, t), t), we obtain

∂φ

∂xi
(x, t) =

N∑
j=1

∂φ̃

∂ y j

(
r̄(x, t), t

)∂ r̄ j

∂xi
(x, t) ∀(x, t) ∈ Q τ ,T . (3.28)

Thus, from (3.27) we obtain

T∫
τ

∫
Ot

u(x, t)φ′(x, t)dx dt

= −
T∫

τ

∫
O

f̃0(y, t)ψ(y, t)dy dt

−
N∑

i, j=1

T∫
τ

∫
O

f̃ i(y, t)
∂ r̄ j

∂xi

(
r(y, t), t

) ∂φ̃

∂ y j
(y, t) Jac(r, y, t)dy dt. (3.29)

Taking into account that

∂ψ

∂ y j
(y, t) = ∂φ̃

∂ y j
(y, t) Jac(r, y, t) + φ̃(y, t)

∂

∂ y j

(
Jac(r, y, t)

)
= ∂φ̃

∂ y j
(y, t) Jac(r, y, t) + ψ(y, t)

1

Jac(r, y, t)

∂

∂ y j

(
Jac(r, y, t)

)
,

and denoting

g j(y, t) :=
N∑

i=1

f̃ i(y, t)
∂ r̄ j

∂xi

(
r(y, t), t

)
, j = 1, . . . , N, (3.30)

g0(y, t) := f̃0(y, t) −
N∑

j=1

g̃ j(y, t)
1

Jac(r, y, t)

∂

∂ y j

(
Jac(r, y, t)

)
, (3.31)

we deduce from (3.29) that

T∫
τ

∫
Ot

u(x, t)φ′(x, t)dx dt = −
T∫

τ

∫
O

g0(y, t)ψ(y, t)dy dt −
N∑

j=1

T∫
τ

∫
O

g j(y, t)
∂ψ

∂ y j
(y, t)dy dt. (3.32)

On the other hand, we have

T∫
τ

∫
Ot

u(x, t)φ′(x, t)dx dt =
T∫

τ

∫
O

v(y, t)φ′(r(y, t), t
)

Jac(r, y, t)dy dt. (3.33)

From the identity φ̃(y, t) = φ(r(y, t), t), and (3.28), we deduce
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φ̃′(y, t) = φ′(r(y, t), t
)+

N∑
i=1

∂φ

∂xi

(
r(y, t), t

)∂ri

∂t
(y, t)

= φ′(r(y, t), t
)+

N∑
i, j=1

∂φ̃

∂ y j
(y, t)

∂ri

∂t
(y, t)

∂ r̄ j

∂xi

(
r(y, t), t

)
. (3.34)

But the identity r̄(r(y, t), t) = y implies that

∂ r̄ j

∂t

(
r(y, t), t

)+
N∑

i=1

∂ r̄ j

∂xi

(
r(y, t), t

)∂ri

∂t
(y, t) = 0. (3.35)

From (3.34) and (3.35) we deduce that

φ′(r(y, t), t
) = φ̃′(y, t) +

N∑
j=1

∂φ̃

∂ y j
(y, t)

∂ r̄ j

∂t

(
r(y, t), t

)
,

and therefore (3.33) can be written

T∫
τ

∫
Ot

u(x, t)φ′(x, t)dx dt

=
T∫

τ

∫
O

v(y, t)φ̃′(y, t) Jac(r, y, t)dy dt

+
N∑

j=1

T∫
τ

∫
O

v(y, t)
∂φ̃

∂ y j
(y, t)

∂ r̄ j

∂t

(
r(y, t), t

)
Jac(r, y, t)dy dt. (3.36)

Now, observing that

φ̃′(y, t) Jac(r, y, t) = ψ ′(y, t) − 1

Jac(r, y, t)

∂

∂t

(
Jac(r, y, t)

)
ψ(y, t),

and

∂φ̃

∂ y j
(y, t) Jac(r, y, t) = ∂ψ

∂ y j
(y, t) − 1

Jac(r, y, t)

∂

∂ y j

(
Jac(r, y, t)

)
ψ(y, t),

we can rewrite (3.36) as

T∫
τ

∫
Ot

u(x, t)φ′(x, t)dx dt =
T∫

τ

∫
O

v(y, t)ψ ′(y, t)dy dt

−
T∫

τ

∫
v(y, t)

Jac(r, y, t)

∂

∂t

(
Jac(r, y, t)

)
ψ(y, t)dy dt
O
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+
N∑

j=1

T∫
τ

∫
O

v(y, t)
∂ r̄ j

∂t

(
r(y, t), t

) ∂ψ

∂ y j
(y, t)dy dt

−
N∑

j=1

T∫
τ

∫
O

v(y, t)

Jac(r, y, t)

∂ r̄ j

∂t

(
r(y, t), t

) ∂

∂ y j

(
Jac(r, y, t)

)
ψ(y, t)dy dt.

From this last equality and (3.32), we deduce

T∫
τ

∫
O

v(y, t)ψ ′(y, t)dy dt

=
T∫

τ

∫
O

{
v(y, t)

Jac(r, y, t)

[
∂

∂t

(
Jac(r, y, t)

)+
N∑

j=1

∂ r̄ j

∂t

(
r(y, t), t

) ∂

∂ y j

(
Jac(r, y, t)

)]− g0(y, t)

}
ψ(y, t)dy dt

−
N∑

j=1

T∫
τ

∫
O

(
v(y, t)

∂ r̄ j

∂t

(
r(y, t), t

)+ g j(y, t)

)
∂ψ

∂ y j
(y, t)dy dt, (3.37)

for any ψ(y, t) ∈ C1
c (O × (τ , T )) (the arbitrariness of ψ comes from the arbitrariness of φ and the

fact that r(·,·) is a diffeomorphism). Thus, from (3.37) we have that the derivative of v with respect
to time is given by

v ′ = h0 −
N∑

j=1

∂h j

∂ y j
(3.38)

in the sense of distributions on O × (τ , T ), where

h0(y, t) := g0(y, t) − v(y, t)

Jac(r, y, t)

[
∂

∂t

(
Jac(r, y, t)

)+
N∑

j=1

∂ r̄ j

∂t

(
r(y, t), t

) ∂

∂ y j

(
Jac(r, y, t)

)]
,

and

h j(y, t) := v(y, t)
∂ r̄ j

∂t

(
r(y, t), t

)+ g j(y, t), j = 1, . . . , N.

From (3.38) and the definitions of h0 and h j , j = 1, . . . , N , we obtain that v ′ ∈ L2(τ , T ; H−1(O)).
Moreover, using (3.26), we easily deduce (3.23).

Similarly, using the inverse transformation r̄(x, t) of r(y, t), we can obtain the converse results. �
Let p � 2, and set

X = L2(τ , T ; H1
0(Ot)

)∩ L p(τ , T ; L p(Ot)
)
,

Y = L2(τ , T ; H1
0(O)

)∩ L p(τ , T ; L p(O)
)
,

and
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X∗ = L2(τ , T ; H−1(Ot)
)+ Lq(τ , T ; Lq(Ot)

)
,

Y ∗ = L2(τ , T ; H−1(O)
)+ Lq(τ , T ; Lq(O)

)
,

where 1
p + 1

q = 1.
From the previous results, evidently we have:

Corollary 3.12. u ∈ X ⇔ v ∈ Y .

With a slight modification of the proof of Lemma 3.11, we have:

Lemma 3.13.

u ∈ X

and u′ ∈ X∗

}
⇐⇒

{
v ∈ Y

and v ′ ∈ Y ∗.

Moreover, there are two positive constants C5 and C6 (which depend only on r and τ , T ) such that

‖v ′‖Y ∗ � C5
(‖u′‖X∗ + ‖u‖L2(τ ,T ;H1

0(Ot ))

)
(3.39)

and

‖u′‖X∗ � C6
(‖v ′‖Y ∗ + ‖v‖L2(τ ,T ;H1

0(O))

)
. (3.40)

As a consequence of the results above, we have the following compactness criterion.

Lemma 3.14. Assume that {um} is a bounded sequence in X and {u′
m} is bounded in X∗ . Then, {um} is relatively

compact in L2(τ , T ; L2(Ot)).

Proof. Let vm(y, t) = um(r(y, t), t), then from Lemma 3.13, we know that {vm} is bounded in Y and
{v ′

m} is bounded in Y ∗ . Then by the well-known result for fixed domain (e.g., see [17]), we know
that {vm} is relatively compact in L2(τ , T ; L2(O)). Without loss generality, we assume vm → v in
L2(τ , T ; L2(O)), then from

T∫
τ

∫
Ot

∣∣um(x, t) − u(x, t)
∣∣2 dx dt =

T∫
τ

∫
O

∣∣vm(y, t) − v(y, t)
∣∣2 Jac(r, y, t)dy dt,

we deduce that um → u in L2(τ , T ; L2(Ot)), where u(x, t) = v(r̄(x, t), t). �
Corollary 3.15. Assume {um} is a bounded sequence in L2(τ , T ; H1

0(Ot)) and {u′
m} is bounded in

L2(τ , T ; H−1(Ot)). Then, {um} is relatively compact in L2(τ , T ; L2(Ot)).

4. Strong solutions

Definition 4.1 (Strong solution). A function u = u(x, t) defined in Q τ ,T is said to be a strong solution
for problem (2.6) if

u ∈ L2(τ , T ; H2(Ot)
)∩ C

([τ , T ]; H1
0(Ot)

)∩ L∞(
τ , T ; L p(Ot)

)
, u′ ∈ L2(τ , T ; L2(Ot)

)
,

and the three equations in (2.6) are satisfied almost everywhere in their corresponding domains.
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Associated to problem (2.6), we consider the problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v(y, t)

∂t
−

N∑
k, j=1

∂

∂ y j

(
a jk(y, t)v yk (y, t)

)+ b(y, t) · ∇y v(y, t) + g
(
v(y, t)

) = f
(
r(y, t), t

)
in O × (τ , T ),

v = 0 on ∂O × (τ , T ),

v(y, τ ) = uτ

(
r(y, τ )

)
, y ∈ O,

(4.1)

where

a jk(y, t) =
N∑

i=1

∂ r̄k

∂xi

(
r(y, t), t

)∂ r̄ j

∂xi

(
r(y, t), t

)
, j,k = 1, . . . , N;

and b(y, t) = (b1(y, t), . . . ,bN (y, t)) ∈ R
N is defined by

bk(y, t) = ∂ r̄k

∂t

(
r(y, t), t

)− �xr̄k
(
r(y, t), t

)+
N∑

j=1

∂a jk

∂ y j
(y, t), k = 1,2, . . . , N.

A strong solution of (4.1) is a function v ∈ L2(τ , T ; H2(O)) ∩ C([τ , T ]; H1
0(O)) ∩ L∞(τ , T ; L p(O)),

with time derivative v ′ ∈ L2(τ , T ; L2(O)), such that the three equations in (4.1) are satisfied almost
everywhere in their corresponding domains.

Lemma 4.2. For any −∞ < τ � T < ∞, a jk ∈ C1(O × [τ , T ]), bk ∈ C0(O × [τ , T ]). In particular,

a jk,
∂a jk
∂ y j

, bk ∈ L∞(O × (τ , T )), j,k = 1,2, . . . , N.

Moreover, there exists a δ = δ(r, τ , T ) > 0 such that for any (y, t) ∈ O × [τ , T ],

N∑
j,k=1

a jk(y, t)ξ jξk � δ|ξ |2 for all ξ ∈ R
N .

Proof. Let A(y, t) = (a jk(y, t))N×N , then A(y, t) = T ∗(y, t)T (y, t), where T (y, t) := F (r(y, t), t) with

F (x, t) =
( ∂ r̄1(x,t)

∂x1

∂ r̄2(x,t)
∂x1

· · · ∂ r̄N (x,t)
∂x1· · · · · · · · · · · ·

∂ r̄1(x,t)
∂xN

∂ r̄2(x,t)
∂xN

· · · ∂ r̄N (x,t)
∂xN

)
,

and T ∗(y, t) is the transpose of T (y, t).
For any ξ ∈ R

N , we have

N∑
j,k=1

a jk(y, t)ξ jξk = (
A(y, t)ξ, ξ

)
RN = (

T ∗(y, t)T (y, t)ξ, ξ
)
RN = (T ξ, T ξ)RN = ∥∥T (y, t)ξ

∥∥2
.

Note that T (y, t) is reversible, so

∥∥T (y, t)ξ
∥∥ �

∥∥T −1(y, t)
∥∥−1‖ξ‖,
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where ‖T −1(y, t)‖ is the operator-norm of T −1(y, t) in R
N ; consequently, we have

(Aξ, ξ) � ‖ξ‖2

‖T −1(y, t)‖2
.

Finally, due to the continuity of T −1(y, t) and compactness of O × [τ , T ], we know that
‖T −1(y, t)‖ is uniformly bounded from below in O × [τ , T ] by a positive constant. �

From the assumptions on ∂O, r and r̄, we have (e.g., see [14,9])

Lemma 4.3. For any −∞ < τ � T < ∞, there exist two positive constants δ0 and c0 which depend on r, τ , T ,
such that for any u ∈ H2(O) ∩ H1

0(O), the following estimate holds

δ0

∫
O

∣∣�u(y)
∣∣2 dy �

∫
O

N∑
k, j=1

akj(y, t)u yk y j �u dy + c0

∫
O

∣∣u(y)
∣∣2 dy for all t ∈ [τ , T ].

We have the following existence and uniqueness result of strong solution for problem (2.6).

Theorem 4.4. Let f ∈ L2
loc(R; L2(Ot)) and r and r̄ satisfy assumptions (2.1), (2.2) and (2.4). Assume also that

∂O is C2 and N � 2p/(p − 2), or ∂O is Cm with m � 2 integer such that m � N(p − 2)/2p. (4.2)

Then, for any uτ ∈ H1
0(Oτ ) ∩ L p(Oτ ) and any −∞ < τ � T < ∞, there exists a unique strong solution u

of (2.6). Moreover, u satisfies the equality of energy

∣∣u(t)
∣∣2
t + 2

t∫
τ

∣∣∇u(s)
∣∣2
s ds + 2

t∫
τ

∫
Os

g
(
u(x, s)

)
u(x, s)dx ds

= ∣∣u(τ )
∣∣2
τ

+
t∫

τ

(
f (s), u(s)

)
s ds for all t ∈ [τ , T ], (4.3)

and the following estimates:

∣∣u(t)
∣∣2
t � e−λτ t (t−τ )

∣∣u(τ )
∣∣2
τ

+ e−λτ t t

t∫
τ

eλτ t s
∥∥ f (s)

∥∥2
H−1(Os)

ds + 2βe−λτ t t

t∫
τ

eλτ t s|Os|ds, (4.4)

t∫
τ

(∣∣∇u(s)
∣∣2
s + 2α1

∫
Os

∣∣u(s)
∣∣p

dx

)
ds �

t∫
τ

∥∥ f (s)
∥∥2

H−1(Os)
ds + 2β

t∫
τ

|Os|ds + |uτ |2τ , (4.5)

for all t ∈ [τ , T ], where λτ t is the first eigenvalue of −� on H1
0(
⋃

τ�s�t Os).

Proof. (a) Uniqueness.
Let uτ i ∈ H1

0(Oτ ) ∩ L p(Oτ ) and ui(t) (i = 1,2) be the corresponding strong solutions. Set w(t) =
u1(t) − u2(t), then w(t) is a strong solution of the following equation⎧⎨⎩ wt − �w + g(u1) − g(u2) = 0 in Q τ ,T ,

w(τ ) = uτ1 − uτ2 on Oτ ,

w = 0 on Στ,T .



P.E. Kloeden et al. / J. Differential Equations 246 (2009) 4702–4730 4719
By Corollary 3.4 and (2.8), we have

1

2

d

ds

∣∣w(s)
∣∣2
s + ∣∣∇w(s)

∣∣2
s � −

∫
Os

(
g
(
u1(s)

)− g
(
u2(s)

))
w(s)dx

� l
∣∣w(s)

∣∣2
s a.e. s ∈ (τ , T ),

so, integrating over [τ , t] we deduce that

∣∣w(t)
∣∣2
t � e2l(t−τ )

∣∣w(τ )
∣∣2
τ

= e2l(t−τ )|uτ1 − uτ2|2τ for any t ∈ [τ , T ], (4.6)

which implies the uniqueness immediately.
(b) Equality (4.3) and estimates (4.4)–(4.5).
The energy equality (4.3) is a direct consequence of Corollary 3.4.
As a consequence of (4.3), (2.7), and Hölder inequality, we get

d

ds

∣∣u(s)
∣∣2
s + ∣∣∇u(s)

∣∣2
s + 2α1|u|p

Lp(Os)
�

∥∥ f (s)
∥∥2

H−1(Os)
+ 2β|Os| a.e. s ∈ (τ , T ). (4.7)

Estimate (4.5) is a direct consequence of (4.7). Also, by (4.7) and the definition of λτ t , observing
that τ � s � t ⇒ λτ s � λτ t , we have in particular

d

ds

∣∣u(s)
∣∣2
s + λτ t

∣∣u(s)
∣∣2
s �

∥∥ f (s)
∥∥2

H−1(Os)
+ 2β|Os| a.e. s ∈ (τ , t),

and multiplying this inequality by exp(λτ t s) and integrating between τ and t , we have (4.4).
(c) Existence.
From the results in the previous sections, and using Proposition IX.18 in [2], one obtain (see [15]

for the linear case) that u = u(x, t) is a strong solution for problem (2.6) if and only if the function
v = v(y, t) := u(r(y, t), t) is a strong solution of the problem (4.1).

Thus, to prove existence of strong solution of problem (2.6) it is enough to prove existence of
strong solution of problem (4.1).

The existence of strong solutions for the transformed equation (4.1) can be obtained by the
Galerkin method (see [9,17,18]). We sketch the proof.

Without loss of the generality, we can assume that g(0) = 0 (if not, then let ĝ(·) = g(·)− g(0) and
f̂ (t) = f (t) − g(0)).

As in [9], we define the time-dependent bilinear form

B[v, w; t] =
∫

O

(
N∑

k, j=1

akj(y, t)
∂v

∂ yk

∂ w

∂ y j
+

N∑
k=1

bk(y, t)
∂v

∂ yk
w

)
dy (4.8)

for v, w ∈ H1
0(O) and τ � t � T .

Now, let ωk = ωk(y) ∈ H2(O) ∩ H1
0(O) (k = 1,2, . . .) be the eigenfunctions of −� on H1

0(O), and
let 0 < λ1 < λ2 � λ3 � · · · be the corresponding eigenvalues. Then,

λn → ∞ as n → ∞

and we can assume that

{ωk}∞k=1 is an orthogonal basis of H1
0(O) and an orthonormal basis of L2(O).
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For each fixed positive integer m, set

vm(t) :=
m∑

k=1

dk
m(t)ωk, (4.9)

and consider the finite dimensional approximate system⎧⎨⎩
(

v ′
m(t),ωk

)+ B
[
vm(t),ωk; t

]+ (
g
(
vm(t)

)
,ωk

) = (
f̃ (t),ωk

)
,

k = 1, . . . ,m and τ � t � T ,

vm(τ ) = Pm vτ ,

(Am)

where

f̃ (y, t) := f
(
r(y, τ ), t

)
, vτ (y) := uτ

(
r(y, τ )

)
,

(·,·) is the inner product in L2(O), with associated norm | · |, and Pm is the projector from L2(O) to
span{ω1,ω2, . . . ,ωm}. Observe that

f̃ ∈ L2(τ , T ; L2(O)
)
, vτ ∈ H1

0(O) ∩ L p(O),

and thanks to the assumption (4.2),

Pm vτ → vτ in H1
0(O) ∩ L p(O) as m → ∞. (4.10)

Noticing that g ∈ C1(R), then as a direct consequence of the existence and uniqueness result
for ODEs, we have that for each integer m = 1,2, . . . there exists a unique local solution vm of the
form (4.9) satisfying (Am), defined in an interval [τ , Tm], with τ < Tm � T .

Now we obtain several estimates about the functions vm .
Step 1. Multiplying (Am) by dk

m(t) and taking the sum with respect to k from 1 to m, we get that

1

2

d

dt

∣∣vm(t)
∣∣2 + B

[
vm(t), vm(t); t

]+ (
g
(
vm(t)

)
, vm(t)

) = (
f̃ (t), vm(t)

)
, t ∈ [τ , Tm].

Then from Lemma 4.2, (4.8) and (2.7) we know that there is a positive constant δ (which depends
only on τ , T and the transform function r) such that

1

2

d

dt

∣∣vm(t)
∣∣2 + δ

∣∣∇vm(t)
∣∣2 + α1

∥∥vm(t)
∥∥p

Lp(O)

�
∥∥ f̃ (t)

∥∥
H−1(O)

· ∥∥vm(t)
∥∥

H1
0(O)

+ β|O| + N1/2 max
1�k�N

‖bk‖L∞(O×[τ ,T ])
∣∣∇vm(t)

∣∣∣∣vm(t)
∣∣

� δ

2

∣∣∇vm(t)
∣∣2 + Cδ,b

(∥∥ f̃ (t)
∥∥2

H−1(O)
+ ∣∣vm(t)

∣∣2)+ β|O|, t ∈ [τ , Tm],

which, combining with the Gronwall lemma and the fact that |Pm vτ | � |vτ |, implies that

Tm = T for any m = 1,2, . . . , (4.11)

and

the sequence {vm} is bounded in C0
([τ , T ]; L2(O)

)∩ L2
(
τ , T ; H1

0(O)
)∩ L p

(
τ , T ; L p(O)

)
. (4.12)
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Step 2. Multiplying (Am) by λkdk
m(t) and summing over k = 1, . . . ,m, also noting that −�vm =∑m

k=1 λkdk
m(t)ωk equals to 0 on ∂O and using Lemma 4.3, we deduce that

1

2

d

dt

∣∣∇vm(t)
∣∣2 + δ0

∣∣�vm(t)
∣∣2 −

∫
O

g
(
vm(y, t)

)
�vm(y, t)dy

�
∣∣ f̃ (t)

∣∣∣∣�vm(t)
∣∣+ c0

∣∣vm(t)
∣∣2 + N1/2 max

1�k�N
|b̄k|L∞(O×(τ ,T ))

∣∣∇vm(t)
∣∣∣∣�vm(t)

∣∣, t ∈ [τ , T ],

where

b̄k(y, t) := bk(y, t) −
N∑

j=1

∂a jk

∂ y j
(y, t), k = 1,2, . . . , N.

From the above inequality, (2.8) and g(0) = 0, we can obtain that

d

dt

∣∣∇vm(t)
∣∣2 + δ0

∣∣�vm(t)
∣∣2 � Cδ0,b,l

(∣∣ f̃ (t)
∣∣2 + ∣∣∇vm(t)

∣∣2), t ∈ [τ , T ].

From this inequality, (4.12), and the fact that Pm vτ is bounded in H1
0(O), we get that

the sequence {vm} is bounded in C0
([τ , T ]; H1

0(O)
)∩ L2

(
τ , T ; H2(O)

)
. (4.13)

Step 3. Similarly, multiplying (Am) by dk ′
m (t), summing over k = 1, . . . ,m, and using that ak, j = a j,k ,

we can get that

∣∣v ′
m(t)

∣∣2 + 1

2

d

dt

∫
O

N∑
k, j=1

akj(y, t)
∂vm

∂ y j
(y, t)

∂vm

∂ yk
(y, t)dy

− 1

2

∫
O

N∑
k, j=1

∂akj

∂t
(y, t)

∂vm

∂ y j
(y, t)

∂vm

∂ yk
(y, t)dy + d

dt

∫
O

G
(

vm(y, t)
)

dy

�
∣∣ f̃ (t)

∣∣∣∣v ′
m(t)

∣∣+ Cb
∣∣∇vm(t)

∣∣∣∣v ′
m(t)

∣∣, t ∈ [τ , T ].

Integrating over [τ , T ], and using Lemma 4.2, the Cauchy inequality, (4.12), (2.9), and the facts that
akj ∈ C1(O × [τ , T ]) (k, j = 1,2, . . . , N), and by (4.10) the sequence Pm vτ is bounded in H1

0(O) ∩
L p(O), we obtain that

the sequence {vm} is bounded in L∞(
τ , T ; L p(O)

)
, (4.14)

and

the sequence
{

v ′
m

}
is bounded in L2

(
τ , T ; L2(O)

)
. (4.15)

Step 4. From (4.10), (4.13), (4.14) and (4.15), it is now a standard matter (e.g., see [9,17,18]) to
prove that a subsequence of {vm} (in fact, by uniqueness, all the sequence) converges weakly in
L2(τ , T ; H2(O)), weakly star in L∞(τ , T ; H1

0(O)) ∩ L∞(τ , T ; L p(O)), and strongly in L2(τ , T ; H1
0(O)),

to a function v that is (the unique) strong solution of (4.1). �
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5. Weak solutions

Let us denote

Uτ ,T := {
ϕ ∈ L2(τ , T ; H1

0(Ot)
)∩ L p(τ , T ; L p(Ot)

)
: ϕ′ ∈ L2(τ , T ; L2(Ot)

)
, ϕ(τ ) = ϕ(T ) = 0

}
.

Definition 5.1. Let uτ ∈ L2(Oτ ), f ∈ L2(τ , T ; H−1(Ot)) and −∞ < τ � T < ∞ be given. We say that a
function u is a weak solution of (2.6) if

(1) u ∈ C([τ , T ]; L2(Ot)) ∩ L2(τ , T ; H1
0(Ot)) ∩ L p(τ , T ; L p(Ot)) with u(τ ) = uτ ;

(2) there exists a sequence of regular data uτm ∈ H1
0(Oτ ) ∩ L p(Oτ ) and fm ∈ L2(τ , T ; L2(Ot)),

m = 1,2, . . . , such that

uτm → uτ in L2(Oτ ), fm → f in L2(τ , T ; H−1(Ot)
)
,

and

um → u in C
([τ , T ]; L2(Ot)

)
,

where um is the unique strong solution of (2.6) corresponding to (uτm, fm);
(3) for all ϕ ∈ Uτ ,T ,

T∫
τ

∫
Ot

u(x, t)ϕ′(x, t)dx dt +
T∫

τ

∫
Ot

∇xu · ∇xϕ dx dt

= −
T∫

τ

∫
Ot

g
(
u(x, t)

)
ϕ(x, t)dx dt +

T∫
τ

∫
Ot

f (x, t)ϕ(x, t)dx dt. (5.1)

It is clear from the definition, that every strong solution of (2.6) is a weak solution of (2.6).

Theorem 5.2. Let f ∈ L2
loc(R; H−1(Ot)), and the functions r and r̄ satisfy assumptions (2.1), (2.2) and (2.4).

Assume also that ∂Ω is C2 and N � 2p/(p − 2), or ∂Ω is Cm with m � 2 integer such that m � N(p − 2)/2p.
Then for any uτ ∈ L2(Oτ ) and any −∞ < τ � T < ∞, there exists a unique weak solution u(t) for Eq. (2.6).
Moreover, u(t) satisfies the following estimates for all t ∈ [τ , T ],

∣∣u(t)
∣∣2
t � e−λτ t (t−τ )

∣∣u(τ )
∣∣2
τ

+ e−λτ t t

t∫
τ

eλτ t s
∥∥ f (s)

∥∥2
H−1(Os)

ds + 2βe−λτ t t

t∫
τ

eλτ t s|Os|ds, (5.2)

t∫
τ

(∣∣∇u(s)
∣∣2
s + 2α1

∫
Os

∣∣u(s)
∣∣p

dx

)
ds �

t∫
τ

∥∥ f (s)
∥∥2

H−1(Os)
ds + 2β

t∫
τ

|Os|ds + |uτ |2τ . (5.3)

Proof. Let uτm ∈ H1
0(Oτ ) ∩ L p(Oτ ) and fm ∈ L2(τ , T ; L2(Ot)) such that

uτm → uτ in L2(Oτ ) and fm → f in L2(τ , T ; H−1(Ot)
)

as m → ∞. (5.4)
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Then for each (uτm, fm), m = 1,2, . . . , there exists a unique strong solution um = um(t) for the
following problem:

⎧⎪⎪⎨⎪⎪⎩
∂um

∂t
− �um + g(um) = fm(t) in Q τ ,T ,

um = 0 on Στ,T ,

um(τ ) = uτm in Oτ .

(5.5)

Moreover, from (4.4) and (4.5) we have that

the sequence {um} is bounded in L2
(
τ , T ; H1

0(Ot)
)∩ L p

(
τ , T ; L p(Ot)

)
. (5.6)

Therefore, taking into account Lemmas 3.5 and 3.6, we can extract a subsequence (denoted also
by {um}) such that

um ⇀ u weakly in L2(τ , T ; H1
0(Ot)

)
, (5.7)

um ⇀ u weakly in L p(τ , T ; L p(Ot)
)
, (5.8)

g(um) ⇀ Ψ weakly in Lq(τ , T ; Lq(Ot)
)
. (5.9)

At the same time, by Corollary 3.4, (2.8), and Gronwall lemma, we have

∣∣um(t) − un(t)
∣∣2
t � e2l(t−τ )|uτm − uτn|2τ + e2l(t−τ )

t∫
τ

∥∥ fm(s) − fn(s)
∥∥2

H−1(Os)
ds for any t ∈ [τ , T ],

(5.10)

and therefore {um} is a Cauchy sequence in C([τ , T ]; L2(Ot)). So, by the uniqueness of the limit
and (5.7), we know that

um → u in C
([τ , T ]; L2(Ot)

)
. (5.11)

Hence, extracting a subsequence if necessary, we can assume that g(um) → g(u), a.e. in Q τ ,T , and
then, by (5.9), we have Ψ = g(u).

On the other hand, for any test function ϕ ∈ Uτ ,T , we know that um satisfies (5.1). Then, us-
ing (5.7), (5.9), and (5.11), by passing to the limit, we obtain that u also satisfies (5.1). So, u is a weak
solution of (2.6) with initial data uτ .

The estimates (5.2) and (5.3) follow from (4.4), (4.5), (5.4) and (5.11) directly. The uniqueness
follows easily from (5.10). �
6. Process U (t, τ ) generated by the weak solutions

Definition 6.1. A function u :
⋃

t∈[τ ,∞) Ot × {t} → R is called a weak solution of (2.5) if for any T � τ ,
the restriction of u on

⋃
t∈[τ ,T ] Ot × {t} is a weak solution of (2.6).

By Theorem 5.2, we have:

Theorem 6.2. Under the assumptions of Theorem 5.2, for any uτ ∈ L2(Oτ ) and f ∈ L2
loc(R; H−1(Ot)), (2.5)

has a unique weak solution. This weak solution satisfies (5.2) and (5.3) for all t ∈ [τ ,∞).



4724 P.E. Kloeden et al. / J. Differential Equations 246 (2009) 4702–4730
Consider a fixed f ∈ L2
loc(R; H−1(Ot)). From Theorem 6.2 above, we can define the operators

U (t, τ ) : L2(Oτ ) → L2(Ot), −∞ < τ � t < ∞, (6.1)

by

U (t, τ )uτ := u(t;τ , uτ ) = u(t) for any uτ ∈ L2(Oτ ), (6.2)

where u(·;τ , uτ ) is the unique weak solution of (2.5). Since u ∈ C([τ , T ]; L2(Ot)) for any T � τ , the
inclusion u(t) ∈ L2(Ot) makes sense.

Then, by the existence and uniqueness again, we know that the family operators {U (t, τ ): −∞ <

τ � t < ∞} forms a process, that is:

U (τ , τ ) = Id
(
identity on L2(Oτ )

) ∀τ ∈ R, (6.3)

U (t, s)U (s, τ ) = U (t, τ ) for all −∞ < τ � s � t < ∞. (6.4)

In the following, we will give some properties of the process {U (t, τ ): −∞ < τ � t < ∞} defined
above.

Lemma 6.3. Let ui
τ ∈ L2(Oτ ) and ui(s) = U (s, τ )ui

τ (i = 1,2). Then, we have

∣∣u1(t) − u2(t)
∣∣2
t � e2l(t−s)

∣∣u1(s) − u2(s)
∣∣2
s for any τ � s � t. (6.5)

Proof. Let us fix t > τ . By definition we know that there are two sequences {(ui
τm, f i

m)} (i = 1,2)
satisfying ui

τm ∈ H1
0(Oτ ) ∩ L p(Oτ ) and f i

m ∈ L2(τ , t; L2(Os)) such that

ui
τm → ui

τ in L2(Os) and f i
m → f in L2(τ , t; H−1(Os)

)
as m → ∞, (6.6)

and

ui
m → ui in C0([τ , t]; L2(Os)

)
, i = 1,2, (6.7)

where ui
m is the unique strong solution corresponding to the regular data (ui

τm, f i
m).

Then, similarly to (5.10), we have

∣∣u1
m(t) − u2

m(t)
∣∣2
t � e2l(t−s)

∣∣u1
m(s) − u2

m(s)
∣∣2
s + e2l(t−s)

t∫
s

∥∥ f 1
m(θ) − f 2

m(θ)
∥∥2

H−1(Oθ )
dθ. (6.8)

Therefore, we get (6.5) immediately from (6.6) and (6.7). �
As a direct consequence of (6.5), we have the following continuity result:

Lemma 6.4. For any −∞ < τ � t < ∞, the operator U (t, τ ) : L2(Oτ ) → L2(Ot) is continuous.
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7. Pullback DDDλ1 -attractor

Throughout this section, we assume that

Ωt :=
⋃
s�t

Os is bounded, for any t ∈ R. (7.1)

For any t ∈ R, we denote

λ1,t := min
v∈H1

0(Ωt ), v �=0

|∇v|2
(L2(Ωt ))N

|v|2
L2(Ωt )

, (7.2)

the first eigenvalue of −� on H1
0(Ωt). Observe that

λτ t � λ1,t for all τ � t, (7.3)

and

λ1,s � λ1,t for all s � t. (7.4)

7.1. Pullback Dλ1 -absorbing set

Let uτ ∈ L2(Oτ ) and u(t) = U (t, τ )uτ .
From (5.2) and (7.3) we have that

∣∣u(t)
∣∣2
t � e−λ1,t (t−τ )|uτ |2τ + e−λ1,t t

t∫
τ

eλ1,t s
∥∥ f (s)

∥∥2
H−1(Os)

ds + 2β|Ωt |λ−1
1,t ∀τ � t. (7.5)

Let Rλ1 be the set of all functions ρ : R → [0,∞) such that

eλ1,τ τ ρ2(τ ) → 0 as τ → −∞,

and Dλ1 the class of all families D̂ := {D(t): t ∈ R, D(t) ⊂ L2(Ot), D(t) �= ∅}, such that D(t) ⊂
{u ∈ L2(Ot): |u|t � ρD̂(t)} for some ρD̂ ∈ Rλ1 .

We assume further that f ∈ L2
loc(R; H−1(Ot)) satisfies

t∫
−∞

eλ1,t s
∥∥ f (s)

∥∥2
H−1(Os)

ds < ∞ for all t ∈ R. (7.6)

For each t ∈ R, we set R(t) the positive number given by

R2(t) = e−λ1,t t

t∫
−∞

eλ1,t s
∥∥ f (s)

∥∥2
H−1(Os)

ds + 2β|Ωt |λ−1
1,t + 1.

Lemma 7.1. The family of sets

D̂0 := {{
u ∈ L2(Ot): |u|t � R(t)

}
: t ∈ R

}
(7.7)
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is a pullback Dλ1 -absorbing family for the solution process U (t, τ ), that is, for any D̂ = {D(τ ): τ ∈ R} ∈ Dλ1

and any t ∈ R, there is a T (t, D̂) > 0 satisfying

U (t, τ )D(τ ) ⊂ {
u ∈ L2(Ot): |u|t � R(t)

}
for all t − τ � T (t, D̂). (7.8)

Moreover, D̂0 belongs to Dλ1 .

Proof. That D̂0 is pullback Dλ1 -absorbing, is an immediate consequence of (7.5).
To see that D̂0 belongs to Dλ1 , we need to prove that eλ1,t t R2(t) → 0 as t → −∞. But this is a

consequence of the fact that by (7.4) and assumption (7.6), for any t � 0 we have

eλ1,t t R2(t) =
t∫

−∞
eλ1,t s

∥∥ f (s)
∥∥2

H−1(Os)
ds + 2β|Ωt |eλ1,t tλ−1

1,t + eλ1,t t

�
t∫

−∞
eλ1,0s

∥∥ f (s)
∥∥2

H−1(Os)
ds + 2β|Ω0|eλ1,0tλ−1

1,0 + eλ1,0t → 0 as t → −∞. �

7.2. Pullback Dλ1 -asymptotic compactness

We recall the notion of pullback Dλ1 -asymptotic compactness (see [6,13]).

Definition 7.2. The process U (t, τ ) is said to be pullback Dλ1 -asymptotically compact if the sequence
{U (t, τn)un} is relatively compact in L2(Ot) for any t ∈ R, any D̂ = {D(τ ): τ ∈ R} ∈ Dλ1 , and any
sequences {τn} and {un} with τn → −∞ and un ∈ D(τn).

Let us denote

Bt−1 := {
u ∈ L2(Ot−1): |u|t−1 � eλ1,t/2 R(t)

}
,

for each t ∈ R.
We have the following result:

Lemma 7.3. The family of sets {U (t, t − 1)Bt−1: t ∈ R} is pullback Dλ1 -absorbing for the process U (t, τ ).
Moreover, for each t ∈ R, the set U (t, t − 1)Bt−1 is a relatively compact set of L2(Ot).

Proof. Let us fix t ∈ R, and denote u(t) = U (t, τ )uτ . From (7.5) and (7.3), for any τ � t − 1, we have
that

∣∣u(t − 1)
∣∣2
t−1 � e−λ1,t−1(t−1−τ )|uτ |2τ + e−λ1,t−1(t−1)

t−1∫
τ

eλ1,t−1s
∥∥ f (s)

∥∥2
H−1(Os)

ds + 2β|Ωt−1|λ−1
1,t−1

� eλ1,t

(
e−λ1,t (t−τ )|uτ |2τ + e−λ1,t t

t−1∫
τ

eλ1,t s
∥∥ f (s)

∥∥2
H−1(Os)

ds + 2β|Ωt |λ−1
1,t

)

< eλ1,t · R2(t) as τ → −∞, (7.9)

which implies that for any D̂ = {D(τ ): τ ∈ R} ∈ Dλ1 ,
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U (t − 1, τ )D(τ ) ⊂ Bt−1 as τ → −∞,

and consequently the family {U (t, t − 1)Bt−1: t ∈ R} is pullback Dλ1 -absorbing.
In the following, we will show that, for each t ∈ R, the set U (t, t − 1)Bt−1 is relatively compact

in L2(Ot).
Step 1. From (5.3) we have

1∫
0

(∣∣∇u(s)
∣∣2
t−1+s + 2α1

∫
Ot−1+s

∣∣u(s)
∣∣p

dx

)
ds �

t∫
t−1

∥∥ f (s)
∥∥2

H−1(Os)
ds + 2β|Ωt | + |u0|2t−1, (7.10)

where u0 ∈ Bt−1 and u(s) = U (t − 1 + s, t − 1)u0.
Set U (t − 1 + ·, t − 1)u0 the function U (t − 1 + ·, t − 1)u0 : s ∈ [0,1] → U (t − 1 + s, t − 1)u0 ∈

L2(Ot−1+s), and denote

A[t−1,t] := {
U (t − 1 + ·, t − 1)u0: u0 ∈ Bt−1

}
.

Then (7.10) shows that

A[t−1,t] is bounded in L2(0,1; H1
0(Ot−1+s)

)∩ L p(0,1; L p(Ot−1+s)
)
. (7.11)

Consequently, combining this with the equation

u′ = �u − g(u) + f (t),

we know that the set {u′: u ∈ A[t−1,t]} is bounded in L2(0,1; H−1(Ot−1+s)) + Lq(0,1; Lq(Ot−1+s)).
Then, combining this with (7.11), from Lemma 3.14 we know that

A[t−1,t] is relatively compact in L2(0,1; L2(Ot−1+s)
)
. (7.12)

Step 2. Let u0i ∈ Bt−1 and ui(s) = U (t − 1 + s, t − 1)u0i , i = 1,2. Set w(s) = u1(s)− u2(s), then from
Lemma 6.3 we have that ∣∣w(1)

∣∣2
t � e2l

∣∣w(s)
∣∣2
t−1+s for any s ∈ [0,1]. (7.13)

Step 3. From (7.12), for any ε > 0, there exist ui ∈ A[t,t−1] , i = 1,2, . . . ,mε , such that for any
u ∈ A[t,t−1] , there is some ui satisfying

1∫
0

∣∣u(s) − ui(s)
∣∣2
t−1+s ds < e−2lε,

consequently, there is a θ ∈ [0,1] such that∣∣u(θ) − ui(θ)
∣∣2
t−1+θ

� e−2lε,

which, combining with (7.13), implies that∣∣u(1) − ui(1)
∣∣2
t � ε. (7.14)

Then, by the arbitrariness of ε we know that U (t, t − 1)Bt−1 is relatively compact in L2(Ot) for all
t ∈ R. �
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As an immediate consequence of the preceding lemma, we have:

Corollary 7.4. The process U (t, τ ) is pullback Dλ1 -asymptotically compact.

7.3. Pullback D-attractor

For each t ∈ R, and D1, D2 nonempty subsets of L2(Ot), let us denote distt(D1, D2) the Hausdorff
semi-distance defined as

distt(D1, D2) := sup
u∈D1

inf
v∈D2

|u − v|t .

Definition 7.5. A family ˆA = {A (t): A (t) ⊂ L2(Ot), A (t) �= ∅, t ∈ R} is said to be a pullback Dλ1 -
attractor for the process U (t, τ ), if:

(1) A (t) is compact in L2(Ot) for all t ∈ R;
(2) ˆA is pullback Dλ1 -attracting, i.e.,

lim
τ→−∞ distt

(
U (t, τ )D(τ ),A (t)

) = 0 for all D̂ ∈ Dλ1 and all t ∈ R;

(3) ˆA is invariant, i.e.,

U (t, τ )A (τ ) = A (t) for any −∞ < τ � t < ∞.

Using the results in [5,6,13], from Lemma 6.4 and Corollary 7.4, and the fact that the sets in D̂0 are
closed, and the family Dλ1 is inclusion closed, we obtain that U (t, τ ) has a pullback Dλ1 -attractor,
and more exactly:

Theorem 7.6. Under the assumptions of Theorem 5.2, furthermore, assume (7.1) and that f satisfies (7.6). Then
the family ˆA = {A (t): t ∈ R} defined by

A (t) = Λ(D̂0, t), t ∈ R,

where D̂0 is given by (7.7), and for any D̂ ∈ Dλ1 ,

Λ(D̂, t) :=
⋂
s�t

( ⋃
τ�s

U (t, τ )D(τ )L2(Ot )

)
, t ∈ R

(
closure in L2(Ot)

)
,

is the unique pullback Dλ1 -attractor for the process U (t, τ ) belonging to Dλ1 . In addition, ˆA satisfies

A (t) =
⋃

D̂∈Dλ1

Λ(D̂, t)L2(Ot ) ∀t ∈ R.

Furthermore, ˆA is minimal in the sense that if Ĉ = {C(t): t ∈ R} is a family of nonempty sets such that C(t) is
a closed subset of L2(Ot) and

lim
τ→−∞ distt

(
U (t, τ )D0(τ ), C(t)

) = 0

for all t ∈ R, then A (t) ⊂ C(t) for any t ∈ R.
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8. An example

Let r(y, t) = h(t)y for any t ∈ R and y ∈ O ⊂ R
N , where h ∈ C1(R), and satisfies

h(t) �= 0 and sup
s�t

∣∣h(s)
∣∣ < ∞ for all t ∈ R.

So Ot = h(t)O, and r̄(x, t) = h(t)−1x for x ∈ Ot and t ∈ R. We can apply our results to this example.
In particular, for u(x, t) = v(r̄(x, t), t) = v(y, t) we have

∂u

∂xi
(x, t) =

N∑
j=1

∂v

∂ y j
(y, t)

∂ r̄ j(x, t)

∂xi
= h−1(t)

∂v

∂ yi
(y, t),

and

∂2u

∂x2
i

(x, t) = h−1(t)
N∑

k=1

∂2 v

∂ yi∂ yk
(y, t)

∂ r̄k

∂xi
(x, t) = h−2(t)

∂2 v

∂ y2
i

(y, t),

where r̄ j(x, t) = h−1(t)x j for j = 1, . . . , N . So,

�xu(x, t) = h−2(t)�y v(y, t).

On the other hand,

∂u

∂t
(x, t) = ∂v

∂t
(y, t) +

N∑
i=1

∂v

∂ yi
(y, t)

∂ri

∂t
(y, t) = ∂v

∂t
(y, t) + h′(t)

N∑
i=1

yi
∂v

∂ yi
(y, t).

Thus, the auxiliary equation can be transformed to⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂v(y, t)

∂t
− h−2(t)�v(y, t) + h′(t)b(v, y, t) + g

(
v(y, t)

) = f
(
h(t)y, t

)
in O × (τ , T ),

v = 0 on ∂O × (τ , T ),

v(y, τ ) = uτ

(
h(τ )y

)
, y ∈ O,

(8.1)

where b(v, y, t) = ∇y v(y, t) · y.
It would be interesting to investigate the effect of the temporal behaviour of the function h, such

as periodicity or almost periodicity, on that of the subsets of the pullback attractor.
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