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We present an extended version of the so-called Jackiw-Pi (JP) model in three dimensions, and perform
its supersymmetrization. Our field content has three multiplets: (i) Yang-Mills vector multiplet (Au’ b,
(ii) Parity-odd extra vector multiplet (B, x'), and (iii) Scalar multiplet (C', p'; f1). The bosonic fields
in these multiplets are the same as the original JP-model, except for the auxiliary field f! which is new,
while the fermions A!, x! and p! are their super-partners. The basic difference from the original JP-model
is the presence of the kinetic term for C! with its modified field-strength H,LI = DMC' + mB#I. The
inclusion of the C!-kinetic term is to comply with the recently-developed tensor hierarchy formulation
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1. Introduction

Ever since the work of Deser-Jackiw-Templeton [1], three-di-
mensional (3D) gauge theory has drawn considerable attention.
Their potential applications covers the wide range of fields, such as
the condensed matter phenomena, high-T. superconductivity, and
quantum Hall effect. In these lower-dimensional models, the im-
portant issue is the mass of gauge fields. For example, in 3D there
is a special topological mass term called Chern-Simons (CS) term
that preserves the original gauge symmetry.

However, the drawback with the CS topological mass term
is the loss of parity-invariance, due to the presence of the
€M"VP -tensor. To overcome this drawback, Jackiw and Pi have pre-
sented a model that preserves the parity by considering two vector
fields with opposite parity transformations, generating a mass-gap
through Chern-Simons-like term [2].

The consistency of physical states of Jackiw-Pi (JP) model [2]
was studied in the Hamiltonian approach [3], and new symme-
tries with gauge-fixing were discovered [4] in the BRS formula-
tion. Based on the Bonora-Tonin superfield formalism [5], BRS-
symmetry of JP-model [2] was analyzed in [6]. The algebraic
method of quantization was presented in [7]. The key ingredi-
ents for quantization, such as BRS invariance, gauge-fixing, and
Slavnov-Taylor identity were studied in [8]. In 3D Schouten-ghost-
free gravity, in the Hamiltonian formalism, Deser, Ertl and Grumil-
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lier [9] have demonstrated the bifurcation effect, namely, the clash
between two local invariances. It is conjectured that such a bifur-
cation effect could appear in the JP-model, since it conforms two
local invariances.

The importance of JP-model can be found in a different con-
text. It has been conjectured that the super-algebra OSp(1|32) is
the full symmetry group of M-theory [10,11]. It was pointed out
in [12] that CS theory for the super-algebra OSp(32|1) appears to
contain the so-called M-theory matrix models [13]. Therefore the
aforementioned advantage of JP-model over CS theory mandates
the supersymmetrization of the original JP-model [2].

The original JP-model [2] has the following lagrangian in our
notation:
Lp=—3Fu)? = 3G+ imetPF,, B, (11)
where D, is the usual Yang-Mills (YM) gauge-covariant derivative,
while Fy,' and Gy,' are the field strengths of A,' and B,! de-
fined by [2]

Fu' = +20, A0 +mfH%A, 1A% (1.2a)
Guv' =+2Dy By + fUKF I CK
=+Qd, B +2mflIK AT B,
+ fUEF Il (1.2b)
The vector B ,LI has its proper ‘gauge’ invariance:
8sBu'=Dup' . 8pCN =-mpX . (13)
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The latter transformation combined with the peculiar F A C-term
in (1.2b) maintains the invariance

835G’ =0 . (14)

After the recent development of non-Abelian tensor formula-
tions [14,15], the sophisticated structures (1.1) through (1.4) can be
now understood as a special case of more general ‘tensor hierarchy’
whose supersymmetrization has been also accomplished. There-
fore it is imperative to encompass the JP-model into this newly
developed formulation and also study it's supersymmetrization.
In passing, we note that the 4D formulation of non-Abelian ten-
sor multiplet [15] has three multiplets: vector multiplet (AM', A,
a tensor multiplet (Blw’, X’, @) and a compensator vector multi-
plet (C,L’,p’). These are 4D multiplets, and their 3D analogs are
respectively our present vector multiplet (VM) (AM’,A’), an ex-
tra vector multiplet (EVM) (B!, x") and the scalar multiplet (SM)
(C!, p!).! The fact that the compensator vector multiplet (C,,!, p!)
in 4D has its own kinetic term indicates the SM (C!, p!) in 3D
should have also its own kinetic terms to accomplish its super-
symmetrization, even though the original JP-model had no such a
kinetic term for the C'-field [2].

From this viewpoint, we first extend the original JP-model with
the kinetic term of the C'-field, and establish its consistency. We
refer to this bosonic model as the extended JP-model. Having ac-
complished this step, we next perform its N =1 supersymmetriza-
tion.

In the next section, we present the relevant details of the ex-
tended JP-model by including the kinetic term of the C’-field.
Subsequently, the super-invariant action is presented in Section 3.
We investigate the consistency of field equations in Section 4. In
Section 5, we perform superspace reformulation as an addition
confirmation on our component formulation. Concluding remarks
are given in Section 6.

2. Extended JP-model

As has been alluded to, we comply with the general pattern of
tensor-hierarchy formulations [14,15] by introducing the C!-kinetic
term?

Lp=—5 (F"’ = 3 (Gu)> — 3 (H,')?
+1me"PF, "B, . (2.1)
Here H,,! is the C'-field strength [2]

H,'=D,C"+mB," . (2.2)

Even though this modified field strength was introduced in the
original paper by Jackiw-Pi [2], the kinetic term of the C-field was
not explicitly introduced. As has been mentioned, this modification
is motivated by the recently-developed ‘tensor hierarchy’ formula-
tion [14,15], as a special case. Due to the modified field-strength
for C!, the original B,,'-field equation in [2] is modified to

57][)
§By!

=-D,G"! + I me"PF,,! —mH* =0 . (2.3)

The important consistency question is

T We introduce an auxiliary field f! later for off-shell formulation for the SM.

2 We assign the engineering dimension 0 (or 1/2) for fundamental bosons (or
fermions), so that our lagrangians have the dimension of (mass)?. We can recover
the usual (mass)* for dimensionless action Tjp =2 [ d3x Ljp, by using a constant
« with the dimension of length. Accordingly, the gauge-coupling constant m has the
dimension of mass.

? 81y
0<D, (w—Jpl) = —DuDyG* ! + LmelVP Dy Fypy!
n

—mD, H*!
=—2mflUKF,JGH K —mD, HFT . (2.4)

Note here that these remaining terms vanish exactly due to the
C'-field equation:

STip .
(S—lez—i—DMH“’—t—%f”KFWJG’“’K:O. (2.5)
In other words, (2.4) is recasted into
? 57]11 57]P )
0=D,|——)=-m|—)=0 .E.D. 2.6
()= on() 20 eny 26

The second equality here is only an identity, similar to the Bianchi
identity. _

Eq. (2.6) is also related to the invariance of our action Ijp under
the vectorial symmetry 85B,," in (1.3), 6sA," =0, and

8(Fu!, G, H')=1(0,0,0) . (2.7)

Because of this property, it is straightforward to confirm 55711) =0.
This action invariance leads to

7 81 1 (8T
SgTip = (8B,") (—>+(5,3C) —
8B, sCl

s STy
o [or()om ()]0 e

reproducing the previous result (2.6).

There is an alternative better method of variations for super-
symmetric variations which we present later. We can show that
the general variations of G and H-field strengths are

8G ' =+2D1 5By + 2 f X 5 A Y H K

— fUR@GChHELE (2.9a)
§H,'=+D,(5C"y +m@B,")
(B, =5B," - fl/KcIsA,%) . (2.9b)

According to (2.7), the first three terms of (2.1) are manifestly
invariant, while the mB A F-term yields

5(3me B, IF,y ) = +3me B, Fy!
+ImetP(5ALN Gy (2.10)

In other words, neither the bare B nor the bare C-field term arise
in_terms of the modified variation 6B, ', so that the invariance
8gljp = 0 becomes manifest.

3. N =1 superinvariant action

As has been mentioned, for supersymmetrization of the ex-
tended JP-model, we introduce the three multiplets: (i) VM
(A" AN, (i) EVM (B, !, x), and (iii) SM (C', p'; fT), where f!
is an auxiliary field, such that all of our multiplets are off shell. Our
total action I =k 2 [ d®x £ has the lagrangian

L=-3FuDH*+ 3P - LG+ 3 x'pxh
— 3 HD?+ 30D + gme By +mGlx )
+mx' oD+ 3D = 5 IR Yy pd) Fr®
_ %fl]K(XIyMXJ)HMK +%f1]1<(xlyuupj)cuv1<
4 ‘llh”’KL(XI}»K)(/_)]pL) _ 31_2 h”‘KL(XI)/M)\])()?K)/'MXL)
+ 36 "GO T XY (3.1)
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Table 1

DOF of our field content.
DOF before Absorptions Ayl Al B! x! c! o! f!
Physical 1 1 1 1 1 1
Unphysical & Physical 2 2 2 2 1 2 1
DOF after Absorptions Ayl A B! x! c! o! f!
Physical 1 1 2 2 0 0 0
Unphysical & Physical 2 2 3 4 0 0 1

In the unphysical and physical DOF after absorptions for the EVM and SM, the x
and p-fields form a Dirac fermion with 4 off-shell DOF.

where h!/-KL = fIJM fMKL “The definition of the field strengths F
and G are exactly the same as (1.2), while that of H is given by
(2.2). These field strengths satisfy their proper Bianchi identities:

DiuFup)'=0 . DpuGup' =+FI Fu/Hy
DyuHy'=+3imG,' . (3.2)

Similar to the previous section, the invariance 6gl = 0 under
B-transformation is easily confirmed.
Our action [ is also invariant under N =1 supersymmetry

SoAu' =+Eyuahy | (3.3a)
SoM =+1 (™ e)Fu (3.3b)
8o By =+@Eyux") — fFI @Eyual) ', SoBL =+@Eyuxh.

(3.3¢)

Sox' =+3 ("G

=3 UK eG) 06 = oGy e ] L (33d)
80C = +@Eph) | (3.3e)
Sop' =—(reH, —e fl =1 UK x Ky | (330)
8o f'=+@EPp") +m@Ex") — 3 FIXEy"™ x HF "

+£11fljl((€y;w)\])cﬂul<

+ TR KL @Ky RIAL sg(f—ﬁl,) (3.3g)

Notice that there is no fermionic-quadratic terms in g A, while Ap
or A -terms exist in §x and §p, respectively. They are determined

by the supersymmetric invariance §qI at Omd3) or O(m0d>4),
where the symbol @ stands for any fundamental field in our sys-
tem, which may contain derivative(s). Our multiplets VM and EVM
are all off-shell, as can readily be established by counting their de-
grees of freedom (DOF) 1+ 1 (on-shell), and 2 + 2 (on-shell). Our
SM has 1+ 1 (on-shell) and 2 + 2 (off-shell) DOF, because the aux-
iliary field f! carries one off-shell DOF. The C'-field plays the role
of Nambu-Goldstone field that is absorbed into the longitudinal
component of BM’ , making the latter massive. For completeness,
the DOF of our fields are listed in Table 1.

The invariance confirmation §gI = 0 is summarized as fol-
lows. They are confirmed order-by-order in terms of the power
of fundamental fields, such as ®2, ®3,.... First, at the quadratic
order, there are two categories of terms: (I) m®®2-terms and
(II) m ®2-terms. The sector (I) is rather a routine confirmation,
while there is one subtlety in sector (II), associated with the vari-
ation of the mF A B-term in the lagrangian. This is because §q Bul
in the first expression in (3.3c) contains the bare C-field. However,
as the arbitrary variation of the mF A B-term shows in (2.10), the
bare C-field term does not arise. Relevantly, the supersymmetry
transformation rule §q Bul is the second expression in (3.3c). This

is a common feature of a potential field whose field strength is a
modified (generalized) CS-term.

Second, the cubic-order terms are type (I) m®®3-terms and
type (II) m®3-terms. For the former, there are eight sectors
(i) xFH, (ii) pFG, (iii) AGH, (iv) AxDp, xpDx, or pADx,
(v) x fF, (vi) AfG, (vii) x fF, and (viii) A fG. The key relationships
needed are the Bianchi identities (3.2). The type (II) m ®>3-terms
have four sectors: (i) mrp?2, (i) max2, (iii) mpar? and (iv) mpx2.
The subtlety here is that some quadratic-fermion terms in g A,
8g x and xqp are all involved in these sectors, due to the exis-
tence of m(Fermion)?-terms in the lagrangian.

Third, the quartic terms are of the type m°®% and there
are seven sectors: (i) x2AF, (ii) A2xG, (iii) x2pH, (iv) p%xG,
(v) A2pH, (vi) p2AF, and (vii) pA%f. These determine the quad-
ratic-fermion terms in 8gX, 8o x and éq p, and quartic-fermion
terms in the lagrangian. After tedious cancellations and by the
use of the relationships, such as the Jacobi identity hU'/-KIL =
0, the final form of the lagrangian is obtained, e.g., the ab-
sence of the y2?p?-terms in the lagrangian, and the absence of
(Fermion)2-terms in 8q A. We have found that these structures are
uniquely determined by the cancellation of these terms at m®®#,
The f!-dependent terms cancel each other, justifying the pA%-term
in 8g f! and f'-linear term in 8q p'. As for all of the auxiliary-field
f!l-dependent terms in 8q I, they cancel themselves manifestly, if
we use the last expression of (3.3g).

As is the common feature of non-Abelian tensor theories
[14,15] (or extra vector as its special case), our lagrangian (3.1) has
terms that are not-renormalizable. This is established as follows.
In 3D, the most conventional physical dimension for a boson (or
a fermion) is 1/2 (or 1), so that the gauge-coupling constant has
dimension 0. Therefore, the cubic terms, e.g., fX(x'y"*’pI)F %
with the dimension 1+ 1+ 3/2=7/2 > 3, or the quartic terms,
e.g., W KLGIAKY (5] ply with the dimension 1 x 4 =4 > 3 are not
renormalizable.

However, we expect that the renormalizability of the super-
symmetric JP-model presented here will be much improved from
its original form due to supersymmetry, a feature common to all
supersymmetric theories. Typical examples are non-linear sigma-
models, which are originally not renormalizable, but become even
finite by supersymmetrization, such as finite N = 2 supersymmetric
sigma-models [16].

4. Consistency of field equations

We first list up the field equations of all of our fields obtained
from our action I of (3.1):

sl
ik A +my" — fUK @y H K
+ % ful((yuup])cwk + %hI],KL)\K([—)]pL)
— 16 h" oy xh
+1r LK G =0, (4.1a)

1
s = oA il mpt =g fUE G ol B

— 3 fUR QR H K — LR x DGRy Al

+ KL KGI =0 (4.1b)

3 These conventional dimensions are different from our engineering dimensions:
d =0 (or d =1/2) for bosons (or fermions).
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81
= = +pp' +my’ - Allf”K(VMUX]) F;WK

sp
+3 FI M) 6"
+ 1K K Gy =0, (4.1c)
sl 1 1 1
SAL! =—DyFI"" + 3 me!PG,)
= 3mpIR[ @y + Gy ) + @y |
81
+fI]KG;w]HUK+fI]KC]( 1()
8B,
=3 KDy Gy 0"
+ IR KGRy by g ) = 0, (4.1d)
1 I 1 I 1
m =—DUG'uv —I-jmé"prUp —mH“
— 3mf Gy
—ymfED, Gy ey =0 (41e)
81 _
o =+D,LH’” +%fI]I(Flw]Gp,vK . %mfljl(()hjpl()
+ %hu,m I:(X]J/M)LK)_’_()—(])/;/_XK)] HML
+ %hlj,l(L(ij;wpK) Fle _ %hlj,l(L()_LKyuvpL) FWJ
_; 8l 81
1 plIK (7] eIk (71 00 ) =
+5f (A 57(1<>+2f (x 3X1<> =0, (411
81 .
STCIZ'HMZO . (4.1¢g)

As has been discussed in the non-supersymmetric case with
(2.6), the most crucial consistency question is whether the diver-
gence of the B,L’—ﬁeld equation vanishes. This is confirmed as the
supersymmetric generalization of the purely bosonic case. The re-

sult is simply
81 81
02D, (——)=-m(—)=0
8B,! sc!

Note that the middle equality here is an identity, and no field
equation has been used. This is formally the same as the non-
supersymmetric case (2.6), since this is nothing but the §g-invariance
of our action:

; sl 51

Note that the second equality in (4.2) can be explicitly con-
firmed for our field equations (4.1). In particular, when we ap-
ply the covariant derivative to (4.1e), all terms cancel themselves,
including the quartic-fermion terms. Crucial cancellations occur
where identities are needed, such as

(4.2)

(4.3)

(kLI LT Gy, 59 Gety M =01 (442)
kMG N G My =0, (4.4b)

where k!J-K.LM = fIJN ¢NKP ¢PLM These identities are confirmed
by the relationships

[J.K1.LM — klj,[K,LM] =0 kl],K.LM — _kLM,K,Ij

(4.5)

We can also confirm similar consistency for the A M’ -field equa-
tion:

k

2 81\ ks O ke 81
O—D“(W)—‘mf Ty A R V574
Sl )
_ rz1( 22 ) _ flJkyl
mp (8/3") d (68#)

sl
+ f%p,, [Cf (—)} =0.
8BMK

This is nothing but the YM-gauge invariance

—

(4.6)

SaAu' =Dyal,

sa By, €' Al X!, phy = —mfURad (B, K, K, AKX XK, p)

(4.7)

of our action:

81 81
_ I I
8ol =+(aAp’) <5Aul) + By <—SBMI)
81 - 8l 81
I I =1
+ (8« C )<_5 i + (8ot )<_8X1>+(5ax )(_5)?'>

(4.8a)

- Sl 8l 81
—mflUKg )| k(2L k(% —x (o
kel | 7(55) 1" () <7 (5

(4.8b)

By the use of (4.3), the (§,C)(81/8C)-term in (4.8a) is replaced by
m~la CD(81/8B)-term, which in turn is replaced by

Sl 81
1JK ] ~K _ flJK 1 J
et () =% o[ ¢ (55 |

I
— (H,' —mB,ﬂ)(W)} ., (4.9)

and the last mB(81/8B)-term will be canceled by the like-term in
(4.8a). Eventually, we end up with (4.8b).

5. Superspace reformulation

We can reconfirm our component-field result in terms of su-
perspace language [17]. The basic ingredients are the superfield
strengths Fagp!, Gag! and Ha',? satisfying the Bianchi identities

1 1
+5V[AFBC)I - ET[AB\DFDK)I =0, (5.1a)

1 1 1
+§V[AGBC)I - iT[ABlDGDlC)I - Ef”KF[AB\]HlC)K =0, (5.1b)
+V[AHB)I — TABCHCI —mGABI =0. (5.1¢)
4 We use the superspace indices A, B, ... = (a,«), (b,B), ... for bosonic

a, b, ... =0, 1, 2 and fermionic @, 8, ... = 1, 2 coordinates. Our antisym-
metrization in superspace is such as Mjagy = Mag — (—=1)*B Mgy, etc.
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The constraints at engineering dimensions 0 <d <1 are

Fotbl = _(Vb)tl)a s

He' = _,OotI ) (5.2a)
(5.2b)

Tap’ =+2(¥Vap .

Gab' =~ x e
Varg' =+5 (v DapFed' + Capf'

Vaxp' =+3 v DapGed + 3 f11KCap(! p*)

— 3 I )ap My ") (5.2¢)

Vaps' = —(VapHe' + 5 CapI )+ Cap f' (5.2d)

Other independent components, such as Fa,g’ are all zero. The con-
straints at d = 3/2 are

Vaf'= =" —mxa + 3 FIX@P %) )g FocK

— PG = TR K p K G Yy, (5.3a)
VaFoe' =+pVarDa | (5.3b)
VaGbe' =+ VexHa — f”K(J/[bMJ)aH|cJK

+ F% oo Fpc (5.3¢)
VoHy! = =Vppo! =m(pxNa - (5.3d)

The p,!-field equation is obtained by the ‘on-shellness’ require-
ment f! =0, as usual in off-shell formulation with auxiliary fields.
The resulting p,'-field equation is consistent with (4.1c) in compo-
nent which is skipped here. As for A’ and x!-field equations, they
can be obtained only by the action invariance. We can confirm
their consistency with supersymmetry by taking their spinorial
derivative V,, yielding the bosonic field equations (4.1d) through
(41g).

Note that the off-shell structure of our system is consistent
with our own component result. This also provides the supporting
evidence of the total consistency of our system. From this view-
point, we regard our system is the unique supersymmetrization of
the original JP-model [2], which necessitates the existence of the
physical SM (C!, po': f1).

6. Concluding remarks

In this Letter, we have accomplished the N =1 off-shell super-
symmetrization of the extended JP-model [2]. This necessitates the
introduction of the kinetic term of the C!-field.

There are two reasons for our introduction of the kinetic term
of the C'-field: First, it is motivated by the recent development
of tensor hierarchy formulation [14,15]. The consistency of the
BMI -field equation is associated with the §g-invariance of our ac-
tion which is not well stressed in the original JP-model [2]. Second,
it excludes the extra constraint f/JKF,,JG#"K =0, because this
served as the obstruction to supersymmetrizations.

We have also confirmed the total consistency of our supersym-
metric system. We have confirmed the identities (4.2) and (4.6)

by using our field equations in (4.1). In particular, these consisten-
cies have been explicitly confirmed even with non-trivial fermionic
quartic terms. Involving all field equations, this non-trivial con-
firmation procedure has established the total consistency of our
system. Additional confirmation has been performed also in super-
space.

Our supersymmetric system is non-trivial. We can not simply
truncate the kinetic term of the SM (C', p!; f), because the action
invariance no longer respects invariance for the truncated system.
This again justifies the necessity of the kinetic terms for C' and p'.

We believe our present result should help in generating other
and new consistent topological massive non-Abelian gauge theories
and their supersymmetrization.
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