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Abstract 

Recently many attentions has been placed to process transitions, startups and restarts, since these abnormalities often 
arrives to the loss of production time, undesirable and not detectable variability increasing withproduction of off-
grade materials. The present research deal with the modeling a continuous soft-drinks bottling process by a 
multivariate approach based on the 3-Way PLS. Process was modeled, filtering the high grade of autocorrelation and 
cross-correlation within the studied variables. The responsible variables for that behavior were detected by 3-Way 
PLS which could be useful to separate autocorrelated sources of variability enable to control this kind of  industrial 
process. 
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1. Introduction 

Statistical Process Control (SPC) has emerged as a tool for distinguishing between common causes and 
assignable causes, where the first are associated with inherent variability of the process, while assignable 
causes are occasional and generally unpredictable, due to abnormalities, which were not included in the 
process [1-3]. In this sense, the SPC provides a permanent and intelligent monitoring system, able to 
detect early the onset of changes in the process, identifying their origins. 

Actually, industrial process are characterized by increased production speeds and highly automated 
plants, where large amounts of data are generated, being essential a simultaneous monitoring including all 
variables for the assessment of global process behavior, unlike the classical univariate approach [4]. An 
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alternative to this conditions have been Multivariate Statistical Process Control (MSPC) methods based 
on Latent Projections [5]. These are able to deal simultaneously with large amounts of data and variables 
with high dimensionality and collinearity, extracting information about the direction of process variations 
[6]. These tools include the Principal Component Analysis (PCA) and Partial Least Squares Regression 
(PLS) and the so-called Multi-Way methods given the configuration in three dimensions with that process 
information [7]. In addition, in the last years, many attentions has been placed on process transitions, 
startups and restarts, since these abnormalities often arrives to loss in production time, increasing 
undesirable and not detectable variability, production of off-grade materials and inconsistent 
reproducibility of product grades [8, 9]. 

In this context, this research aims to analyze a continuous bottling process of carbonated beverages, 
configured as a sequential set of batches and variable length defined by a group of anomalies (detentions 
and unplanned restarts mainly) identified throughout the process. For this purpose, a 3-way PLS method 
was applied to assess the effect of these seeming transitions as a source of assignable causes (changes to 
the pattern of natural variability). 

 
 

Nomenclature 

 

CO2: CO2 content 

°Brix:  Sugar content 

Cont.Net: Net Content 

T1,T2,T3: Washer temperature 

T4: Rinse Temperature 

INC: Closing Torque 

AP: Opening Torque 

PCA: Principal Component Analysis 

3-way-PLS: 3 way Partial Least Square Regression 

MSPC: Multivariate Statistical Process Control 

 

2. Materials and Methods 

A systematic sampling every 15 minutes was applied in a continuous bottling process (13,500 
bottles/min) for a carbonated soft-drink (PET 2 L). Totally 4608 cases were sampled and registered in a 4 
months of production, reduced to 1938. 

Measured variables: In each sample were assess a group of quality variables: CO2 content, sugar 
content (ºBrix) and Net content. Likewise, a process variables: washer temperatures (T1, T2 and T3), 
rinse temperature (T4), closing torque (INC) and opening torque (AP). 

The statistical methods used were: T2 Hotelling Control Chart, Multivariable EWMA Chart, Principal 
Component Analysis (PCA) and 3-way Partial Least Squares Regression (3-Way-PLS). 

All calculations and adjustments were made with SIMCA-P+ 12 (Umetrics, Umeå, 2009) and 
Statgraphics XVI (StatPoint Technologies Inc., 2009). 
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3. Results and Discussion 

First, a missing data and abnormal situations identification stage was performed, thus a group of 
transitions conditions (in general changes from grade to grade, start-up of a continuous process, restart of 
a continuous process that went on hold due to a technical problem, and so on) was detected. Thus the 
dataset was “sliced” in a total of 23 batches chronologically sequential.  

Then, the T2-Hotelling and Multivariate EWMA charts ( =0.25) were performed, since the two of ones 
are relatively knows in industry use (Fig. 1). 

 
 

 

Fig.1( a) T2 Hotelling Chart ( b) Multivariate EWMA Chart 

 
The T2-Hotelling shown almost the 95 % the data was out of control, while Multivariate EWMA chart 

shown over 60 % of the dataset with a several shift. A later verification of the dataset, case by case for 
each variable, confirms that the ratio of real out of control signals considering the quality set points was 
very low. 

Afterwards, a Principal Components Analysis (MSPC-PCA) was performed over the 23 batches trying 
to filter the autocorrelation detected (Fig. 2). The MSPC-PCA model retained 3 explaining the 78.2 % of 
total variance, while the predictive capability of the model was 31.8% (adequate value). The model was 
validated by a full cross-validation routine [10]. 

As seen in Fig.2, the MSPC-PCA shows the multivariate elliptic control limit at 95 % of confidence. 
The two main factors form a 2 dimensions orthogonal hyperplane. Factor 1 (37.8 % explained variance) 
arranges the samples according to high to low performance in quality variables (Net Content, CO2 and 
ºBrix); whilst factor 2 (25.8% explained variance) clearly shows “pseudo stratums” associated to the 
autocorrelation of T1, T2 and T3. The behavior can be better explained by Contribution Plot (Figure 3). 
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Fig.2 Principal Component Analysis (MSPC-PCA) 

 
The 3-Way PLS model extracted 4 factors with a R2X = 77.1 % (Total X variance explained by the 

model) and a R2Y = 89.7 % (Total Y variance explained by the model), while the predictive capability of 
the model was 89.5 %. The model was validated by a full cross-validation routine to minimize the PRESS 
function (prediction residual sum of squares function) and avoid the overfit of the model. A detailed and 
separated in depth analysis by each factor was performed (Fig. 4 and 5). 

Fig. 4 shows the evolution of the batches itemized by factor t1 with no signals of out of control, as well 
as is clear the weight of variables T1 and T2 respect all others. Since the temperatures variables are so 
autocorrelated and t1 is the main orthogonal factor (with bigger explained variance), is possible to affirm 
that this strong source of noise is hiding the variability of the quality variables, hampering the proper 
control of the process. 
 
 

Observations with high  
Net content (Group a) 

Observations with low Net 
content (Group b) 
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Fig. 3 (a) Contribution Plot for high level of Net Content (and CO2) cases (b) Contribution Plot for low Net Content (and CO2 and 
ºBrix) cases (c) Contribution Plot for high autocorrelation between T1 and T2 (d) Contribution Plot for low autocorrelation between 
T1 and T2 (and high T3) 

*Note: All plots in standard deviation units. 

 

Fig. 4 Evolution of the 23 batches itemized by factor t1  
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Fig.5 shows the evolution of the batches itemized by factor t2 (considering that all the variability 
associated to factor t1 was filtered). Clearly the behavior pattern is not constant and shows some several 
shifts, even now with moderate signals of out of control of batches 5, 11, 13 and 14, and strong signals of 
out of control of batches 19, 20, 21, 22 and 23. Thus the source of variability of this situation is associated 
mainly to Net Content, CO2 and ºBrix, scilicet the quality variables of the final product. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         

Fig. 5. Evolution of the 23 batches itemized by factor t2  

 

4. Conclusion 

MSPC-PCA and 3-Way PLS methods appear like useful tools to separate autocorrelated sources of 
variability, it enable to apply a proper routine to control industrial process. 
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