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Bayesian Graphical Models for Genomewide Association Studies
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As the extent of human genetic variation becomes more fully characterized, the research community is faced with the
challenging task of using this information to dissect the heritable components of complex traits. Genomewide association
studies offer great promise in this respect, but their analysis poses formidable difficulties. In this article, we describe a
computationally efficient approach to mining genotype-phenotype associations that scales to the size of the data sets
currently being collected in such studies. We use discrete graphical models as a data-mining tool, searching for single-
or multilocus patterns of association around a causative site. The approach is fully Bayesian, allowing us to incorporate
prior knowledge on the spatial dependencies around each marker due to linkage disequilibrium, which reduces consid-
erably the number of possible graphical structures. A Markov chain-Monte Carlo scheme is developed that yields samples
from the posterior distribution of graphs conditional on the data from which probabilistic statements about the strength
of any genotype-phenotype association can be made. Using data simulated under scenarios that vary in marker density,
genotype relative risk of a causative allele, and mode of inheritance, we show that the proposed approach has better
localization properties and leads to lower false-positive rates than do single-locus analyses. Finally, we present an appli-
cation of our method to a quasi-synthetic data set in which data from the CYP2D6 region are embedded within simulated
data on 100K single-nucleotide polymorphisms. Analysis is quick (<5 min), and we are able to localize the causative site

to a very short interval.

Recent advances in high-throughput technologies and the
decrease in genotyping costs have made genomewide as-
sociation (GWA) studies a feasible tool in the search for
the genetic determinants of complex diseases. Several such
studies are under way, and more are being planned,
whereas some results from studies involving large panels
of markers have already been published.'~ The rationale
behind this approach is as follows. Genetic variants that
affect a trait of interest arose sometime in the past on a
unique stretch of the genome, which was then transmitted
to subsequent generations together with flanking variants.
Subjects who show variability in a trait of interest, say
cases and controls in a study of a dichotomous trait, may
be genotyped at a large number of marker positions,
mostly SNPs. We expect the genotypes of the two groups
to be different around the causative mutation(s) because
cases share the ancestral disease-bearing segment(s). We
are thus able to map indirectly the (unobserved) disease-
susceptibility variants without making any assumptions
about their genomic location. The approach provides a
more precise localization of disease-susceptibility loci (on
the order of a few thousand base pairs) than do linkage
studies (millions of base pairs), because chromosomes
from unrelated individuals have undergone more recom-
bination events than can be found in any realistically sized
pedigree."*

Since routine complete resequencing of the genome is
still not economically feasible, the success of this strategy
relies, to a large extent, on exploitation of the linkage
disequilibrium (LD) structure in human populations. Sev-

eral coordinated efforts have therefore been initiated to
characterize the patterns of human variation along the
genome.”'° The goal is to refine our understanding of the
extent of genetic variation, both within and across pop-
ulations, and to inform the selection of markers that cap-
ture most of the genetic variability with minimal loss of
information to detect disease-susceptibility loci in GWA
studies. In practice, the complexity of human evolution
introduces many uncertainties."" For instance, the corre-
lation between adjacent markers or LD along the genome
is characterized by considerable spatial heterogeneity, as
reported by several recent studies.'®'>™'* Regions of tightly
linked markers corresponding to haplotype blocks of lim-
ited diversity are interspersed with uncorrelated markers,
whereas long-range correlations are not uncommon. This
has important consequences for our ability to find disease-
causing variants. Earlier estimates of the marker density
necessary to capture enough genomic variation to be use-
ful in GWA studies appear to have been optimistic, with
phase II of the HapMap project now aiming to identify a
panel of variants with an average spacing of 1 kb.® Thus,
a typical GWA study is now expected to contain data on
=500K assayed SNPs for several thousand individuals. In-
creasing the marker density is not a panacea, however. If
the disease allele has a very low penetrance or is very rare,
then the chance of detecting an association even in rea-
sonably sized and well-designed studies is low, indepen-
dent of the marker density.'

It is nevertheless clear that the potential of GWA studies
cannot be fully assessed until statistical methods are avail-
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able that are able to cope with the size and complexity of
the data sets currently being collected. It is desirable that
these methods be able to account for the network of local
dependencies between markers that are due to LD. On a
smaller genomic scale, it may be more powerful to con-
sider multi-SNP interaction terms, since these may capture
better the pattern of alleles present around the causative
mutation (and therefore better discriminate affected in-
dividuals and unaffected ones), as opposed to considering
each SNP on its own. The latter strategy, in fact, though
scalable to large data sets, fails, by definition, to fully ex-
ploit the LD information around a causative locus, if pre-
sent. In the literature, there are several approaches for
multilocus SNP haplotype analysis that exploit the excess
haplotype sharing among cases around a causative lo-
cus.””?' However, because of their computational com-
plexity, these approaches are best suited for candidate-
gene studies or studies in small candidate regions and will
not scale to the size of the data sets discussed above.

The aim of this article is to provide methods that allow
for multilocus local dependencies while addressing the
scalability problem. Because genotype data collected in
GWA studies lack phase information, we focus on case-
control studies with unphased genotype data and model
the joint distribution of markers and the disease-status
indicator as a discrete graphical model. The nodes in the
graph correspond to the genotype data and the case-con-
trol indicator. The structure of dependencies both between
markers (due to LD) and between markers and disease
status is then learned from the data by use of a fully Bayes-
ian approach. We are thus able to make probabilistic state-
ments about the presence of certain edges or associations,
with primary interest in those involving marker nodes and
the disease-status indicator.

The Bayesian approach has several advantages. For ex-
ample, we are able to incorporate useful prior knowledge
of the domain by restricting, for each marker node, the
network of dependencies to nodes within a suitable phys-
ical distance. This reduces considerably the space of pos-
sible graphs and, in turn, the computational complexity,
making the approach feasible in large candidate-gene
studies or GWA studies. The performance of the proposed
method is evaluated using data simulated under different
scenarios that vary in marker density, disease-allele fre-
quency, genotype relative risks (GRRs), and mode of in-
heritance. The results are compared with single-locus x*
tests for association of each SNP marker with disease, an
approach frequently used with large data sets. Considering
a single disease variant, we show that our approach leads
to a smaller localization error and fewer false-positive re-
sults than does a single-locus analysis. Scalability to GWA
studies is investigated by applying the approach to a quasi-
synthetic data set of 100K simulated markers with em-
bedded real SNP genotype data from a 890-kb region flank-
ing the CYP2D6 gene, which is recessively associated with
drug metabolism.??

In the next section, we describe the use of discrete

graphical models for mining genotype-phenotype asso-
ciations, while introducing the notation used throughout.
A brief overview of Bayesian learning of discrete graphs
relevant to this work is also given. That section is followed
by the results from the simulation studies and the appli-
cation to the synthetic CYP2D6 data. We end with a dis-
cussion of the advantages and disadvantages of the pro-
posed method.

Methods
Graphical Models for Case-Control Data

We assume that genotype data are available from a sample of
N, cases and N, controls at a set of M marker loci, where usually
N, = N.. The binary variable D, € {0,1} is a disease-status indicator
for individual i with observed value d; = 0 for a control and
d; = 1 otherwise, i = 1,...,N = N, + N.. The genotype G,,, of sub-
ject i at locus m takes value 1 if heterozygous and O (2) if ho-
mozygous wild-type (mutant), m = 1,...,M. For large M, a con-
venient and powerful framework for representing the joint
distribution of G,D over such a complex discrete domain is given
by discrete graphical models.****

A discrete graph G is a mathematical object composed of a set
V of vertices and a set £ of edges comprising ordered pairs of
elements from V. In particular, a graph G = (V,€) is called “un-
directed” if the edges present have no orientation—that is, if
(a,b) e &implies (b,a) € & The vertices in the graph correspond
to discrete random variables, and edges in the graph describe the
dependencies and conditional independencies that hold for the
joint distribution of variables corresponding to its vertices. In
practice, the set of dependencies £ is seldom known in advance,
and the objective is then to learn it from the data exploiting the
graphical formalism. In so-called decomposable graphs, the joint
distribution over the vertices V can be factorized on lower-
dimensional subspaces, thus simplifying considerably the task of
evaluating and comparing different dependence structures or
models. Thus, if the set V and the number of possible graphical
models is large, as is the case here, it is desirable to restrict the
class of graphs to decomposable ones only. To ensure this, any
graph considered should satisfy the running intersection property
and admit a junction tree representation.

For M = 9 marker loci and the disease-status indicator D, an
example of a decomposable graph is given in figure 1. Also shown
are the two disconnected junction trees corresponding to the
graph, or its junction forest. The graph is composed of five
cliques—that is, complete subgraphs with all edges present—

Figure 1. A decomposable graph and the junction tree repre-
sentation of its cliques C,,...,C, and separators S, ...,Ss, with
S, = S, = [. Nodes correspond to genotype data at nine marker
loci and a disease-status indicator.
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Figure 2. Example of a current graph in the MCMC scheme. A
region of six markers is depicted with two cliques containing non-
contiguous markers, C, = (G,,6,,6,) and C, = (G,,G,,G4). C, has
label T = 1 because it contains markers currently associated with
D, 8, = (Gs,G5).

given by the sets of vertices C,, ...,Cs. The running intersection
property is satisfied if, given the set of cliques of a graph C =
{C,,...,C,}, there is an ordering of the cliques such that, for each
C, the set of vertices in common with previous cliques, S, =
C,n(C,0..0C¢C.,), is contained in at least one previous clique.
This is trivially satisfied for the graph in figure 1, which also shows
the separator sets S, with S, and S; empty sets. The edges in the
graph and the running intersection property imply the condi-
tional independence between cliques given separators between

-log10(P)
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them. Then, if R, = (C\S) defines the residue of each clique, the
joint probability distribution of the vertices factorizes into

fi6,0) = [177|5)

or, equivalently,
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r

where R is the number of nonempty separator sets. Thus, the
joint distribution associated with a decomposable graph factor-
izes conveniently into local terms corresponding to marginal den-
sities of cliques and separators.>**’

It should be noted that decomposable graphs are limited in the
number of dependencies and conditional independencies that
they can represent, compared with, say, hierarchical log-linear
models.”® However, if the number of vertices is very large, as is
the case here, the process of probabilistically learning the graph
from data is only possible by acceptance of restrictions of this
sort.

Because all variables are discrete, we adopt a multinomial like-
lihood for the cell entries of the multiway contingency tables
obtained by cross-classifying the genotype and disease-status data
(G,D) according to the variables in cliques and separators.
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Figure 3.

Single-locus x* tests (— log,, (P)), marginal posterior probability (prob) of association and Bayes factor in favor of association

from the graphical modeling approach for a single replicated data set in the simulation study. The location of the disease-susceptibility

locus is indicated with an asterisk (*).
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Figure 4. Mean location error (kb) as a function of mean false-positive rates over 100 replicated data sets and a dominant model.
The shaded boxes above each panel identify the different scenarios, which vary in GRR at a single causative site (1.5, 2, and 2.5) and
SNP marker density (1 every 5 kb, 2.5 kb, and 1.7 kb). The MAF of the high-risk variant is 0.05.

Namely, by indicating with m,, and n,, the vector of cell entries
of the contingency table corresponding to generic clique and
separator C, and S, for graph g, with corresponding vectors of cell
probabilities 0, and 0,,, respectively, from equation (1), the mul-
tinomial likelihood is

L

T 1167

fG,D]6,g) = F— .
I [T

r=1k

The subscript for 6 in the previous expression highlights the de-
pendence of the factorization on the current graph g.

Mining Disease-Susceptibility Loci

Here, we develop a Markov chain-Monte Carlo (MCMC) algo-
rithm to sample over the space of possible discrete graphs while
exploiting our prior knowledge of the domain. The edges in the
graph model the joint distribution of G and D, with links between
variables in G reflecting the LD structure and those between G
and the case-control indicator D suggesting the presence of a
disease-susceptibility locus in the region. Our approach is fully
Bayesian and yields a sample of graphical models from their pos-
terior distribution conditional on the data, f(g| G,D).>*** From the
posterior sample of graphs, the frequency with which any two
vertices are connected by an edge is then an estimate of the pos-
terior probability of association. We therefore exploit the well-
known Bayesian model-averaging paradigm, which has been
shown to perform better than methods that rely on a single “best”
model, in both classification and variable-selection tasks.?*' Note

that we marginalize over the cell probabilities in ¢, with the aim
of comparing the different structures—and, in particular, iden-
tifying which SNPs are associated with D—rather than making
probabilistic statements about the distribution of the vector 6. In
the literature on graphical models, this is referred to as “quali-
tative learning.” Indeed, constructing MCMC schemes that sam-
ple over the space of both graphical structures and parameter
values in large domains is extremely difficult and unfeasible in
data-mining applications.*

The MCMC scheme uses a Metropolis-Hastings (MH) algorithm
as used by Madigan and York,?* with proposal distributions tuned
to reflect the spatial features of the data at hand induced by the
LD structure. Given the current graphical structure g, a new struc-
ture, &, is proposed and accepted with probability

1 [EIGDSIH|
f(glGD)f(X\g)

f&Dfrsis)
V6Dl
where f(g) is the prior distribution over structures, f(:|-) is the
proposal distribution, and f(G,D|g) is the marginal likelihood or
evidence for graph g.

For computational efficiency, it is critical to be able to calculate
quickly the latter quantity, which is given by the integral

fiG,D|g) = f f(G,D16,9)f(6|8)d6 .

To this end, the Bayesian metric is particularly convenient since,
under the assumption of a Dirichlet prior on the vector of pa-

www.ajhg.org

The American Journal of Human Genetics

Volume 79  July 2006 103



0o 20 60 80 100
1 1 | L1 1 1 1 L1 1 1 1 |
5 Kb 25Kb 17Kb 5 Kb 2.5Kb 17Kb 5Kb 25Kb 17 Kb
15 20 25 1.5 20 25 15 20 25
250 - -
200 ! i -
"
150 {\ ‘ -
i) 1
100 - See i " L
50 e CEL e ST -
g O q 5||2b Z:Jl:b |;5KI: SWK: !:gb 1;:'} [
=
= 7 - 250
Q
i - . - 200
5 : ‘
S | ‘ \ - 150
8 _ - ¢ - 100
§ T bt S i — - 50
= ] 5% 75%0 TR 5K 755 LT o
15 20 25 1.5 20 25
\
250 - \ . L
200 q i L
150 — \\V\*\ . :~ B
A
\
100 Willg it 1 o L
i ] —
50 - - - el -
0 A = L

0 20 40 60 80 100

False-negative rates over replicates (%)

Figure 5.

Graphical model

Mean location error (kb) as a function of false-negative rates over 100 replicated data sets and a dominant model. The

shaded boxes above each panel identify the different scenarios, which vary in GRR at a single causative site (1.5, 2, and 2.5) and SNP
marker density (1 every 5 kb, 2.5 kb, and 1.7 kb). The MAF of the high-risk variant is 0.05.

rameters 0, the integral above is available analytically (appendix
A). It is also important that any proposed graph is decomposable,
because this facilitates considerably the computation of the mar-
ginal likelihood corresponding to any new model, as discussed
in the previous section. To ensure this, the MCMC scheme allows
only moves in the space of graphs admitting a junction tree rep-
resentation, which are decomposable by construction. Thus,
rather than modifying the current graph by deleting or adding a
single edge at a time, our moves involve changes to the set of
cliques and separators.

To reduce the space of possible graphs, any clique contains
vertices corresponding to a set of possibly noncontiguous markers
within a prespecified maximum physical distance. That is, we
restrict the set of markers forming each clique to the set of neigh-
boring but not necessarily adjacent markers, where a neighbor-
hood is defined in terms of physical distance. The rationale is to
incorporate prior knowledge on the extent of LD likely to exist
around a marker while allowing a degree of flexibility by consid-
ering cliques of noncontiguous markers.

A clique is then assigned a dichotomous label, T e {0,1}, de-
pending on whether edges are present between any of its marker
vertices and the disease-status indicator D (T = 1 if one or more
edges are present and O otherwise). An example of a possible
graph is given in figure 2, in which, for clarity, we have omitted
edges connecting all vertices within cliques. The graph con-
tains three cliques, C, = (G,,G;,G,), C, = (G,,Gs,G;), and C; =
(Gs,Gg,D), and a separator, S; = (Gs,G,). In this setting, the sep-
arator expresses the multilocus association of genotype variables
5 and 6 with disease status and determines the label T = 1 cur-
rently assigned to C, (shaded in the fig.). Finally, we limit the

maximum size of each clique and separators, to mitigate problems
of sparsity in the corresponding multiway contingency tables.
Again, this is not a very restrictive assumption, considering recent
results showing that clusters of densely connected common SNPs
appear, in most cases, to be made up of few SNPs (<10), with
minor differences across ethnic groups.'®

Given the current set of cliques and separators, our sampler
then iterates randomly among the following three steps:

Merge step: Propose to merge a randomly selected clique with
another clique in the graph. The latter is chosen at random
from the set of cliques containing neighboring markers of
the former. If the size of the proposed clique exceeds the
maximum size allowed, the move is rejected.

Split step: Propose to split, at random, a randomly selected
clique into two. The move is not attempted if the selected
clique is a singleton.

Switch-clique-label step: Propose to change the label T of a
randomly selected clique. If the chosen clique contains edges
between any marker vertices and D (T = 1), these are deleted
in the proposed graph. Otherwise (T = 0), we select a set of
separator markers at random from the vertices of the clique
and propose edges between them and D. Note, in passing,
that the correct retrospective likelihood for case-control as-
certainment is used here when evidence is contrasted in favor
of or against association—that is, P(G | D) versus P(G) for the
chosen clique.

It is trivial to check that the resulting graph is decomposable,
since all moves involve changes to the set of cliques and sepa-

104 The American Journal of Human Genetics

Volume 79 July 2006 www.ajhg.org



0.6 0.7 0.8 0.9 1.0
1 1 1 1 1 1 1 1 1 1
SKb 25KD 17KD SKb 25 KD 17KD SKb 2Z5KD 17KD
15 70 i TS FE i Ts F i
5 - [
4 - =
2 - =
0 - T ; r
5 Kb 25Kb 1TKb 5 Kb 25Kb 1.7 Kb
w 15 20 25 15 20 25
@
=
=2 A L 6
w0
Qo
=%
i Q4
@2
©
&
Sl I 2
©
]
= | == 2 -0
5¥D TE T 5ED FETSY T
15 20 2.5 15 20 25
6 - =
4 - =
2 o I
0 - =

0.8 0.9 1.0

0.6 0.7

Proportion of maximum Bayes factor or minimum P

Figure 6.

Mean false-positive results as a function of proportion of maximum Bayes factor or minimum P value over 100 replicated

data sets and a dominant model. Different curves correspond to different window widths around a single causative site used to define
a false-positive result: =60 kb (straight lines), +30 kb (dashed lines), and 20 kb (dotted lines). The shaded boxes above each panel
identify the different scenarios, which vary in GRR (1.5, 2, and 2.5) and SNP marker density (1 every 5 kb, 2.5 kb, and 1.7 kb). The
MAF of the high-risk variant is 0.05. Triangles represent single-locus x? analyses; circles represent the Bayesian graphical model.

rators. Thus, in each case, the marginal likelihood needed to com-
pute the MH ratio in equation (2) is available in closed form.
Further details on the prior used over graphical structures, pro-
posal distributions, and expressions for the acceptance probabil-
ities are given in appendix A. At the core of our approach is,
therefore, the joint modeling of the dependence structure be-
tween genotype markers (the merge and split steps) and between
these and the disease-status indicator (the switch-clique-label
step). By allowing for single- and multilocus marker-disease as-
sociations within each clique, we are able to filter out false as-
sociation better than by using single-locus methods. This is be-
cause, with a high-density marker map, we expect single- and
multilocus association to be more prevalent around a true disease-
susceptibility locus than around a spurious association. Model
averaging then captures this self-reinforcing process as, for each
marker, the marginal posterior probability of association is cal-
culated by combining the single- and multilocus evidence around
that position. Specifically, we use Bayes factors to measure evi-
dence in favor of association versus no association; this is given
by the ratio of posterior to prior odds of association and can be
interpreted as the amount by which the prior odds get updated
by observation of the data.*

Results
Simulation Studies

In this section, we present results from simulation studies
investigating the performance of the proposed method

under various scenarios. In particular, we consider dif-
ferent marker densities, GRRs, minor-allele frequencies
(MAFs) of the high-risk variant, and disease models. Data
consist of unphased genotype data in a 1-Mb region for
~1,000 cases and controls. The average SNP density is 1
every 5 kb, 2.5 kb, and 1.6 kb, corresponding to data sets
with 200, 400, and 600 markers, respectively. For each SNP
density, the MAF at the causative locus is either 5% or
10%, and the disease model is dominant or recessive. The
genotype data are obtained as follows. We first simulate
a pool of 20,000 haplotypes, using the program MS, which
simulates a coalescent process with recombination.** The
recombination rate is 1 per cM over the region considered,
and the mutation rate is 10~ per bp for an effective pop-
ulation size of 10,000. Haplotypes are paired to form di-
plotypes of 10,000 subjects. A causative locus is then se-
lected at random from the set of segregating sites having
an MAF of 0.05 or 0.1, depending on the scenario con-
sidered, whereas markers are drawn from the set of seg-
regating sites having MAF >0.1, to reflect ascertainment
bias. For the dominant model, the case or control status
is assigned using the liability model

fiD = 1]G) = ¢[a+ BZ(G)] ,
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Mean location error (kb) as a function of mean false-positive rates across 100 replicated data sets and a dominant model.

The shaded boxes above each panel identify the different scenarios, which vary in GRR at a single causative site (1.5, 2, and 2.5) and
SNP marker density (1 every 5 kb, 2.5 kb, and 1.7 kb). The MAF of the high-risk variant is 0.10.

where @ is the distribution function of the standard nor-
mal density, 8 € {0.21,0.37,0.51}, corresponding to GRRs
of 1.5, 2.0, and 2.5, respectively, and Z(G) =0 or 1 if
G = 0or G e {1,2}, respectively. The value of o was chosen
to give a disease prevalence of 10%. A similar scheme ap-
plies to data generated under a recessive mode of inher-
itance. In all cases, the presence of a single unmeasured
causative SNP is assumed. The maximum clique size is
restricted to eight vertices, whereas, for the merge step,
the neighborhood of each marker includes markers within
100 kb on either side.

We compare our method with single locus x” tests for
marker-disease association across 100 replicated data sets,
using various performance criteria. The results from a sin-
gle data set are shown in figure 3, with the position of the
causative mutation indicated by an asterisk (*) on the X-
axis. For the Bayesian analysis, the graph shows both the
marginal posterior probability of association and the Bayes
factor in favor of association at each marker position. The
former is obtained from the posterior sample of graphs
that contain an edge between D and the marker in ques-
tion, and the latter is given by the posterior-to-prior ratio
of the probability of association with disease, where we
assume a Poisson prior on the number of associated
cliques, f( T) = Pois(0.01) (see appendix A). This ensures
that almost all prior mass is put on the event of no as-
sociation while the possibility of having one or more as-

sociated sites in the region is allowed for. Note how, for
this particular data set, the single-locus x> analysis fails
completely to identify the causative locus, whereas the
multilocus Bayesian analysis works well.

The first comparison is in terms of mean location error
versus the number of false-positive or false-negative re-
sults, where, for each replicated data set, we define the
location error as follows. We consider a window of width
W = 40 kb centered around the causative locus, and, for
a given threshold P value for the x* or a given threshold
Bayes factor for the graphical model, the location error is
the mean absolute physical distance between the causative
site and those with smaller P values or larger Bayes factors,
respectively. Similarly, for the same thresholds, we define
as false-positive results those sites with smaller associated
P values or larger Bayes factors lying outside the window
M,,. The false-positive rate R, of each replicate is then
R, = M, /M. False-positive rates and mean location errors
are then determined for different threshold P values or
Bayes factors varying over a grid of values between 0.05
and 0.05/M (corresponding to a conservative Bonferroni
correction) for the P values or between 1 and 2,000 for
the Bayes factors.

Figure 4 presents the overall mean location error versus
mean false-positive rates across the 100 replicates for both
methods and a dominant disease model. The shaded boxes
above each panel identify the combination of marker den-
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MAF of the high-risk variant is 0.10. Triangles indicate single-locus x* analyses; circles indicate the Bayesian graphical model.

sity and GRR used in that panel. Lower rates correspond
to lower threshold P values or larger Bayes factors. As ex-
pected, the overall mean location error corresponding to
any rate decreases with increasing GRRs (by row from left)
or increasing marker density (by column from bottom).
However, for any false-positive rate, the Bayesian graphical
method yields a lower location error independent of rel-
ative risks and marker density.

The Bayesian approach also outperforms the single-
locus analysis when the location error versus the number
of false-negative results over replicates is considered, as
shown in figure 5. A false-negative result is now defined
as a replicate for which the marker with minimum P value
or maximum Bayes factor is not in the window of width
W = 40 kb around the causative site. The location error
is defined as before, and the plots in figure 5 are obtained
by varying the threshold P values or Bayes factors. In this
case, too, the location error tends to decrease with in-
creasing marker density and GRR, and, as expected, the
maximum false-negative rates decrease with increasing
GRRs. The trade-off between false-positive rates, false-neg-
ative rates, and location error is evident from figures 4 and
5: small location error and false-positive rates can be
achieved using a stringent threshold P value or large Bayes
factor (left side of fig. 4) at the cost of higher false-negative

rates (right side of fig. 5). Note also the large location error
even for reasonable false-negative rates and especially for
low GRRs.

The graphical modeling approach discriminates true sig-
nals better than do single-locus association tests, as shown
in figure 6. The figure plots the mean number of false-
positive results over replicated data for different thresh-
olds, where these are now defined as proportions of the
minimum P value or maximum Bayes factor starting from
0.6. We condition on replicates where the high-risk var-
iant is correctly identified; thus, all curves converge at
x = 1. In each panel, different curves correspond to three
different window widths, W = +20 kb, =50 kb, and
+100 kb, around the causative location for both the
Bayesian graphical approach and the single-locus x> anal-
ysis. For any relative risk, marker density, and window
width, the Bayesian graphical model has higher specificity
compared with single-locus x* tests, since the correspond-
ing curves are closer to the X-axis.

Similar conclusions were obtained when the MAF of the
causative allele was increased to 0.10 and when the data
were simulated under a recessive model. Here, we report
the results for the location error versus false-positive rates
and sensitivity plots in figures 7 and 8, respectively, for a
dominant model and an MAF of 0.10. The decrease in
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Figure 9. Trace plots of the number of cliques in a graph cor-

responding to a single simulation replicate, from two separate
MCMC runs. The initial clique size is 1 (solid line) or 8 (dotted
line).

mean number of false-positive results with increasing MAF
of the high-risk allele is evident in comparison of figures
6 and 8.

All the analyses were conducted on an Intel Xeon 1.7-
GHz processor with 1 Gb of memory, and, for each rep-
licated data set in the simulations, the method took ~60
s to run for 10° iterations. Convergence was assessed by
monitoring the trace of the number of cliques. This is
shown in figure 9 for a single replicate. An R package®
called “Graphminer” that implements the methods de-
scribed is available at C.].V.’s Web site (see Web Resources).

Scalability to GWA Studies

To assess the scalability of the graphical modeling ap-
proach to GWA studies, we applied the method to a sim-
ulated data set consisting of 100K SNPs, obtained by bind-
ing together 1-Mb regions simulated in MS as described
in the previous section. We embedded in this region real
genotype data from the CYP2D6 gene on chromosome
22q13,?* which has a confirmed role in drug metabolism
and is frequently used as a benchmark for testing LD-
mapping strategies.'”*® In particular, data for 32 markers

across a 890-kb region flanking CYP2D6 are available for
1,018 subjects. The region is characterized by a 403-kb
high-LD interval that includes CYP2D6, which makes fine
mapping of the gene difficult. The phenotype defining the
disease status is poor drug metabolism, and all 41 cases
are homozygous for one of the four functional variants at
CYP2D6, which are not included in the analysis. Here, we
consider only the 268 individuals for whom complete
marker genotype data are available. Figure 10 shows the
Bayes factors in favor of association and the —log,,(P)
from the single-locus analyses of marker SNPs. The bottom
graphs zoom in on the CYP2D6 region, with the location
of the 32 markers indicated on the X-axis and that of
CYP2D6 at 525.3 kb indicated by the vertical dashed line.
Despite the high-LD interval stretching from about posi-
tion 280 kb to position 680 kb (on the local scale at the
bottom of fig. 10), the Bayesian graphical model narrows
the location of the functional variant to a region of 79 kb
(from 500 kb to 579 kb) when markers with associated
Bayes factors >200 are considered. This compares favora-
bly to the support intervals reported by Maniatis et al.,*
who used a method based on LD units (172 kb), and by
Morris et al.,'” who used a coalescent-based hidden Mar-
kov model approach (185 kb). Interpolating the positions
of the markers with the highest Bayes factors gives an
estimated location of the causative site at 525 kb. Finally,
in the single-locus analysis, two markers—in addition to
the markers close to CYP2D6—reached genomewide sig-
nificance (based on the conventional threshold of P<
1077), yielding false-positive results. Admittedly, the signal
in the CYP2D6 region is much higher than are those like-
ly to characterize complex diseases. Nevertheless, our
method provides a computationally feasible approach to
assess multilocus patterns of association with disease,
which can be important in fine localization of causative
variants as for CYP2D6.

For the results in figure 10, the Bayesian method took
~4 min to run for 107 iterations on the central processing
unit detailed above. In general, we expect the approach
to scale to GWA studies, since computational time in-
creases linearly with the number of markers if one is not
interested in gene-gene interactions. Also, computational
time can be reduced if the MCMC run is parallelized by
chromosome on a cluster.

Discussion

Although conventional single-locus SNP association tests
are widely used in the analysis of large genetic association
studies, by definition they are unable to explain the effects
of SNP combinations shared among affected individuals
around a disease-susceptibility locus. Such effects may be
important for identification of low-risk variants underly-
ing complex traits and help filter out true associations
from false-positive associations. Multilocus or haplotype-
based analyses are likely to be more appropriate in such
settings because they attempt to capture the evolution of
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Bayes factors in favor of association and single-locus — log,, (P) of association for a synthetic data set composed of 100K

SNPs and embedded real data from the CYP2D6 gene region. The location of CYP2D6 is indicated by an asterisk (*) and dashed vertical
line on the two X-axes in each panel.

disease chromosomes, with different degrees of approxi-
mation. Approaches that fully utilize haplotype infor-
mation require phase information that is not available in
population-based studies, and, although methods for sta-
tistical phase assignment are well established, they do not
scale to the size of the data sets being collected in GWA
studies. Using unphased genotype data and inspired by
data-mining methods, our approach aims to identify pat-
terns of multilocus genotypes around a causative mutation
that discriminate cases and controls, in a computationally
efficient way. We do so by modeling the joint distribution
of markers and disease-status indicator in a discrete graph.
Our fully Bayesian approach allows us to make probabi-
listic statements about the patterns of dependencies and
conditional independencies supported by the data and to
incorporate prior knowledge to restrict the search space.
No attempt is made to model the genealogies of the sam-

www.ajhg.org

pled individuals; therefore, we implicitly assume a star-

shaped genealogy. This is an almost inevitable simplifying

approximation to achieve computational efficiency, since

methods based on the reconstruction of ancestral recom-
bination graphs will not scale to GWA studies.'” Although
the approach is particularly suited for the analysis of large
data sets, it can be used to analyze data from small ge-
nomic regions, and we expect the advantage over single-

locus methods to hold. The method is not limited to un-
phased genotype data; it can be applied to phased data,
with graph vertices then being binary variables corre-
sponding to SNP alleles on each haplotype.

The use of graphical models for the analysis of genetic
association studies is not new. Thomas and Camp®” used
graphical models to learn the pattern of allelic association
between markers, and Thomas®® extended the approach
to include association with a phenotype. Their method
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differs from ours in the metric used to score structures,
and they consider only small regions in tight LD. The
extension to unphased genotype data in the work of
Thomas®® includes steps involving the possible phase as-
signments that are unlikely to be computationally feasible
in GWA studies. However, those same authors envisaged
the possible use of the graphical models for LD mapping
over large regions, provided the set of possible edges of
the graph is restricted sensibly a priori, as we do here.
Applications of the related class of Bayesian networks to
candidate-gene association studies have also been re-
ported by Rodin and Boerwinkle® and Sebastiani et al.*

Several extensions to our method are possible—for ex-
ample, to deal with missing genotype or phenotype data.
If the mechanism driving the missing data process is at
random, in the sense of Little and Rubin,*' and the rate
of missingness does not differ across cases and controls,
a possible approach is to augment the set of levels of each
categorical variable by one, to include a missing status,
and then to proceed as for complete data. Otherwise, the
analysis should be restricted to subjects with complete
records, although simple multiple-imputation schemes
could also be used.

Inclusion of categorical environmental predictors into
the analysis is straightforward, whereas continuous vari-
ables including a continuous phenotype could be discre-
tized using suitable cutoff points. Nodes corresponding to
these variables may be given a distinguished status in the
graph, and a set of additional proposal moves could assess
the importance of any gene-environment interactions.
This is unlike directed Bayesian networks in which con-
tinuous nodes can be assumed to have a Gaussian distri-
bution conditional on the discrete parent nodes. However,
even in that setting, some evidence suggests that a simple
discretization of the continuous variables yields good re-
sults in terms of structure learning.*” Extensions to allow
for gene-gene interactions are also possible, although prior
information on plausible gene regulatory networks rele-
vant to the phenotype under study would certainly be
needed, to limit the space of possible dependencies. A
higher-level neighborhood may then be defined for each
clique incorporating knowledge of such long-range de-
pendencies. In summary, graphical models provide a
promising framework for the analysis of GWA studies, and
further research on their use in this setting is warranted.
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Appendix A
Details of the MCMC Algorithm

Here, we give details of the MCMC algorithm used to
sample from the target distribution of graphical structures

conditional on genotype data and disease-status indicator
f(¢|G,D). The evidence in favor of association between the
generic marker genotype G; and D is given by the sum of
the posterior probability of graphs containing an edge be-
tween the two nodes:

ﬂ%MGD%=2KM%mﬂGD%

where I(-) is the indicator function, equal to 1 if graph g
contains an edge between G; and D and 0 otherwise. This
is then estimated from a posterior sample of graphs of size

Q as

- 1
Wo|GD) = & 2 1V5%] -

Q%
An MH algorithm is used to sample from f(g|G,D) oc

f(G,D|9)f(g). Given the current structure g, a new structure
¢ is proposed and accepted with probability

| [GDIASfs19)]
Y RGDl9fefsls)]

For decomposable models, the marginal likelihood
fiG,D|g) = [f(G,D]0,9)f(0]g)d0 factorizes conveniently in
terms corresponding to cliques and separators.

For generic graph g, under the assumption of a multi-
nomial likelihood for the vectors of cell entries m,, and
n,, of the contingency tables obtained by cross-classifying
the data according to the variable in each clique and sep-
arator C,andS,, I =1,...,L,r = 1,...,R, with corresponding
vectors of cell probabilities 0, and 0,, the (log) marginal
likelihood is given by

g’

> log
1

f [ Toy:ft6,0d6,, ] ng

fﬁm,mﬂ

The conjugate hyper-Dirichlet prior f{0]g) = B(e ) 11,6,
then leads to the following analytical expression for the
(log) marginal likelihood, where we drop the dependence
on g for clarity:

B(al +mn)
B(e)

B(a +n,)

Zlo B(a)

21

’

where B(a) = {[|,'(a)} /T {Z;a}. The hyper-Dirichlet prior
ensures that the marginal cell probabilities correspond-
ing to cliques and separators have proper Dirichlet
distributions.>*?*3%*3

The prior on graphical structures f(g) involves distri-
butional assumptions only about the total number of
cliques that contain vertices associated with D, T. = >, T,
where T, = 0 if C, does not comprise vertices currently as-
sociated with D and T, = 1 otherwise. In the simulation,
we assume T ~ Pois(0.01).

Finally, changes to the current graph involve randomly
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selecting a clique C, and proposing, at random, a merge,
split, or switch-clique-label step. By indicating with
neigh(C) the set of cliques in the neighborhood of C, as
defined in the “Methods” section, and with S, the possibly
empty separator set involving C, and D, the Hastings ratios
fig18)/f(¢'|g) corresponding to the three steps are as
follows.

1. Merge step:

L|neigh(¢)|
(L - 1) |C,|

2. Split step:

LG
(L +1)|neigh(C)|

3. Switch-clique-label step:

1 Pois(T —1,0.01)

ic| ™ Pois(T,0.01) T =1
|Si|

¢ l\Pois(T +1,001)
(ISII Pois(T,0.01) it T, =0

In the simulations, the total chain length was 10° itera-
tions, and the posterior sample of graphical structures is
obtained by saving graphs every 1,000 iterations after a
burn-in period of 200,000 iterations.

Web Resource
The URL for data presented herein is as follows:

C.J.V.'s Web site, http://homepages.Ishtm.ac.uk/"encdcver/ (for R
package Graphminer)
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