

Bull. Sci. math. 136 (2012) 731-744

www.elsevier.com/locate/bulsci

Global stability for the multi-channel Gel'fand–Calderón inverse problem in two dimensions

Matteo Santacesaria

Centre de Mathématiques Appliquées, École Polytechnique, 91128, Palaiseau, France Received 27 January 2012 Available online 3 February 2012

Abstract

We prove a global logarithmic stability estimate for the multi-channel Gel'fand–Calderón inverse problem on a two-dimensional bounded domain, i.e., the inverse boundary value problem for the equation $-\Delta \psi + v\psi = 0$ on *D*, where *v* is a smooth matrix-valued potential defined on a bounded planar domain *D*. © 2012 Elsevier Masson SAS. All rights reserved.

MSC: 35R30; 35J10

Keywords: Gel'fand-Calderón inverse problem; Multi-channel Schrödinger equation; Global stability

1. Introduction

The Schrödinger equation at zero energy,

$$-\Delta \psi + v(x)\psi = 0 \quad \text{on } D \subset \mathbb{R}^2, \tag{1.1}$$

arises in quantum mechanics, acoustics and electrodynamics. The reconstruction of the complexvalued potential v in Eq. (1.1) through the Dirichlet-to-Neumann operator is one of the most studied inverse problems (see [11,10,4,12–14] and references therein).

In this article we consider the multi-channel two-dimensional Schrödinger equation, i.e., Eq. (1.1) with matrix-valued potentials and solutions; this case was already studied in [15,14]. One of the motivations for studying the multi-channel equation is that it comes up as a 2D-approximation for the 3D equation (see [14, Section 2]).

E-mail address: santacesaria@cmap.polytechnique.fr.

^{0007-4497/\$ –} see front matter @ 2012 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.bulsci.2012.02.004

The main purpose of this paper is to give a global stability estimate for this inverse problem in the multi-channel case.

Let *D* be an open bounded domain in \mathbb{R}^2 with C^2 boundary and $v \in C^1(\overline{D}, M_n(\mathbb{C}))$, where $M_n(\mathbb{C})$ is the set of the $n \times n$ complex-valued matrices. The Dirichlet-to-Neumann map associated with *v* is the operator $\Phi : C^1(\partial D, M_n(\mathbb{C})) \to L^p(\partial D, M_n(\mathbb{C})), p < \infty$, defined by

$$\Phi(f) = \frac{\partial \psi}{\partial \nu} \bigg|_{\partial D},\tag{1.2}$$

where $f \in C^1(\partial D, M_n(\mathbb{C}))$, ν is the outer normal of ∂D and ψ is the $H^1(\overline{D}, M_n(\mathbb{C}))$ -solution of the Dirichlet problem

$$-\Delta \psi + v(x)\psi = 0 \quad \text{on } D, \qquad \psi|_{\partial D} = f; \tag{1.3}$$

here we assume that

0 is not a Dirichlet eigenvalue of the operator $-\Delta + v$ in D. (1.4)

This construction gives rise to the following inverse boundary value problem: given Φ , find v.

This problem can be considered as the Gel'fand inverse boundary value problem for the multichannel Schrödinger equation at zero energy (see [8,11]) and can also be seen as a generalization of the Calderón problem for the electrical impedance tomography (see [5,11]). Note also that we can think of this problem as a model for monochromatic ocean tomography (e.g., see [2] for similar problems arising in this type of tomography).

In the case of complex-valued potentials the global injectivity of the map $v \to \Phi$ was first proved for $D \subset \mathbb{R}^d$ with $d \ge 3$ in [11] and for d = 2 with $v \in L^p$ in [4]: in particular, these results were obtained by the use of global reconstructions developed in the same papers. The first global uniqueness result (along with an exact reconstruction method) for matrix-valued potentials was given in [14], which deals with C^1 matrix-valued potentials defined on a domain in \mathbb{R}^2 . A global stability estimate for the Gel'fand–Calderón problem with $d \ge 3$ was first found by Alessandrini in [1]; this result was recently improved in [12]. In the two-dimensional case the first global stability estimate was given in [13].

In this paper we extend the results of [13] to the matrix-valued case. We do not discuss global results for special real-valued potentials arising from conductivities: for this case the reader is referred to the references given in [1,4,10-13].

Our main result is the following:

Theorem 1.1. Let $D \subset \mathbb{R}^2$ be an open bounded domain with a C^2 boundary, $v_1, v_2 \in C^2(\bar{D}, M_n(\mathbb{C}))$ two matrix-valued potentials which satisfy (1.4), with $||v_j||_{C^2(\bar{D})} \leq N$ for $j = 1, 2, and \Phi_1, \Phi_2$ the corresponding Dirichlet-to-Neumann operators. For simplicity we also assume that $v_1|_{\partial D} = v_2|_{\partial D}$ and $\frac{\partial}{\partial v}v_1|_{\partial D} = \frac{\partial}{\partial v}v_2|_{\partial D}$. Then there exists a constant C = C(D, N, n) such that

$$\|v_{2} - v_{1}\|_{L^{\infty}(D)} \leq C \left(\log\left(3 + \|\Phi_{2} - \Phi_{1}\|^{-1}\right) \right)^{-\frac{3}{4}} \left(\log\left(3\log\left(3 + \|\Phi_{2} - \Phi_{1}\|^{-1}\right) \right) \right)^{2},$$
(1.5)

where $\|\cdot\|$ is the induced operator norm on $L^{\infty}(\partial D, M_n(\mathbb{C}))$ and $\|v\|_{L^{\infty}(D)} = \max_{1 \leq i, j \leq n} \|v_{i,j}\|_{L^{\infty}(D)}$ (likewise for $\|v\|_{C^2(\overline{D})}$) for a matrix-valued potential v.

This is the first global stability result for the multi-channel ($n \ge 2$) Gel'fand–Calderón inverse problem in two dimensions. In addition, Theorem 1.1 is new also for the scalar case, as the estimate obtained in [13] is weaker. We remark, in particular, that this result is true in the special case when $v_1 \equiv v_2 \equiv \Lambda \in M_n(\mathbb{C})$ in a neighborhood of ∂D (situation which appears in the approximation of the 3D equation, see [14, Remark 3 and Section 2]).

Instability estimates complementing the stability estimates of [1,12,13] and of the present work are given in [10,9].

The proof of Theorem 1.1 is based on results obtained in [13,14], which take inspiration mostly from [4] and [1]. In particular, for $z_0 \in D$ we use the existence and uniqueness of a family of solutions $\psi_{z_0}(z, \lambda)$ of Eq. (1.1) where in particular $\psi_{z_0} \rightarrow e^{\lambda(z-z_0)^2}I$, for $\lambda \rightarrow \infty$ (where *I* is the identity matrix). Then, using an appropriate matrix-valued version of Alessandrini's identity along with stationary phase techniques, we obtain the result. Note that this matrix-valued identity is one of the new results of this paper.

A generalizations of Theorem 1.1 in the case where we do not assume that $v_1|_{\partial D} = v_2|_{\partial D}$ and $\frac{\partial}{\partial v}v_1|_{\partial D} = \frac{\partial}{\partial v}v_2|_{\partial D}$, is given in Section 5.

This work was fulfilled in the framework of research under the direction of R.G. Novikov.

2. Preliminaries

In this section we introduce and give details on the above-mentioned family of solutions of Eq. (1.1), which will be used throughout the paper.

We identify \mathbb{R}^2 with \mathbb{C} and use the coordinates $z = x_1 + ix_2$, $\overline{z} = x_1 - ix_2$ where $(x_1, x_2) \in \mathbb{R}^2$. Let us define the function spaces $C_{\overline{z}}^1(\overline{D}) = \{u: u, \frac{\partial u}{\partial \overline{z}} \in C(\overline{D}, M_n(\mathbb{C}))\}$ with the norm $\|u\|_{C_{\overline{z}}^1(\overline{D})} = \max(\|u\|_{C(\overline{D})}, \|\frac{\partial u}{\partial \overline{z}}\|_{C(\overline{D})})$, where $\|u\|_{C(\overline{D})} = \sup_{z \in \overline{D}} |u|$ and $|u| = \max_{1 \le i, j \le n} |u_{i,j}|$; we also define $C_{\overline{z}}^1(\overline{D}) = \{u: u, \frac{\partial u}{\partial \overline{z}} \in C(\overline{D}, M_n(\mathbb{C}))\}$ with an analogous norm. Following [13,14], we consider the functions:

$$G_{z_0}(z,\zeta,\lambda) = e^{\lambda(z-z_0)^2} g_{z_0}(z,\zeta,\lambda) e^{-\lambda(\zeta-z_0)^2},$$
(2.1)

$$g_{z_0}(z,\zeta,\lambda) = \frac{e^{\lambda(\zeta-z_0)^2 - \lambda(\zeta-\bar{z}_0)^2}}{4\pi^2} \int_D \frac{e^{-\lambda(\eta-z_0)^2 + \lambda(\bar{\eta}-\bar{z}_0)^2}}{(z-\eta)(\bar{\eta}-\bar{\zeta})} d\operatorname{Re} \eta d\operatorname{Im} \eta,$$
(2.2)

$$\psi_{z_0}(z,\lambda) = e^{\lambda(z-z_0)^2} \mu_{z_0}(z,\lambda),$$
(2.3)

$$\mu_{z_0}(z,\lambda) = I + \int_D g_{z_0}(z,\zeta,\lambda)v(\zeta)\mu_{z_0}(\zeta,\lambda) \, d\operatorname{Re}\zeta \, d\operatorname{Im}\zeta,$$
(2.4)

$$h_{z_0}(\lambda) = \int_D e^{\lambda(z-z_0)^2 - \bar{\lambda}(\bar{z} - \bar{z}_0)^2} v(z) \mu_{z_0}(z, \lambda) \, d\operatorname{Re} z \, d\operatorname{Im} z,$$
(2.5)

where $z, z_0, \zeta \in D$, $\lambda \in \mathbb{C}$ and I is the identity matrix. In addition, Eq. (2.4) at fixed z_0 and λ , is considered as a linear integral equation for $\mu_{z_0}(\cdot, \lambda) \in C_{\overline{z}}^1(\overline{D})$. The functions $G_{z_0}(z, \zeta, \lambda)$, $g_{z_0}(z, \zeta, \lambda), \psi_{z_0}(z, \lambda), \mu_{z_0}(z, \lambda)$ defined above, satisfy the following equations (see [13,14]):

$$4\frac{\partial^2}{\partial z \partial \bar{z}} G_{z_0}(z,\zeta,\lambda) = \delta(z-\zeta), \qquad (2.6)$$

$$4\frac{\partial^2}{\partial\zeta\,\partial\bar{\zeta}}G_{z_0}(z,\zeta,\lambda) = \delta(\zeta-z),\tag{2.7}$$

$$4\left(\frac{\partial}{\partial z} + 2\lambda(z - z_0)\right)\frac{\partial}{\partial \bar{z}}g_{z_0}(z, \zeta, \lambda) = \delta(z - \zeta),$$
(2.8)

$$4\frac{\partial}{\partial\bar{\zeta}}\left(\frac{\partial}{\partial\zeta}-2\lambda(\zeta-z_0)\right)g_{z_0}(z,\zeta,\lambda)=\delta(\zeta-z),\tag{2.9}$$

$$-4\frac{\partial^2}{\partial z \partial \bar{z}}\psi_{z_0}(z,\lambda) + v(z)\psi_{z_0}(z,\lambda) = 0, \qquad (2.10)$$

$$-4\left(\frac{\partial}{\partial z}+2\lambda(z-z_0)\right)\frac{\partial}{\partial \bar{z}}\mu_{z_0}(z,\lambda)+\nu(z)\mu_{z_0}(z,\lambda)=0,$$
(2.11)

where $z, z_0, \zeta \in D$, $\lambda \in \mathbb{C}$, δ is the Dirac delta. (In addition, we assume that (2.4) is uniquely solvable for $\mu_{z_0}(\cdot, \lambda) \in C_{\overline{z}}^1(\overline{D})$ at fixed z_0 and λ .)

We say that the functions G_{z_0} , g_{z_0} , ψ_{z_0} , μ_{z_0} , h_{z_0} are the Bukhgeim-type analogues of the Faddeev functions (see [14]). We recall that the history of these functions goes back to [7,3].

Now we state some fundamental lemmata. Let

$$g_{z_0,\lambda}u(z) = \int_D g_{z_0}(z,\zeta,\lambda)u(\zeta) \, d\operatorname{Re}\zeta \, d\operatorname{Im}\zeta, \quad z \in \bar{D}, \ z_0,\lambda \in \mathbb{C},$$
(2.12)

where $g_{z_0}(z, \zeta, \lambda)$ is defined by (2.2) and *u* is a test function.

Lemma 2.1. (See [13].) Let $g_{z_0,\lambda}u$ be defined by (2.12). Then, for $z_0, \lambda \in \mathbb{C}$, the following estimates hold

$$g_{z_0,\lambda} u \in C^1_{\bar{z}}(\bar{D}), \quad \text{for } u \in C(\bar{D}), \tag{2.13}$$

$$\|g_{z_0,\lambda}u\|_{C^1(\bar{D})} \leq c_1(D,\lambda) \|u\|_{C(\bar{D})}, \quad for \ u \in C(\bar{D}),$$
(2.14)

$$\|g_{z_0,\lambda}u\|_{C^{1}_{\bar{z}}(\bar{D})} \leq \frac{c_2(D)}{|\lambda|^{\frac{1}{2}}} \|u\|_{C^{1}_{\bar{z}}(\bar{D})}, \quad for \ u \in C^{1}_{\bar{z}}(\bar{D}), \ |\lambda| \ge 1.$$

$$(2.15)$$

Given a potential $v \in C_{\bar{z}}^1(\bar{D})$ we define the operator $g_{z_0,\lambda}v$ simply as $(g_{z_0,\lambda}v)u(z) = g_{z_0,\lambda}w(z)$, w = vu, for a test function u. If $u \in C_{\bar{z}}^1(\bar{D})$, by Lemma 2.1 we have that $g_{z_0,\lambda}v: C_{\bar{z}}^1(\bar{D}) \to C_{\bar{z}}^1(\bar{D})$,

$$\|g_{z_0,\lambda}v\|_{C^1_{\bar{z}}(\bar{D})}^{op} \leq 2n \|g_{z_0,\lambda}\|_{C^1_{\bar{z}}(\bar{D})}^{op} \|v\|_{C^1_{\bar{z}}(\bar{D})},$$
(2.16)

where $\|\cdot\|_{C_{\bar{z}}^{1}(\bar{D})}^{op}$ denotes the operator norm in $C_{\bar{z}}^{1}(\bar{D})$, $z_{0}, \lambda \in \mathbb{C}$. In addition, $\|g_{z_{0},\lambda}\|_{C_{\bar{z}}^{1}(\bar{D})}^{op}$ is estimated in Lemma 2.1. Inequality (2.16) and Lemma 2.1 imply the existence and uniqueness of $\mu_{z_{0}}(z,\lambda)$ (and thus also of $\psi_{z_{0}}(z,\lambda)$) for $|\lambda| > \rho(D, K, n)$, where $\|v\|_{C_{\bar{z}}^{1}(\bar{D})} < K$.

Let

$$\mu_{z_0}^{(k)}(z,\lambda) = \sum_{j=0}^{k} (g_{z_0,\lambda}v)^j I,$$

$$h_{z_0}^{(k)}(\lambda) = \int_{D} e^{\lambda(z-z_0)^2 - \bar{\lambda}(\bar{z}-\bar{z}_0)^2} v(z) \mu_{z_0}^{(k)}(z,\lambda) d\operatorname{Re} z d\operatorname{Im} z,$$

where $z, z_0 \in D, \lambda \in \mathbb{C}, k \in \mathbb{N} \cup \{0\}$.

Ŀ

Lemma 2.2. (See [13].) For $v \in C^1_{\overline{z}}(\overline{D})$ such that $v|_{\partial D} = 0$ the following formula holds

$$v(z_0) = \frac{2}{\pi} \lim_{\lambda \to \infty} |\lambda| h_{z_0}^{(0)}(\lambda), \quad z_0 \in D.$$
(2.17)

In addition, if $v \in C^2(\overline{D})$, $v|_{\partial D} = 0$ and $\frac{\partial v}{\partial v}|_{\partial D} = 0$ then

$$\left| v(z_0) - \frac{2}{\pi} |\lambda| h_{z_0}^{(0)}(\lambda) \right| \leq c_3(D, n) \frac{\log(3|\lambda|)}{|\lambda|} \|v\|_{C^2(\bar{D})},$$
for $z_0 \in D, \ \lambda \in \mathbb{C}, \ |\lambda| \ge 1.$
(2.18)

Let

$$W_{z_0}(\lambda) = \int_D e^{\lambda(z-z_0)^2 - \bar{\lambda}(\bar{z}-\bar{z}_0)^2} w(z) \, d \operatorname{Re} z \, d \operatorname{Im} z,$$

where $z_0 \in \overline{D}$, $\lambda \in \mathbb{C}$ and w is some $M_n(\mathbb{C})$ -valued function on \overline{D} . (One can see that $W_{z_0} = h_{z_0}^{(0)}$ for w = v.)

Lemma 2.3. (See [13].) For $w \in C^1_{\overline{\tau}}(\overline{D})$ the following estimate holds

$$\left|W_{z_0}(\lambda)\right| \leqslant c_4(D) \frac{\log(3|\lambda|)}{|\lambda|} \|w\|_{C^1_{\bar{z}}(\bar{D})}, \quad z_0 \in \bar{D}, \ |\lambda| \ge 1.$$

$$(2.19)$$

Lemma 2.4. (See [14].) For $v \in C^1_{\overline{z}}(\overline{D})$ and for $\|g_{z_0,\lambda}v\|^{op}_{C^1_{\overline{z}}(\overline{D})} \leq \delta < 1$ we have that

$$\|\mu_{z_0}(\cdot,\lambda) - \mu_{z_0}^{(k)}(\cdot,\lambda)\|_{C^1_{\bar{z}}(\bar{D})} \leqslant \frac{\delta^{k+1}}{1-\delta},$$
(2.20)

$$\left|h_{z_0}(\lambda) - h_{z_0}^{(k)}(\lambda)\right| \leq c_5(D, n) \frac{\log(3|\lambda|)}{|\lambda|} \frac{\delta^{k+1}}{1 - \delta} \|v\|_{C^1_{\bar{z}}(\bar{D})},$$
(2.21)

where $z_0 \in D$, $\lambda \in \mathbb{C}$, $|\lambda| \ge 1$, $k \in \mathbb{N} \cup \{0\}$.

The proofs of Lemmata 2.1–2.4 can be found in the references given.

We will also need the following two new lemmata.

Lemma 2.5. Let $g_{z_0,\lambda}u$ be defined by (2.12), where $u \in C^1_{\overline{z}}(\overline{D}), z_0, \lambda \in \mathbb{C}$. Then the following estimate holds

$$\|g_{z_0,\lambda}u\|_{C(\bar{D})} \leq c_6(D) \frac{\log(3|\lambda|)}{|\lambda|} \|u\|_{C^1_{\bar{z}}(\bar{D})}, \quad |\lambda| \ge 1.$$
(2.22)

Lemma 2.6. The expression

$$W(u, v)(\lambda) = \int_{D} e^{\lambda(z-z_0)^2 - \bar{\lambda}(\bar{z}-\bar{z}_0)^2} u(z)(g_{z_0,\lambda}v)(z) d\operatorname{Re} z d\operatorname{Im} z, \qquad (2.23)$$

defined for $u, v \in C^1_{\overline{z}}(\overline{D})$ with $\|u\|_{C^1_{\overline{z}}(\overline{D})}, \|v\|_{C^1_{\overline{z}}(\overline{D})} \leq N_1, \lambda \in \mathbb{C}, z_0 \in D$, satisfies the estimate

$$\left|W(u,v)(\lambda)\right| \leqslant c_7(D,N_1,n) \frac{(\log(3|\lambda|))^2}{|\lambda|^{1+3/4}}, \quad |\lambda| \ge 1.$$

$$(2.24)$$

The proofs of Lemmata 2.5, 2.6 are given in Section 4.

3. Proof of Theorem 1.1

We begin with a technical lemma, which will prove useful when generalizing Alessandrini's identity.

Lemma 3.1. Let $v \in C^1(\overline{D}, M_n(\mathbb{C}))$ be a matrix-valued potential which satisfies condition (1.4) (i.e., 0 is not a Dirichlet eigenvalue for the operator $-\Delta + v$ in D). Then tv , the transpose of v, also satisfies condition (1.4).

The proof of Lemma 3.1 is given in Section 4.

We can now state and prove a matrix-valued version of Alessandrini's identity (see [1] for the scalar case).

Lemma 3.2. Let $v_1, v_2 \in C^1(\overline{D}, M_n(\mathbb{C}))$ be two matrix-valued potentials which satisfy (1.4), Φ_1, Φ_2 their associated Dirichlet-to-Neumann operators, respectively, and $u_1, u_2 \in C^2(\overline{D}, M_n(\mathbb{C}))$ two matrix-valued functions such that

$$(-\Delta + v_1)u_1 = 0, \qquad (-\Delta + {}^tv_2)u_2 = 0 \quad on \ D,$$

where ^tA stand for the transpose of A. Then we have the identity

$$\int_{\partial D}^{t} u_2(z)(\Phi_2 - \Phi_1)u_1(z) |dz|$$

=
$$\int_{D}^{t} u_2(z) (v_2(z) - v_1(z))u_1(z) d\operatorname{Re} z d\operatorname{Im} z.$$
 (3.1)

Proof. If $v \in C^1(\overline{D}, M_n(\mathbb{C}))$ is any matrix-valued potential (which satisfies (1.4)) and $f_1, f_2 \in C^1(\partial D, M_n(\mathbb{C}))$ then we have

$$\int_{\partial D} {}^{t} f_2 \Phi f_1 |dz| = \int_{\partial D} {}^{t} \left({}^{t} f_1 \Phi^* f_2 \right) |dz|, \qquad (3.2)$$

where Φ and Φ^* are the Dirichlet-to-Neumann operators associated with v and tv , respectively (these operators are well defined thanks to Lemma 3.1). Indeed, it is sufficient to extend f_1 and f_2 in D as the solutions of the Dirichlet problems $(-\Delta + v)\tilde{f}_1 = 0$, $(-\Delta + {}^tv)\tilde{f}_2 = 0$ on D and $\tilde{f}_j|_{\partial D} = f_j$, for j = 1, 2, so that one obtains

$$\int_{\partial D} \left({}^{t}f_{2} \Phi f_{1} - {}^{t} \left({}^{t}f_{1} \Phi^{*}f_{2} \right) \right) |dz| = \int_{\partial D} \left({}^{t}f_{2} \frac{\partial \tilde{f}_{1}}{\partial \nu} - {}^{t} \left(\frac{\partial \tilde{f}_{2}}{\partial \nu} \right) f_{1} \right) |dz|$$
$$= \int_{D} \left({}^{t}\tilde{f}_{2} \Delta \tilde{f}_{1} - {}^{t} (\Delta \tilde{f}_{2}) \tilde{f}_{1} \right) d\operatorname{Re} z d\operatorname{Im} z$$
$$= \int_{D} \left({}^{t}\tilde{f}_{2} \nu \tilde{f}_{1} - {}^{t} \left({}^{t} \nu \tilde{f}_{2} \right) \tilde{f}_{1} \right) d\operatorname{Re} z d\operatorname{Im} z = 0$$

where for the second equality we used the following matrix-valued version of the classical scalar Green's formula:

$$\int_{\partial D} \left(t \left(\frac{\partial f}{\partial \nu} \right) g - t f \frac{\partial g}{\partial \nu} \right) |dz| = \int_{D} \left(t (\Delta f) g - t f \Delta g \right) d\operatorname{Re} z d\operatorname{Im} z, \tag{3.3}$$

for any $f, g \in C^2(D, M_n(\mathbb{C})) \cap C^1(\overline{D}, M_n(\mathbb{C}))$. Identities (3.2) and (3.3) imply

$$\int_{\partial D} {}^{t} u_{2}(z)(\Phi_{2} - \Phi_{1})u_{1}(z) |dz|$$

$$= \int_{\partial D} \left({}^{t} \left({}^{t} u_{1}(z)\Phi_{2}^{*} u_{2}(z) \right) - {}^{t} u_{2}(z)\Phi_{1} u_{1}(z) \right) |dz|$$

$$= \int_{\partial D} \left({}^{t} \left(\frac{\partial u_{2}(z)}{\partial v} \right) u_{1}(z) - {}^{t} u_{2}(z) \frac{\partial u_{1}(z)}{\partial v} \right) |dz|$$

$$= \int_{D} \left({}^{t} \left(\Delta u_{2}(z) \right) u_{1}(z) - {}^{t} u_{2}(z) \Delta u_{1}(z) \right) d\operatorname{Re} z d\operatorname{Im} z$$

$$= \int_{D} \left({}^{t} \left({}^{t} v_{2}(z) u_{2}(z) \right) u_{1}(z) - {}^{t} u_{2}(z) v_{1}(z) u_{1}(z) \right) d\operatorname{Re} z d\operatorname{Im} z$$

$$= \int_{D} {}^{t} u_{2}(z) \left(v_{2}(z) - v_{1}(z) \right) u_{1}(z) d\operatorname{Re} z d\operatorname{Im} z. \quad \Box$$

Now let $\bar{\mu}_{z_0}$ denote the complex conjugate of μ_{z_0} (the solution of (2.4)) for an $\underline{M}_n(\mathbb{R})$ -valued potential v and, more generally, the solution of (2.4) with $g_{z_0}(z, \zeta, \lambda)$ replaced by $\overline{g_{z_0}(z, \zeta, \lambda)}$ for an $\underline{M}_n(\mathbb{C})$ -valued potential v. In order to make use of (3.1) we define

$$u_1(z) = \psi_{1,z_0}(z,\lambda) = e^{\lambda(z-z_0)^2} \mu_1(z,\lambda),$$

$$u_2(z) = \overline{\psi}_{2,z_0}(z,-\lambda) = e^{-\overline{\lambda}(\overline{z}-\overline{z}_0)^2} \overline{\mu}_2(z,-\lambda),$$

for $z_0 \in D$, $\lambda \in C$, $|\lambda| > \rho$ (ρ is mentioned in Section 2), where we set $\mu_1 = \mu_{1,z_0}$, $\mu_2 = \mu_{2,z_0}$ for simplicity's sake and μ_{1,z_0} , μ_{2,z_0} are the solutions of (2.4) with v replaced by v_1 , tv_2 , respectively.

Eq. (3.1), with the above-defined u_1, u_2 , now reads

$$\int_{\partial D} \int_{\partial D} e^{-\bar{\lambda}(\bar{z}-\bar{z}_0)^2 t} \bar{\mu}_2(z,-\lambda) (\Phi_2 - \Phi_1)(z,\zeta) e^{\lambda(\zeta-z_0)^2} \mu_1(\zeta,\lambda) |d\zeta| |dz|$$
$$= \int_{D} e_{\lambda,z_0}(z)^t \bar{\mu}_2(z,-\lambda) (v_2 - v_1)(z) \mu_1(z,\lambda) d\operatorname{Re} z d\operatorname{Im} z$$
(3.4)

with $e_{\lambda,z_0}(z) = e^{\lambda(z-z_0)^2 - \overline{\lambda}(\overline{z} - \overline{z}_0)^2}$ and $(\Phi_2 - \Phi_1)(z, \zeta)$ is the Schwartz kernel of the operator $\Phi_2 - \Phi_1$.

The right side $I(\lambda)$ of (3.4) can be written as the sum of four integrals, namely

$$I_1(\lambda) = \int_D e_{\lambda, z_0}(z)(v_2 - v_1)(z) d\operatorname{Re} z d\operatorname{Im} z,$$

$$I_{2}(\lambda) = \int_{D} e_{\lambda,z_{0}}(z)^{t}(\bar{\mu}_{2} - I)(v_{2} - v_{1})(z)(\mu_{1} - I) d\operatorname{Re} z d\operatorname{Im} z,$$

$$I_{3}(\lambda) = \int_{D} e_{\lambda,z_{0}}(z)^{t}(\bar{\mu}_{2} - I)(v_{2} - v_{1})(z) d\operatorname{Re} z d\operatorname{Im} z,$$

$$I_{4}(\lambda) = \int_{D} e_{\lambda,z_{0}}(z)(v_{2} - v_{1})(z)(\mu_{1} - I) d\operatorname{Re} z d\operatorname{Im} z,$$

for $z_0 \in D$.

Since $(v_2 - v_1)|_{\partial D} = \frac{\partial}{\partial v}(v_2 - v_1)|_{\partial D} = 0$, the first term, I_1 , can be estimated using Lemma 2.2 as

$$\left|\frac{2}{\pi}|\lambda|I_1 - \left(v_2(z_0) - v_1(z_0)\right)\right| \leq c_3(D, n) \frac{\log(3|\lambda|)}{|\lambda|} \|v_2 - v_1\|_{C^2(\bar{D})},\tag{3.5}$$

for $|\lambda| \ge 1$. The other terms, I_2 , I_3 , I_4 , satisfy, by Lemmata 2.1 and 2.4,

$$|I_{2}| \leq \left| \int_{D} e_{\lambda,z_{0}}(z)^{t} \left(\overline{g_{z_{0},\lambda}}^{t} v_{2}\right) (v_{2} - v_{1})(z) (g_{z_{0},\lambda} v_{1}) d\operatorname{Re} z d\operatorname{Im} z \right|$$

$$+ O\left(\frac{\log(3|\lambda|)}{|\lambda|^{2}}\right) c_{8}(D, N, n), \qquad (3.6)$$

$$|I_{3}| \leq \left| \int_{D} e_{\lambda,z_{0}}(z)^{t} \left(\overline{g_{z_{0},\lambda}}^{t} v_{2}\right) (v_{2} - v_{1})(z) d\operatorname{Re} z d\operatorname{Im} z \right|$$

$$+ O\left(\frac{\log(3|\lambda|)}{|\lambda|^{2}}\right) c_{9}(D, N, n), \qquad (3.7)$$

$$|I_{4}| \leq \left| \int_{D} e_{\lambda,z_{0}}(z) (v_{2} - v_{1})(z) (g_{z_{0},\lambda} v_{1}) d\operatorname{Re} z d\operatorname{Im} z \right|$$

$$+ O\left(\frac{\log(3|\lambda|)}{|\lambda|^2}\right) c_{10}(D, N, n),$$
(3.8)

where *N* is the constant in the statement of Theorem 1.1 and $|\lambda|$ is sufficiently large, for example for λ such that

$$2n\frac{c_2(D)}{|\lambda|^{\frac{1}{2}}} \leqslant \frac{1}{2}, \quad |\lambda| \ge 1.$$
(3.9)

Lemmata 2.5, 2.6, applied to (3.6)–(3.8), give us

$$|I_2| \leqslant c_{11}(D, N, n) \frac{(\log(3|\lambda|))^2}{|\lambda|^2},$$
(3.10)

$$|I_3| \leqslant c_{12}(D, N, n) \frac{(\log(3|\lambda|))^2}{|\lambda|^{1+3/4}},$$
(3.11)

$$|I_4| \leq c_{13}(D, N, n) \frac{(\log(3|\lambda|))^2}{|\lambda|^{1+3/4}}.$$
(3.12)

The left side $J(\lambda)$ of (3.4) can be estimated as follows

$$|\lambda||J(\lambda)| \leq c_{14}(D,n)e^{(2L^2+1)|\lambda|} \|\Phi_2 - \Phi_1\|,$$
(3.13)

for λ which satisfies (3.9), and $L = \max_{z \in \partial D, z_0 \in D} |z - z_0|$.

Putting together estimates (3.5)–(3.13) we obtain

$$\left| v_{2}(z_{0}) - v_{1}(z_{0}) \right| \leq c_{15}(D, N, n) \frac{(\log(3|\lambda|))^{2}}{|\lambda|^{3/4}} + \frac{2}{\pi} c_{14}(D, n) e^{(2L^{2}+1)|\lambda|} \| \Phi_{2} - \Phi_{1} \|$$
(3.14)

for any $z_0 \in D$. We call $\varepsilon = \|\Phi_2 - \Phi_1\|$ and impose $|\lambda| = \gamma \log(3 + \varepsilon^{-1})$, where $0 < \gamma < (2L^2 + 1)^{-1}$ so that (3.14) reads

$$|v_{2}(z_{0}) - v_{1}(z_{0})| \leq c_{15}(D, N, n) \left(\gamma \log(3 + \varepsilon^{-1})\right)^{-\frac{3}{4}} \left(\log(3\gamma \log(3 + \varepsilon^{-1}))\right)^{2} + \frac{2}{\pi} c_{14}(D, n) \left(3 + \varepsilon^{-1}\right)^{(2L^{2} + 1)\gamma} \varepsilon,$$
(3.15)

for every $z_0 \in D$, with

$$0 < \varepsilon \leqslant \varepsilon_1(D, N, \gamma, n), \tag{3.16}$$

where ε_1 is sufficiently small or, more precisely, where (3.16) implies that $|\lambda| = \gamma \log(3 + \varepsilon^{-1})$ satisfies (3.9).

As $(3 + \varepsilon^{-1})^{(2L^2 + 1)\gamma} \varepsilon \to 0$ for $\varepsilon \to 0$ more rapidly then the other term, we obtain that

$$\|v_2 - v_1\|_{L^{\infty}(D)} \leq c_{16}(D, N, \gamma, n) \frac{(\log(3\log(3 + \|\Phi_2 - \Phi_1\|^{-1})))^2}{(\log(3 + \|\Phi_2 - \Phi_1\|^{-1}))^{\frac{3}{4}}}$$
(3.17)

for any $\varepsilon = \| \Phi_2 - \Phi_1 \| \leq \varepsilon_1(D, N, \gamma, n).$

Estimate (3.17) for general ε (with modified c_{16}) follows from (3.17) for $\varepsilon \leq \varepsilon_1(D, N, \gamma, n)$ and the assumption that $||v_j||_{L^{\infty}(D)} \leq N, j = 1, 2$. This completes the proof of Theorem 1.1. \Box

4. Proofs of Lemmata 2.5, 2.6, 3.1

Proof of Lemma 2.5. We decompose the operator $g_{z_0,\lambda}$, defined in (2.12), as the product $\frac{1}{4}T_{z_0,\lambda}\overline{T}_{z_0,\lambda}$, where

$$T_{z_0,\lambda}u(z) = \frac{1}{\pi} \int_D \frac{e^{-\lambda(\zeta - z_0)^2 + \bar{\lambda}(\bar{\zeta} - \bar{z}_0)^2}}{z - \zeta} u(\zeta) \, d\operatorname{Re}\zeta \, d\operatorname{Im}\zeta, \tag{4.1}$$

$$\bar{T}_{z_0,\lambda}u(z) = \frac{1}{\pi} \int_D \frac{e^{\lambda(\zeta - z_0)^2 - \bar{\lambda}(\bar{\zeta} - \bar{z}_0)^2}}{\bar{z} - \bar{\zeta}} u(\zeta) \, d\operatorname{Re} \zeta \, d\operatorname{Im} \zeta, \tag{4.2}$$

for $z_0, \lambda \in \mathbb{C}$. From the proof of [13, Lemma 3.1] we have the estimate

$$\|\bar{T}_{z_{0},\lambda}u\|_{C(\bar{D})} \leq \frac{\eta_{1}(D)}{|\lambda|^{1/2}} \|u\|_{C(\bar{D})} + \eta_{2}(D) \frac{\log(3|\lambda|)}{|\lambda|} \left\|\frac{\partial u}{\partial \bar{z}}\right\|_{C(\bar{D})},\tag{4.3}$$

for $u \in C_{\bar{z}}^1(\bar{D})$, $z_0 \in D$, $|\lambda| \ge 1$. As the kernels of $T_{z_0,\lambda}$ and $\bar{T}_{z_0,\lambda}$ are conjugates of each other we deduce immediately that

$$\|T_{z_0,\lambda}u\|_{C(\bar{D})} \leqslant \frac{\eta_1(D)}{|\lambda|^{1/2}} \|u\|_{C(\bar{D})} + \eta_2(D) \frac{\log(3|\lambda|)}{|\lambda|} \left\|\frac{\partial u}{\partial z}\right\|_{C(\bar{D})}, \quad |\lambda| \ge 1,$$

$$(4.4)$$

for $u \in C_z^1(\overline{D})$. Combining the two estimates we obtain

$$\begin{split} \|g_{\lambda,z_{0}}u\|_{C(\bar{D})} &= \frac{1}{4} \|T_{z_{0},\lambda}\bar{T}_{z_{0},\lambda}u\|_{C(\bar{D})} \\ &\leqslant \frac{1}{4} \bigg(\eta_{1}(D) \frac{\|\bar{T}_{z_{0},\lambda}u\|_{C(\bar{D})}}{|\lambda|^{1/2}} + \eta_{2}(D) \frac{\log(3|\lambda|)}{|\lambda|} \left\| \frac{\partial}{\partial z} \bar{T}_{z_{0},\lambda}u \right\|_{C(\bar{D})} \bigg) \\ &\leqslant \eta_{3}(D) \bigg(\frac{\|u\|_{C(\bar{D})}}{|\lambda|} + \frac{\log(3|\lambda|)}{|\lambda|^{3/2}} \left\| \frac{\partial u}{\partial \bar{z}} \right\|_{C(\bar{D})} + \frac{\log(3|\lambda|)}{|\lambda|} \|u\|_{C(\bar{D})} \bigg) \\ &\leqslant \eta_{4}(D) \frac{\log(3|\lambda|)}{|\lambda|} \|u\|_{C^{\frac{1}{2}}(\bar{D})}, \quad |\lambda| \ge 1, \end{split}$$

where we use the fact that $\|\frac{\partial}{\partial z}\bar{T}_{z_0,\lambda}u\|_{C(D)} = \|u\|_{C(D)}$. \Box

Proof of Lemma 2.6. For $0 < \varepsilon \leq 1$, $z_0 \in D$, let $B_{z_0,\varepsilon} = \{z \in \mathbb{C}: |z - z_0| \leq \varepsilon\}$. We write $W(u, v)(\lambda) = W^1(\lambda) + W^2(\lambda)$, where

$$W^{1}(\lambda) = \int_{D \cap B_{z_{0},\varepsilon}} e^{\lambda(z-z_{0})^{2} - \bar{\lambda}(\bar{z}-\bar{z}_{0})^{2}} u(z)g_{z_{0},\lambda}v(z) d\operatorname{Re} z d\operatorname{Im} z,$$

$$W^{2}(\lambda) = \int_{D \setminus B_{z_{0},\varepsilon}} e^{\lambda(z-z_{0})^{2} - \bar{\lambda}(\bar{z}-\bar{z}_{0})^{2}} u(z)g_{z_{0},\lambda}v(z) d\operatorname{Re} z d\operatorname{Im} z.$$

The first term, W^1 , can be estimated as follows

$$\left|W^{1}(\lambda)\right| \leq \sigma_{1}(D,n) \|u\|_{C(\bar{D})} \|v\|_{C^{1}_{\bar{z}}(\bar{D})} \frac{\varepsilon^{2} \log(3|\lambda|)}{|\lambda|}, \quad |\lambda| \geq 1,$$

$$(4.5)$$

where we use estimates (2.16) and (2.22).

For the second term, W^2 , we proceed using integration by parts, in order to obtain

$$W^{2}(\lambda) = \frac{1}{4i\bar{\lambda}} \int_{\partial(D\setminus B_{z_{0},\varepsilon})} e^{\lambda(z-z_{0})^{2} - \bar{\lambda}(\bar{z}-\bar{z}_{0})^{2}} \frac{u(z)g_{z_{0},\lambda}v(z)}{\bar{z}-\bar{z}_{0}} dz$$
$$- \frac{1}{2\bar{\lambda}} \int_{D\setminus B_{z_{0},\varepsilon}} e^{\lambda(z-z_{0})^{2} - \bar{\lambda}(\bar{z}-\bar{z}_{0})^{2}} \frac{\partial}{\partial\bar{z}} \left(\frac{u(z)g_{z_{0},\lambda}v(z)}{\bar{z}-\bar{z}_{0}}\right) d\operatorname{Re} z d\operatorname{Im} z.$$

This implies that

$$|W^{2}(\lambda)| \leq \frac{1}{4|\lambda|} \int_{\partial(D\setminus B_{z_{0},\varepsilon})} \frac{||u(z)g_{z_{0},\lambda}v(z)||_{C(\bar{D})}}{|\bar{z}-\bar{z}_{0}|} |dz| + \frac{1}{2|\lambda|} \int_{D\setminus B_{z_{0},\varepsilon}} e^{\lambda(z-z_{0})^{2}-\bar{\lambda}(\bar{z}-\bar{z}_{0})^{2}} \frac{\partial}{\partial\bar{z}} \left(\frac{u(z)g_{z_{0},\lambda}v(z)}{\bar{z}-\bar{z}_{0}}\right) d\operatorname{Re} z \, d\operatorname{Im} z \Big|, \qquad (4.6)$$

for $\lambda \neq 0$. Again by estimates (2.16) and (2.22) we obtain

740

$$|W^{2}(\lambda)| \leq \sigma_{2}(D,n) ||u||_{C^{1}_{\bar{z}}(\bar{D})} ||v||_{C^{1}_{\bar{z}}(\bar{D})} \frac{\log(3\varepsilon^{-1})\log(3|\lambda|)}{|\lambda|^{2}} + \frac{1}{8|\lambda|} \int_{D\setminus B_{z_{0},\varepsilon}} u(z) \frac{\bar{T}_{z_{0},\lambda}v(z)}{\bar{z}-\bar{z}_{0}} d\operatorname{Re} z d\operatorname{Im} z \Big|, \quad |\lambda| \geq 1,$$

$$(4.7)$$

where we used the fact that $\frac{\partial}{\partial \bar{z}} g_{z_0,\lambda} v(z) = \frac{1}{4} e^{-\lambda(z-z_0)^2 + \bar{\lambda}(\bar{z}-\bar{z}_0)^2} \bar{T}_{z_0,\lambda} v(z)$, with $\bar{T}_{z_0,\lambda}$ defined in (4.2).

The last term in (4.7) can be estimated independently of ε by

$$\sigma_{3}(D,n) \|u\|_{C(\bar{D})} \|v\|_{C^{\frac{1}{2}}(\bar{D})} \frac{\log(3|\lambda|)}{|\lambda|^{1+3/4}}.$$
(4.8)

This is a consequence of (4.3) and of the estimate

$$\left|\bar{T}_{z_{0},\lambda}u(z)\right| \leqslant \frac{\log(3|\lambda|)(1+|z-z_{0}|)\tau_{1}(D)}{|\lambda||z-z_{0}|^{2}} \|u\|_{C^{1}_{\bar{z}}(\bar{D})}, \quad |\lambda| \ge 1,$$

$$(4.9)$$

for $u \in C_{\bar{z}}^1(\bar{D})$, $z, z_0 \in D$ (a proof of (4.9) can be found in the proof of [13, Lemma 3.1]). Indeed, for $0 < \delta \leq \frac{1}{2}$ we have

$$\begin{split} \left| \int_{D} u(z) \frac{\bar{T}_{z_{0},\lambda} v(z)}{\bar{z} - \bar{z}_{0}} d\operatorname{Re} z \, d\operatorname{Im} z \right| \\ &\leq \int_{B_{z_{0},\delta} \cap D} \left| u(z) \right| \frac{|\bar{T}_{z_{0},\lambda} v(z)|}{|z - z_{0}|} d\operatorname{Re} z \, d\operatorname{Im} z + \int_{D \setminus B_{z_{0},\delta}} \left| u(z) \right| \frac{|\bar{T}_{z_{0},\lambda} v(z)|}{|z - z_{0}|} d\operatorname{Re} z \, d\operatorname{Im} z \\ &\leq \| u \|_{C(\bar{D})} \| v \|_{C^{1}_{\bar{z}}(\bar{D})} \frac{\tau_{2}(D,n)}{|\lambda|^{1/2}} \int_{B_{z_{0},\delta} \cap D} \frac{d\operatorname{Re} z \, d\operatorname{Im} z}{|z - z_{0}|} \\ &+ \| u \|_{C(\bar{D})} \| v \|_{C^{1}_{\bar{z}}(\bar{D})} \frac{\log(3|\lambda|)}{|\lambda|} \tau_{3}(D,n) \int_{D \setminus B_{z_{0},\delta}} \frac{d\operatorname{Re} z \, d\operatorname{Im} z}{|z - z_{0}|^{3}} \\ &\leq 2\pi \| u \|_{C(\bar{D})} \| v \|_{C^{1}_{\bar{z}}(\bar{D})} \tau_{2}(D,n) \frac{\delta}{|\lambda|^{\frac{1}{2}}} + \| u \|_{C(\bar{D})} \| v \|_{C^{1}_{\bar{z}}(\bar{D})} \tau_{4}(D,n) \frac{\log(3|\lambda|)}{|\lambda|\delta}, \end{split}$$

for $|\lambda| \ge 1$. Putting $\delta = \frac{1}{2} |\lambda|^{-1/4}$ in the last inequality gives (4.8).

Finally, defining $\varepsilon = |\lambda|^{-1/2}$ in (4.7), (4.5) and using (4.8), we obtain the main estimate (2.24), which thus finishes the proof of Lemma 2.6. \Box

Proof of Lemma 3.1. Take $u \in H^1(D, M_n(\mathbb{C}))$ such that $(-\Delta + {}^tv)u = 0$ on D and $u|_{\partial D} = 0$. We want to prove that $u \equiv 0$ on D.

By our hypothesis, for any $f \in C^1(\partial D, M_n(\mathbb{C}))$ there exists a unique $\tilde{f} \in H^1(D, M_n(\mathbb{C}))$ such that $(-\Delta + v)\tilde{f} = 0$ on D and $\tilde{f}|_{\partial D} = f$. Thus we have, using Green's formula (3.3),

$$\int_{\partial D} t \left(\frac{\partial u}{\partial v} \right) f |dz| = \int_{D} \left(t(\Delta u) \tilde{f} - tu \Delta \tilde{f} \right) d\operatorname{Re} z d\operatorname{Im} z$$
$$= \int_{D} \left(t(vu) \tilde{f} - tuv \tilde{f} \right) d\operatorname{Re} z d\operatorname{Im} z = 0,$$

which yields $\frac{\partial u}{\partial v}|_{\partial D} = 0$. Now consider the following straightforward generalization of Green's formula (3.3),

$$\int_{\partial D} \left(t \left(\frac{\partial f}{\partial v} \right) g - t f \frac{\partial g}{\partial v} \right) |dz| = \int_{D} t \left(\left(\Delta - t v \right) f \right) g - t f \left((\Delta - v) g \right) d \operatorname{Re} z d \operatorname{Im} z, \quad (4.10)$$

which holds (weakly) for any $f, g \in H^1(D, M_n(\mathbb{C}))$. If we put f = u we obtain

$$\int_{D}^{t} u(-\Delta + v)g \, d\operatorname{Re} z \, d\operatorname{Im} z = 0, \tag{4.11}$$

for any $g \in H^1(D, M_n(\mathbb{C}))$. By Fredholm alternative (see [6, Section 6.2]), for each $h \in L^2(D, M_n(\mathbb{C}))$ there exists a unique $g \in H_0^1(D, M_n(\mathbb{C})) = \{g \in H^1(D, M_n(\mathbb{C})): g|_{\partial D} = 0\}$ such that $(-\Delta + v)g = h$. This yields $u \equiv 0$ on D and thus Lemma 3.1 is proved. \Box

5. An extensions of Theorem 1.1

As an extension of Theorem 1.1 to the case where we do not assume that $v_1|_{\partial D} = v_2|_{\partial D}$ and $\frac{\partial}{\partial v}v_1|_{\partial D} = \frac{\partial}{\partial v}v_2|_{\partial D}$, we give the following proposition:

Proposition 5.1. Let $D \subset \mathbb{R}^2$ be an open bounded domain with a C^2 boundary, $v_1, v_2 \in C^2(\bar{D}, M_n(\mathbb{C}))$ two matrix-valued potentials which satisfy (1.4), with $||v_j||_{C^2(\bar{D})} \leq N$ for $j = 1, 2, and \Phi_1, \Phi_2$ the corresponding Dirichlet-to-Neumann operators. Then, for any $0 < \alpha < \frac{1}{5}$, there exists a constant $C = C(D, N, n, \alpha)$ such that

$$\|v_2 - v_1\|_{L^{\infty}(D)} \leq C \left(\log\left(3 + \|\Phi_2 - \Phi_1\|_1^{-1}\right) \right)^{-\alpha},$$
(5.1)

where, for an operator A which acts on $L^{\infty}(\partial D, M_n(\mathbb{C}))$ with kernel A(x, y), $||A||_1$ is the norm defined as $||A||_1 = \sup_{x,y\in\partial D} |A(x, y)|(\log(3 + |x - y|^{-1}))^{-1}$ and $|A(x, y)| = \max_{1\leq i,j\leq n} |A_{i,j}(x, y)|$.

The only properties of $\|\cdot\|_1$ we will use are the following:

- (i) $||A||_{L^{\infty}(\partial D) \to L^{\infty}(\partial D)} \leq const(D, n) ||A||_{1};$
- (ii) In a similar way as in formula (4.9) of [11] one can deduce

 $\|v\|_{L^{\infty}(\partial D)} \leq const(n) \|\Phi_{v} - \Phi_{0}\|_{1},$

for a matrix-valued potential v, Φ_v its associated Dirichlet-to-Neumann operator and Φ_0 the Dirichlet-to-Neumann operator of the 0 potential.

We recall a lemma from [13], which generalizes Lemma 2.2 to the case of potentials without boundary conditions. We then define $(\partial D)_{\delta} = \{z \in \mathbb{C}: dist(z, \partial D) < \delta\}.$

742

Lemma 5.2. For $v \in C^2(\overline{D})$ we have that

$$\left| v(z_0) - \frac{2}{\pi} |\lambda| h_{z_0}^{(0)}(\lambda) \right| \leq \kappa_1(D, n) \delta^{-4} \frac{\log(3|\lambda|)}{|\lambda|} \|v\|_{C^2(\bar{D})} + \kappa_2(D, n) \log(3 + \delta^{-1}) \|v\|_{C(\partial D)},$$
(5.2)

for $z_0 \in D \setminus (\partial D)_{\delta}$, $0 < \delta < 1$, $\lambda \in \mathbb{C}$, $|\lambda| \ge 1$.

The proof of Lemma 5.2 for the scalar case can be found in [13] and its generalization to the matrix-valued case is straightforward.

Proof of Proposition 5.1. Fix $0 < \alpha < \frac{1}{5}$ and $0 < \delta < 1$. We then have the following chain of inequalities

$$\begin{split} \|v_{2} - v_{1}\|_{L^{\infty}(D)} &= \max\left(\|v_{2} - v_{1}\|_{L^{\infty}(D\cap(\partial D)_{\delta})}, \|v_{2} - v_{1}\|_{L^{\infty}(D\setminus(\partial D)_{\delta})}\right) \\ &\leqslant C_{1} \max\left(2N\delta + \|\Phi_{2} - \Phi_{1}\|_{1}, \frac{\log(3\log(3 + \|\Phi_{2} - \Phi_{1}\|^{-1}))}{\delta^{4}\log(3 + \|\Phi_{2} - \Phi_{1}\|^{-1})} \right. \\ &+ \log\left(3 + \frac{1}{\delta}\right)\|\Phi_{2} - \Phi_{1}\|_{1} + \frac{(\log(3\log(3 + \|\Phi_{2} - \Phi_{1}\|^{-1})))^{2}}{(\log(3 + \|\Phi_{2} - \Phi_{1}\|^{-1}))^{\frac{3}{4}}}\right) \\ &\leqslant C_{2} \max\left(2N\delta + \|\Phi_{2} - \Phi_{1}\|_{1}, \frac{1}{\delta^{4}}\left(\log(3 + \|\Phi_{2} - \Phi_{1}\|^{-1})\right)^{-5\alpha} \right. \\ &+ \log\left(3 + \frac{1}{\delta}\right)\|\Phi_{2} - \Phi_{1}\|_{1} + \frac{(\log(3\log(3 + \|\Phi_{2} - \Phi_{1}\|^{-1})))^{2}}{(\log(3 + \|\Phi_{2} - \Phi_{1}\|^{-1}))^{\frac{3}{4}}}\right), \end{split}$$

where we followed the outline of the proof of Theorem 1.1 with the following modifications: we made use of Lemma 5.2 instead of Lemma 2.2 and we also used (i)–(ii); note that $C_1 =$ $C_1(D, N, n)$ and $C_2 = C_2(D, N, n, \alpha)$. Putting $\delta = (\log(3 + \|\Phi_2 - \Phi_1\|_1^{-1}))^{-\alpha}$ we obtain the desired inequality

$$\|v_2 - v_1\|_{L^{\infty}(D)} \leq C_3 \left(\log\left(3 + \|\Phi_2 - \Phi_1\|_1^{-1} \right) \right)^{-\alpha},$$
(5.3)

with $C_3 = C_3(D, N, n, \alpha)$, $\|\Phi_2 - \Phi_1\|_1 = \varepsilon \leq \varepsilon_1(D, N, n, \alpha)$ with ε_1 sufficiently small or, more precisely when $\delta_1 = (\log(3 + \varepsilon_1^{-1}))^{-\alpha}$ satisfies

$$\delta_1 < 1, \qquad \varepsilon_1 \leqslant 2N\delta_1, \qquad \log\left(3 + \frac{1}{\delta_1}\right)\varepsilon_1 \leqslant \delta_1.$$

Estimate (5.3) for general ε (with modified C_3) follows from (5.3) for $\varepsilon \leq \varepsilon_1(D, N, n, \alpha)$ and the assumption that $\|v_j\|_{L^{\infty}(\bar{D})} \leq N$ for j = 1, 2. This completes the proof of Proposition 5.1. \Box

References

- [1] G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal. 27 (1) (1988) 153-172
- [2] S.V. Baykov, V.A. Burov, S.N. Sergeev, Mode tomography of moving ocean, in: Proc. of the 3rd European Conference on Underwater Acoustics, 1996, pp. 845-850.

- [3] R. Beals, R.R. Coifman, Multidimensional inverse scatterings and nonlinear partial differential equations, in: Pseudodifferential Operators and Applications, Notre Dame, IN, 1984, in: Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 45–70.
- [4] A.L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill-Posed Probl. 16 (1) (2008) 19–33.
- [5] A.P. Calderón, On an inverse boundary value problem, in: Seminar on Numerical Analysis and Its Applications to Continuum Physics, Soc. Brasiliera de Matematica, Rio de Janeiro, 1980, pp. 61–73.
- [6] L.C. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1998, xviii+662 pp.
- [7] L.D. Faddeev, Growing solutions of the Schrödinger equation, Dokl. Akad. Nauk SSSR 165 (3) (1965) 514–517.
- [8] I.M. Gel'fand, Some aspects of functional analysis and algebra, in: Proceedings of the International Congress of Mathematicians, vol. 1, Amsterdam, 1954, Erven P. Noordhoff N.V./North-Holland Publishing Co., Groningen/Amsterdam, 1954, pp. 253–276.
- [9] M. Isaev, Exponential instability in the Gel'fand inverse problem on the energy intervals, J. Inverse Ill-Posed Probl. 19 (3) (2011) 453–472, arXiv:1012.2193.
- [10] N. Mandache, Exponential instability in an inverse problem of the Schrödinger equation, Inverse Problems 17 (5) (2001) 1435–1444.
- [11] R.G. Novikov, Multidimensional inverse spectral problem for the equation $-\Delta \psi + (v(x) Eu(x))\psi = 0$, Funktsional. Anal. i Prilozhen. 22 (4) (1988) 11–22 (in Russian); English transl.: Funct. Anal. Appl. 22 (4) (1988) 263–272.
- [12] R.G. Novikov, New global stability estimates for the Gel'fand–Calderon inverse problem, Inverse Problems 27 (1) (2011), Article ID 15001.
- [13] R.G. Novikov, M. Santacesaria, A global stability estimate for the Gel'fand–Calderón inverse problem in two dimensions, J. Inverse Ill-Posed Probl. 18 (7) (2010) 765–785.
- [14] R.G. Novikov, M. Santacesaria, Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions, Bull. Sci. Math. 135 (5) (2011) 421–434.
- [15] L. Xiaosheng, Inverse scattering problem for the Schrödinger operator with external Yang–Mills potentials in two dimensions at fixed energy, Comm. Partial Differential Equations 30 (4–6) (2005) 451–482.