Normality of cut polytopes of graphs is a minor closed property

Hidefumi Ohsugi
Department of Mathematics, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan

ARTICLE INFO

Article history:

Received 29 June 2009
Received in revised form 4 November 2009
Accepted 11 November 2009
Available online 24 November 2009

Keywords:

Cut polytope
Normal polytope

Abstract

Sturmfels-Sullivant conjectured that the cut polytope of a graph is normal if and only if the graph has no K_{5} minor. In the present paper, it is proved that the normality of cut polytopes of graphs is a minor closed property. By using this result, we have large classes of normal cut polytopes. Moreover, it turns out that, in order to study the conjecture, it is enough to consider 4-connected plane triangulations.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph on the vertices $[n]:=\{1,2, \ldots, n\}$ and edges E without loops or multiple edges. Let $S \subset[n]$. Then the cut semimetric on G induced by S is the $0 / 1$ vector $\delta_{G}(S)$ in \mathbb{R}^{E} defined by

$$
\delta_{G}(S)_{i j}=\left\{\begin{array}{cc}
1 & \text { if }|S \cap\{i, j\}|=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

where $i j \in E$. Let $A_{G}=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right\}=\left\{\delta_{G}(S) \mid S \subset[n]\right\} \subset \mathbb{Z}^{E}$ where $N=2^{n-1}$. The cut polytope Cut ${ }^{\square}(G)$ of G is the convex hull of A_{G}. Let

$$
\begin{aligned}
& X_{G}:=\left\{\binom{\mathbf{a}_{1}}{1}, \ldots,\binom{\mathbf{a}_{N}}{1}\right\} \subset \mathbb{Z}^{E+1}, \\
& \mathbb{Z}\left(X_{G}\right):=\left\{\left.\sum_{i=1}^{N} z_{i}\binom{\mathbf{a}_{i}}{1} \right\rvert\, z_{i} \in \mathbb{Z}\right\} \subset \mathbb{Z}^{E+1}, \\
& \mathbb{Q}_{+}\left(X_{G}\right):=\left\{\left.\sum_{i=1}^{N} q_{i}\binom{\mathbf{a}_{i}}{1} \right\rvert\, 0 \leq q_{i} \in \mathbb{Q}\right\} \subset \mathbb{Q}^{E+1}, \\
& \mathbb{Z}_{+}\left(X_{G}\right):=\left\{\left.\sum_{i=1}^{N} z_{i}\binom{\mathbf{a}_{i}}{1} \right\rvert\, 0 \leq z_{i} \in \mathbb{Z}\right\} \subset \mathbb{Z}^{E+1} .
\end{aligned}
$$

Then $\mathbb{Z}_{+}\left(X_{G}\right) \subset \mathbb{Z}\left(X_{G}\right) \cap \mathbb{Q}_{+}\left(X_{G}\right)$ holds in general. The cut polytope Cut ${ }^{\square}(G)$ is called normal if we have $\mathbb{Z}_{+}\left(X_{G}\right)=\mathbb{Z}\left(X_{G}\right)$ $\cap \mathbb{Q}_{+}\left(X_{G}\right)$.

[^0]
1.1. A conjecture on normal cut polytopes

Let $K[\mathbf{t}, s]=K\left[t_{1}, \ldots, t_{E}, s\right]$ be the polynomial ring in $E+1$ variables over a field K and let $K[\mathbf{q}]=K\left[q_{1}, \ldots, q_{N}\right]$ the polynomial ring in $N\left(=2^{n-1}\right)$ variables over K. For each nonnegative integer vector $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{E}\right) \in \mathbb{Z}^{E}$, we set $\mathbf{t}^{\alpha}=t_{1}^{\alpha_{1}} \cdots t_{E}^{\alpha_{E}}$. Then the toric cut ideal I_{G} of a graph G is the kernel of homomorphism $\pi: K[\mathbf{q}] \longrightarrow K[\mathbf{t}, s]$ defined by $\pi\left(q_{i}\right)=\mathbf{t}^{\mathbf{a}_{i}}$. Sturmfels-Sullivant [9, conjecture 3.7] conjectured that $K[\mathbf{q}] / I_{G}$ is normal if and only if G has no K_{5} minor. Since it is known (e.g., [8, proposition 13.5]) that $K[\mathbf{q}] / I_{G}$ is normal if and only if $\mathbb{Z}_{+}\left(X_{G}\right)=\mathbb{Z}\left(X_{G}\right) \cap \mathbb{Q}_{+}\left(X_{G}\right)$ holds, their conjecture is formulated as follows:

Conjecture 1.1. The cut polytope $\operatorname{Cut}^{\square}(G)$ is normal if and only if G has no K_{5} minor.
If Cut ${ }^{\square}(G)$ is normal and G^{\prime} is obtained from G by contracting an edge, then $\operatorname{Cut}^{\square}\left(G^{\prime}\right)$ is normal ([9, Lemma 3.2 (2)]). Note that, if a graph G has K_{m} as a minor, then that minor can be realized by a sequence of edge contraction only. As stated in [9], the "only if" part is true since Cut ${ }^{\square}\left(K_{5}\right)$ is not normal. On the other hand, the "if" part is true for the following classes of graphs:

- graphs with ≤ 6 vertices (by a direct computation [9] together with [9, Theorem 1.2])
- graphs having no induced cycle of length ≥ 5 (by [10, Theorem 3.2])
- "ring graphs" (Note that ring graphs have no K_{4} minor. See [7]).

1.2. Hilbert bases of cut polytopes

In order to avoid confusion, we must introduce "nonhomogeneous" version of this problem on cut polytopes. The following sets are studied in, e.g., [5,6]:

$$
\begin{aligned}
& \mathbb{Z}\left(A_{G}\right):=\left\{\sum_{i=1}^{N} z_{i} \mathbf{a}_{i} \mid z_{i} \in \mathbb{Z}\right\} \subset \mathbb{Z}^{E} \\
& \mathbb{Q}_{+}\left(A_{G}\right):=\left\{\sum_{i=1}^{N} q_{i} \mathbf{a}_{i} \mid 0 \leq q_{i} \in \mathbb{Q}\right\} \subset \mathbb{Q}^{E} \\
& \mathbb{Z}_{+}\left(A_{G}\right):=\left\{\sum_{i=1}^{N} z_{i} \mathbf{a}_{i} \mid 0 \leq z_{i} \in \mathbb{Z}\right\} \subset \mathbb{Z}^{E} .
\end{aligned}
$$

If $\mathbb{Z}_{+}\left(A_{G}\right)=\mathbb{Z}\left(A_{G}\right) \cap \mathbb{Q}_{+}\left(A_{G}\right)$ holds, then A_{G} is called a Hilbert basis. It is known that $\mathbb{Z}_{+}\left(A_{G}\right)=\mathbb{Z}\left(A_{G}\right) \cap \mathbb{Q}_{+}\left(A_{G}\right)$ holds if one of the following holds:

- G has no K_{5} minor ([5, Corollary 1.3]);
- G is $K_{6} \backslash e$ or its subgraph ([6, Theorem 1.1]).

Moreover, $\mathbb{Z}_{+}\left(A_{G}\right) \neq \mathbb{Z}\left(A_{G}\right) \cap \mathbb{Q}_{+}\left(A_{G}\right)$ holds if

- G has a K_{6} minor ([6, proposition 1.2]).

On the other hand, it is known that the class of graphs G satisfying $\mathbb{Z}_{+}\left(A_{G}\right)=\mathbb{Z}\left(A_{G}\right) \cap \mathbb{Q}_{+}\left(A_{G}\right)$ is closed under

- contraction minors ([6, proposition 2.1]);
- clique sums ([6, proposition 2.7]);
- edge deletions satisfying some conditions ([6, proposition 2.3]).

Hence it is natural to have the following conjecture.
Conjecture 1.2. Let G be a connected graph. Then $\mathbb{Z}_{+}\left(A_{G}\right)=\mathbb{Z}\left(A_{G}\right) \cap \mathbb{Q}_{+}\left(A_{G}\right)$ if and only if G has no K_{6} minor.
The relation between our problem and this problem is as follows:
Proposition 1.3. If $\mathbb{Z}_{+}\left(X_{G}\right)=\mathbb{Z}\left(X_{G}\right) \cap \mathbb{Q}_{+}\left(X_{G}\right)$ holds, then we have $\mathbb{Z}_{+}\left(A_{G}\right)=\mathbb{Z}\left(A_{G}\right) \cap \mathbb{Q}_{+}\left(A_{G}\right)$.
Proof. Suppose that $\mathbb{Z}_{+}\left(X_{G}\right)=\mathbb{Z}\left(X_{G}\right) \cap \mathbb{Q}_{+}\left(X_{G}\right)$ holds. Let $\mathbf{x} \in \mathbb{Z}\left(A_{G}\right) \cap \mathbb{Q}_{+}\left(A_{G}\right)$. Since $(0, \ldots, 0,1) \in \mathbb{Z}\left(X_{G}\right)$, there exists an integer α such that

$$
\binom{\mathbf{x}}{\alpha} \in \mathbb{Z}\left(X_{G}\right) \cap \mathbb{Q}_{+}\left(X_{G}\right)=\mathbb{Z}_{+}\left(X_{G}\right)
$$

Thus $\mathbf{x} \in \mathbb{Z}_{+}\left(A_{G}\right)$ as desired.
Remark 1.4. The graph K_{5} is a counterexample of the converse of Proposition 1.3.

1.3. Main results

The main purpose of the present paper is to prove that the set of graphs G such that Cut ${ }^{\square}(G)$ is normal is minor closed (Corollary 2.4). Thanks to Corollary 2.4, we have large classes of normal cut polytopes (Theorem 3.3, Corollary 3.6 and Theorem 3.8). In addition, in Section 4, we will show that, in order to study Conjecture 1.1, it is enough to consider 4connected plane triangulations.

Since the converse of Proposition 1.3 is not true in general (Remark 1.4), we cannot apply the results on Hilbert bases to our problem directly. However there are a lot of useful ideas in [6]. For example, the idea of the proof of Theorem 2.3 comes from that of [6, proposition 2.3] and the proof of Theorem 3.2 is similar to that of [6, proposition 2.7].

2. Deletion of an edge

Since the origin belongs to A_{G}, we have $(0, \ldots, 0,1) \in X_{G}$. Hence it follows from [6, p.258] that, for $\mathbf{x} \in \mathbb{Z}^{E}$ and $\alpha \in \mathbb{Z}$,

$$
\begin{equation*}
\binom{\mathbf{x}}{\alpha} \in \mathbb{Z}\left(X_{G}\right) \Longleftrightarrow \sum_{e \in C} x_{e} \equiv 0(\bmod 2) \tag{1}
\end{equation*}
$$

for each cycle C of G. From now on, we always assume that G has no K_{5} minor. Then the following proposition is known.
Proposition 2.1 ([1]). Let G be a graph without K_{5} minor. Then $\mathrm{Cut}^{\square}(G)$ is the solution set of the following linear inequalities:

$$
\begin{aligned}
& 0 \leq x_{e} \leq 1, \quad e \in E \\
& \sum_{e \in F} x_{e}-\sum_{e \in C \backslash F} x_{e} \leq|F|-1
\end{aligned}
$$

where C ranges over the induced cycles of G and F ranges over the odd subsets of C.
Thanks to Proposition 2.1, we have the following:
Corollary 2.2. Let G be a graph without K_{5} minor. For a vector $\mathbf{x} \in \mathbb{Q}^{E}$ and a nonnegative integer $\alpha,\binom{\mathbf{x}}{\alpha} \in \mathbb{Q}_{+}\left(X_{G}\right)$ if and only if

$$
\begin{aligned}
& 0 \leq x_{e} \leq \alpha, \quad e \in E \\
& \sum_{e \in F} x_{e}-\sum_{e \in C \backslash F} x_{e} \leq \alpha(|F|-1)
\end{aligned}
$$

where C ranges over the induced cycles of G and F ranges over the odd subsets of C.
Proof. It follows from the following fact:

$$
\frac{1}{\alpha} \mathbf{x} \in \operatorname{Cut}^{\square}(G) \Longleftrightarrow\binom{\mathbf{x}}{\alpha} \in \mathbb{Q}_{+}\left(X_{G}\right)
$$

for $0<\alpha \in \mathbb{Z}$ and $\mathbf{x} \in \mathbb{Q}^{E}$.
By using Eq. (1) together with Corollary 2.2, we have the following.
Theorem 2.3. Let G be a graph. If Cut $^{\square}(G)$ is normal, then $\operatorname{Cut}^{\square}\left(G \backslash e_{0}\right)$ is normal for any edge e_{0} of G.
Proof. The idea of the proof is obtained from that of [6, proposition 2.3]. Let $G^{\prime}=G \backslash e_{0}$. Note that G and G^{\prime} have no K_{5} minor. Let $A_{G^{\prime}}=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right\}$ and

$$
\binom{\mathbf{x}}{\alpha}=\sum_{i=1}^{N} q_{i}\binom{\mathbf{a}_{i}}{1} \in \mathbb{Z}\left(X_{G^{\prime}}\right) \cap \mathbb{Q}_{+}\left(X_{G^{\prime}}\right)
$$

where $0<\alpha \in \mathbb{Z}$ and $0 \leq q_{i} \in \mathbb{Q}$ for $1 \leq i \leq N$. Since $\operatorname{Cut}^{\square}(G)$ is normal, it is enough to show that there exists a nonnegative integer γ such that

$$
\left(\begin{array}{l}
\gamma \\
\mathbf{x} \\
\alpha
\end{array}\right) \in \mathbb{Z}\left(X_{G}\right) \cap \mathbb{Q}_{+}\left(X_{G}\right)=\mathbb{Z}_{+}\left(X_{G}\right) .
$$

Let $\mathbf{x}^{\prime}=\binom{\gamma}{\mathbf{x}}$ where $\gamma \in \mathbb{Q}$. Thanks to Corollary 2.2, $\binom{\mathbf{x}^{\prime}}{\alpha} \in \mathbb{Q}_{+}\left(X_{G}\right)$ if and only if

$$
\begin{align*}
& 0 \leq \gamma \leq \alpha \tag{2}\\
& \sum_{e \in F} x_{e}^{\prime}-\sum_{e \in C \backslash F} x_{e}^{\prime} \leq \alpha(|F|-1) \tag{3}
\end{align*}
$$

where C ranges over the induced cycles of G with $e_{0} \in C$ and F ranges over the odd subsets of C. Then Eqs. (2) and (3) have a solution γ. In fact,

$$
\sum_{i=1}^{N} q_{i}\left(\begin{array}{c}
\delta_{i} \\
\mathbf{a}_{i} \\
1
\end{array}\right)=\left(\begin{array}{c}
\sum_{i=1}^{N} q_{i} \delta_{i} \\
\mathbf{x} \\
\alpha
\end{array}\right) \in \mathbb{Q}_{+}\left(X_{G}\right)
$$

where $A_{G}=\left\{\binom{\delta_{1}}{\mathbf{a}_{1}}, \ldots,\binom{\delta_{N}}{\mathbf{a}_{N}}\right\}$. Let

$$
\begin{aligned}
& \gamma_{\max }=\max _{(C, F) \mid e_{0} \in C \backslash F}\left(\sum_{e \in F} x_{e}^{\prime}-\sum_{e \in C \backslash F, e \neq e_{0}} x_{e}^{\prime}-\alpha(|F|-1)\right) \in \mathbb{Z}, \\
& \gamma_{\min }=\min _{(C, F) \mid e_{0} \in F}\left(-\sum_{e \in F, e \neq e_{0}} x_{e}^{\prime}+\sum_{e \in C \backslash F} x_{e}^{\prime}+\alpha(|F|-1)\right) \in \mathbb{Z} .
\end{aligned}
$$

Note that $|F|-1$ is even. By (2) and (3) above, we have

$$
\left(\begin{array}{l}
\gamma \tag{4}\\
\mathbf{x} \\
\alpha
\end{array}\right) \in \mathbb{Q}_{+}\left(X_{G}\right) \Longleftrightarrow \max \left(0, \gamma_{\max }\right) \leq \gamma \leq \min \left(\alpha, \gamma_{\min }\right)
$$

On the other hand, let C be an arbitrary cycle of G containing e_{0}. Then by (1),

$$
\left(\begin{array}{l}
\gamma \tag{5}\\
\mathbf{x} \\
\alpha
\end{array}\right) \in \mathbb{Z}\left(X_{G}\right) \Longleftrightarrow \gamma \equiv \sum_{e \in C, e \neq e_{0}} x_{e}^{\prime}(\bmod 2)
$$

If $\max \left(0, \gamma_{\max }\right)<\min \left(\alpha, \gamma_{\min }\right)$, then $\max \left(0, \gamma_{\max }\right)+1 \leq \min \left(\alpha, \gamma_{\min }\right)$ and hence either $\gamma=\max \left(0, \gamma_{\max }\right)$ or $\gamma=$ $\max \left(0, \gamma_{\max }\right)+1$ satisfies the conditions (4) and (5). Suppose that $\max \left(0, \gamma_{\max }\right)=\min \left(\alpha, \gamma_{\min }\right)$. Let $\gamma=\max \left(0, \gamma_{\max }\right)=$ $\min \left(\alpha, \gamma_{\min }\right) \in \mathbb{Z}$. Since $0<\alpha$, at least one of $\gamma=\gamma_{\max }$ or $\gamma=\gamma_{\text {min }}$ holds. If $\gamma=\gamma_{\text {max }}$, then there exists a cycle C of G containing e_{0} such that

$$
\begin{aligned}
\gamma & =\sum_{e \in F} x_{e}^{\prime}-\sum_{e \in C \backslash F, e \neq e_{0}} x_{e}^{\prime}-\alpha(|F|-1) \\
& \equiv \sum_{e \in C, e \neq e_{0}} x_{e}^{\prime}(\bmod 2)
\end{aligned}
$$

Similarly, if $\gamma=\gamma_{\text {min }}$, then there exists a cycle C of G containing e_{0} such that

$$
\begin{aligned}
\gamma & =-\sum_{e \in F, e \neq e_{0}} x_{e}^{\prime}+\sum_{e \in C \backslash F} x_{e}^{\prime}+\alpha(|F|-1) \\
& \equiv \sum_{e \in C, e \neq e_{0}} x_{e}^{\prime}(\bmod 2)
\end{aligned}
$$

In both cases, γ satisfies the conditions (4) and (5). Thus we have

$$
\left(\begin{array}{l}
\gamma \\
\mathbf{x} \\
\alpha
\end{array}\right) \in \mathbb{Z}\left(X_{G}\right) \cap \mathbb{Q}_{+}\left(X_{G}\right)=\mathbb{Z}_{+}\left(X_{G}\right)
$$

and hence $\binom{\mathbf{x}}{\alpha} \in \mathbb{Z}_{+}\left(X_{G^{\prime}}\right)$ as desired.
It is known [9, Lemma $3.2(2)$ that, if $\operatorname{Cut}{ }^{\square}(G)$ is normal and G^{\prime} is obtained from G by contracting an edge, then Cut ${ }^{\square}\left(G^{\prime}\right)$ is normal. Thus, we have the following:

Corollary 2.4. The set of graphs G such that $\operatorname{Cut}^{\square}(G)$ is normal is minor closed.

3. Clique sums and normality

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be graphs such that $V_{1} \cap V_{2}$ is a clique of both graphs. The new graph $G=G_{1} \sharp G_{2}$ with the vertex set $V=V_{1} \cup V_{2}$ and edge set $E=E_{1} \cup E_{2}$ is called the clique sum of G_{1} and G_{2} along $V_{1} \cap V_{2}$. If the cardinality of $V_{1} \cap V_{2}$ is $k+1$, this operation is called a k-sum of the graphs.

Proposition 3.1 ([9]). Let $G=G_{1} \sharp G_{2}$ be a 0,1 or 2 sum of G_{1} and G_{2}. Then the set of generators (or Gröbner bases) of the toric ideal I_{G} of $\operatorname{Cut}^{\square}(G)$ consists of that of $I_{G_{1}}$ and $I_{G_{2}}$ together with some quadratic binomials.

It turns out that this holds even for normality.
Theorem 3.2. Let $G=G_{1} \sharp G_{2}$ be a 0,1 or 2 sum of G_{1} and G_{2}. Then the cut polytope of G is normal if and only if the cut polytope of G_{i} is normal for $i=1,2$.

Proof. This is similar to the proof of [6, proposition 2.7].
Since G_{1} and G_{2} are induced subgraphs of G, the "only if" part follows from [9, Lemma 3.2 (1)].
Suppose that the cut polytope of G_{i} is normal for $i=1$, 2. Let $\left\{i_{1}, \ldots, i_{k}\right\}(1 \leq k \leq 3)$ denote the common vertices of G_{1} and G_{2}. It is easy to see that we can express A_{G} as

$$
\begin{equation*}
A_{G}=\left\{\delta_{G}(S) \mid i_{1} \in S \subset[n]\right\} \subset \mathbb{Z}^{E} \tag{6}
\end{equation*}
$$

Case 1. $k=3$.
By (6), we have $A_{G}=A_{G}^{++} \cup A_{G}^{+-} \cup A_{G}^{-+} \cup A_{G}^{--}$where

$$
\begin{aligned}
& A_{G}^{++}=\left\{\left(\begin{array}{c}
\mathbf{x} \\
\mathbf{y} \\
\mathbf{z}_{0}
\end{array}\right) \left\lvert\,\binom{\mathbf{x}}{\mathbf{z}_{0}} \in A_{G_{1}}^{++}\right.,\binom{\mathbf{y}}{\mathbf{z}_{0}} \in A_{G_{2}}^{++}\right\}, \quad \mathbf{z}_{0}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& A_{G}^{+-}=\left\{\left(\begin{array}{c}
\mathbf{x} \\
\mathbf{y} \\
\mathbf{z}_{1}
\end{array}\right) \left\lvert\,\binom{\mathbf{x}}{\mathbf{z}_{1}} \in A_{G_{1}}^{+-}\right.,\binom{\mathbf{y}}{\mathbf{z}_{1}} \in A_{G_{2}}^{+-}\right\}, \quad \\
& \mathbf{z}_{1}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \\
& A_{G}^{-+}=\left\{\left(\begin{array}{c}
\mathbf{x} \\
\mathbf{y} \\
\mathbf{z}_{2}
\end{array}\right) \left\lvert\,\binom{\mathbf{x}}{\mathbf{z}_{2}} \in A_{G_{1}}^{-+}\right.,\binom{\mathbf{y}}{\mathbf{z}_{2}} \in A_{G_{2}}^{-+}\right\}, \quad \mathbf{z}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \\
& A_{G}^{--}=\left\{\left(\begin{array}{c}
\mathbf{x} \\
\mathbf{y} \\
\mathbf{z}_{3}
\end{array}\right) \left\lvert\,\binom{\mathbf{x}}{\mathbf{z}_{3}} \in A_{G_{1}}^{--}\right.,\binom{\mathbf{y}}{\mathbf{z}_{3}} \in A_{G_{2}}^{--}\right\}, \quad \mathbf{z}_{3}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \\
& A_{G_{i}}^{++}=\left\{\delta_{G_{i}}(S) \mid i_{1}, i_{2}, i_{3} \in S \subset\left[n_{i}\right]\right\} \subset \mathbb{Z}^{E_{i}} \\
& A_{G_{i}}^{+-}=\left\{\delta_{G_{i}}(S) \mid i_{1}, i_{2} \in S \subset\left[n_{i}\right], \quad i_{3} \notin S\right\} \subset \mathbb{Z}^{E_{i}} \\
& A_{G_{i}}^{-+}=\left\{\delta_{G_{i}}(S) \mid i_{1}, i_{3} \in S \subset\left[n_{i}\right], \quad i_{2} \notin S\right\} \subset \mathbb{Z}^{E_{i}} \\
& A_{G_{i}}^{--}=\left\{\delta_{G_{i}}(S) \mid i_{1} \in S \subset\left[n_{i}\right], \quad i_{2}, i_{3} \notin S\right\} \subset \mathbb{Z}^{E_{i}} .
\end{aligned}
$$

Let $\left(\begin{array}{l}\mathbf{x} \\ \mathbf{y} \\ p \\ q \\ r \\ \alpha\end{array}\right) \in \mathbb{Z}\left(X_{G}\right) \cap \mathbb{Q}_{+}\left(X_{G}\right)$ for a positive integer α. Then we have

$$
\left(\begin{array}{c}
\mathbf{x} \\
p \\
q \\
r \\
\alpha
\end{array}\right) \in \mathbb{Z}\left(X_{G_{1}}\right) \cap \mathbb{Q}_{+}\left(X_{G_{1}}\right)=\mathbb{Z}_{+}\left(X_{G_{1}}\right), \quad\left(\begin{array}{c}
\mathbf{y} \\
p \\
q \\
r \\
\alpha
\end{array}\right) \in \mathbb{Z}\left(X_{G_{2}}\right) \cap \mathbb{Q}_{+}\left(X_{G_{2}}\right)=\mathbb{Z}_{+}\left(X_{G_{2}}\right)
$$

Hence

$$
\left(\begin{array}{c}
\mathbf{x} \tag{7}\\
p \\
q \\
r \\
\alpha
\end{array}\right)=\left(\begin{array}{c}
\mathbf{x}^{(1)} \\
\mathbf{z}_{k_{1}} \\
1
\end{array}\right)+\left(\begin{array}{c}
\mathbf{x}^{(2)} \\
\mathbf{z}_{k_{2}} \\
1
\end{array}\right)+\cdots+\left(\begin{array}{c}
\mathbf{x}^{(\alpha)} \\
\mathbf{z}_{k_{\alpha}} \\
1
\end{array}\right) \quad \text { where }\binom{\mathbf{x}^{(i)}}{\mathbf{z}_{k_{i}}} \in A_{G_{1}}
$$

$$
\left(\begin{array}{c}
\mathbf{y} \tag{8}\\
p \\
q \\
r \\
\alpha
\end{array}\right)=\left(\begin{array}{c}
\mathbf{y}^{(1)} \\
\mathbf{z}_{k_{1}^{\prime}} \\
1
\end{array}\right)+\left(\begin{array}{c}
\mathbf{y}^{(2)} \\
\mathbf{z}_{k_{2}^{\prime}} \\
1
\end{array}\right)+\cdots+\left(\begin{array}{c}
\mathbf{y}^{(\alpha)} \\
\mathbf{z}_{k_{\alpha}^{\prime}} \\
1
\end{array}\right) \quad \text { where }\binom{\mathbf{y}^{(j)}}{\mathbf{z}_{k_{j}^{\prime}}} \in A_{G_{2}}
$$

Let ξ_{i} (resp. ξ_{i}^{\prime}) denote the number of \mathbf{z}_{i} appearing in (7) (resp. (8)) for each $i=0,1,2$, 3. Then we have $p=\xi_{2}+\xi_{3}=\xi_{2}^{\prime}+\xi_{3}^{\prime}$, $q=\xi_{1}+\xi_{3}=\xi_{1}^{\prime}+\xi_{3}^{\prime}, r=\xi_{1}+\xi_{2}=\xi_{1}^{\prime}+\xi_{2}^{\prime}$, and $\alpha=\sum_{i=0}^{4} \xi_{i}=\sum_{i=0}^{4} \xi_{i}^{\prime}$. Hence $\xi_{i}=\xi_{i}^{\prime}$ for all $i=0,1,2$, 3. Thus, by changing the numbering, we have

$$
\left(\begin{array}{c}
\mathbf{x} \\
\mathbf{y} \\
p \\
q \\
r \\
\alpha
\end{array}\right)=\left(\begin{array}{c}
\mathbf{x}^{(1)} \\
\mathbf{y}^{(1)} \\
\mathbf{z}_{k_{1}} \\
1
\end{array}\right)+\left(\begin{array}{c}
\mathbf{x}^{(2)} \\
\mathbf{y}^{(2)} \\
\mathbf{z}_{k_{2}} \\
1
\end{array}\right)+\cdots+\left(\begin{array}{c}
\mathbf{x}^{(\alpha)} \\
\mathbf{y}^{(\alpha)} \\
\mathbf{z}_{k_{\alpha}} \\
1
\end{array}\right) \in \mathbb{Z}_{+}\left(X_{G}\right)
$$

Case 2. $k=1,2$.
$\operatorname{By}(6)$, if $k=1$, then $A_{G}=\left\{\left.\binom{\mathbf{x}}{\mathbf{y}} \right\rvert\, \mathbf{x} \in A_{G_{1}}, \mathbf{y} \in A_{G_{2}}\right\}$ and if $k=2$, then we have $A_{G}=A_{G}^{+} \cup A_{G}^{-}$where

$$
\begin{aligned}
& A_{G}^{+}=\left\{\left(\begin{array}{l}
\mathbf{x} \\
\mathbf{y} \\
0
\end{array}\right) \left\lvert\,\binom{\mathbf{x}}{0} \in A_{G_{1}}^{+}\right.,\binom{\mathbf{y}}{0} \in A_{G_{2}}^{+}\right\} \\
& A_{G}^{-}=\left\{\left(\begin{array}{l}
\mathbf{x} \\
\mathbf{y} \\
1
\end{array}\right) \left\lvert\,\binom{\mathbf{x}}{1} \in A_{G_{1}}^{-}\right.,\binom{\mathbf{y}}{1} \in A_{G_{2}}^{-}\right\} \\
& A_{G_{i}}^{+}=\left\{\delta_{G_{i}}(S) \mid i_{1}, i_{2} \in S \subset\left[n_{i}\right]\right\} \subset \mathbb{Z}^{E_{i}} \\
& A_{G_{i}}^{-}=\left\{\delta_{G_{i}}(S) \mid i_{1} \in S \subset\left[n_{i}\right], i_{2} \notin S\right\} \subset \mathbb{Z}^{E_{i}} .
\end{aligned}
$$

In both cases, the desired conclusion follows from the similar (and simpler) argument in Case 1.
A graph $G=(V, E)$ is called edge-maximal without \mathscr{H} minor, if G has no \mathscr{H} minor but any graph $G^{\prime}=\left(V, E^{\prime}\right)$ with $E^{\prime}=$ $E \cup\{e\}$ and $e \notin E$ has \mathscr{H} minor.

Let G be a graph with vertex set $V=[n]=\{1, \ldots, n\}$ and edge set E. The suspension of the graph G is the new graph \widehat{G} whose vertex set equals $[n+1]=V \cup\{n+1\}$ and whose edge set equals $E \cup\{\{i, n+1\} \mid i \in V\}$. A cut ideal $I_{\hat{G}}$ corresponds to the toric ideal arising from the binary graph model of G.

Theorem 3.3. Let G be a graph. Then $\operatorname{Cut}^{\square}(\widehat{G})$ is normal if and only if G has no K_{4} minor.
Proof. If G has K_{4} minor, then \widehat{G} has K_{5} minor. Hence Cut ${ }^{\square}(\widehat{G})$ is not normal.
It is known [4, proposition 7.3.1] that a graph with at least three vertices is edge-maximal without K_{4} minor if and only if it is 1 sum of K_{3} 's. Hence, if G is edge-maximal without K_{4} minor, then \widehat{G} is 2 sums of K_{4} 's. Since the cut polytope of K_{4} is normal, $\operatorname{Cut}^{\square}(\widehat{G})$ is normal by Theorem 3.2. Thus for any subgraph G^{\prime} of $G, \operatorname{Cut}^{\square}\left(\widehat{G^{\prime}}\right)$ is normal by Theorem 2.3.

Remark 3.4. One of the referees pointed out that Theorem 3.3 implies the main result of [11].
Example 3.5. The cut polytope of a wheel graph $W_{n}=\widehat{C}_{n}$ is normal since the cycle C_{n} has no K_{4} minor.
By considering the subgraph of the graphs appearing in Theorem 3.3, we have
Corollary 3.6. If G has a vertex v such that the induced subgraph of G on $V \backslash\{v\}$ has no K_{4} minor, then $\mathrm{Cut}^{\square}(G)$ is normal.
Example 3.7. Let G be a graph with ≤ 5 vertices. Then the cut polytope of G is normal if and only if $G \neq K_{5}$.
Theorem 3.8. Let G be a graph with no $K_{5} \backslash$ e minor. Then $\mathrm{Cut}^{\square}(G)$ is normal.
Proof. It is known[3, p.180] that, if G is edge-maximal graph without $K_{5} \backslash e$ minor, then G is obtained by 1 sum of the graphs $K_{3}, K_{3,3}, W_{n}$, and the prism $C_{3} \times K_{2}$. Since the cut polytope of all of them are normal, Cut ${ }^{\square}(G)$ is normal by Theorem 3.2. By Theorem 2.3, the cut polytope of any subgraph of G is normal.

4. Sturmfels-Sullivant conjecture

Although Conjecture 1.1 is still open, the following is known [3, p.181] in graph theory.
Proposition 4.1. Let G be an edge-maximal graph without K_{5} minor. If G has at least 3 vertices, then G is 1 or 2 sum of K_{3}, K_{4}, 4-connected plane triangulations and the graph V_{8}.

The cut polytopes of K_{3} and K_{4} are normal. Moreover,
Example 4.2. Let V_{8} be the graph with the edge set
$\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,6\},\{6,7\},\{7,8\},\{1,8\},\{1,5\},\{2,6\},\{3,7\},\{4,8\}\}$.
Since V_{8} has an induced cycle of length 5, Cut ${ }^{\square}\left(V_{8}\right)$ is not compressed by [10, Theorem 3.2]. It follows from Corollary 3.6 that the cut polytope of any proper minor of V_{8} is normal. By the software Normaliz [2], we can check that $\mathrm{Cut}^{\square}\left(V_{8}\right)$ is normal.

Thus, in order to prove Conjecture 1.1, it is enough to prove one of the following conjectures:
Conjecture 4.3. The cut polytope $\mathrm{Cut}^{\square}(G)$ is normal if G is a 4-connected plane triangulation.
Conjecture 4.4. The cut polytope $\mathrm{Cut}^{\square}(G)$ is normal if G is a grid graph.

Acknowledgements

The results on this paper were obtained while the author was visiting University of Washington from August to December 2008. He appreciates the warm hospitality he received from Rekha R. Thomas and people of Department of Mathematics, University of Washington. In addition, the author thanks Rekha R. Thomas for introducing cut polytopes to him together with important references and useful discussions. This research was supported by JST, CREST.

References

[1] F. Barahona, A.R. Mahjoub, On the cut polytope, Math. Program. 36 (1986) 157-173.
[2] W. Bruns, B. Ichim, Normaliz 2.0, Computing normalizations of affine semigroups. Available from http://www.math.uos.de/normaliz.
[3] R. Diestel, Graph Decompositions, A Study in Infinite Graph Theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1990.
[4] R. Diestel, Graph Theory, third ed., in: Graduate Texts in Mathematics, vol. 173, Springer-Verlag, Berlin, 2005.
[5] X. Fu, L.A. Goddyn, Matroids with the circuit cover property, European J. Combin. 20 (1999) 61-73.
[6] M. Laurent, Hilbert bases of cuts, Discrete Math. 150 (1996) 257-279.
[7] U. Nagel, S. Petrović, Properties of cut ideals associated to ring graphs, J. Commutative Algebra 1 (3) (2009) 547-566.
[8] B. Sturmfels, Gröbner Bases and Convex Polytopes, Amer. Math. Soc., Providence, RI, 1995.
[9] B. Sturmfels, S. Sullivant, Toric geometry of cuts and splits, Michigan Math. J. 57 (2008) 689-709.
[10] S. Sullivant, Compressed polytopes and statistical disclosure limitation, Tohoku Math. J. 58 (2006) 433-445.
[11] S. Sullivant, Normal binary graph models, preprint. arXiv:0906.1784v1[math.CO].

[^0]: E-mail address: ohsugi@rkmath.rikkyo.ac.jp.
 0012-365X/\$ - see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2009.11.012

