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a b s t r a c t

Sturmfels–Sullivant conjectured that the cut polytope of a graph is normal if and only if the
graph has no K5minor. In the present paper, it is proved that the normality of cut polytopes
of graphs is a minor closed property. By using this result, we have large classes of normal
cut polytopes. Moreover, it turns out that, in order to study the conjecture, it is enough to
consider 4-connected plane triangulations.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph on the vertices [n] := {1, 2, . . . , n} and edges E without loops or multiple edges. Let S ⊂ [n]. Then the
cut semimetric on G induced by S is the 0/1 vector δG(S) in RE defined by

δG(S)ij =
{
1 if |S ∩ {i, j}| = 1
0 otherwise

where ij ∈ E. Let AG = {a1, . . . , aN} = {δG(S) | S ⊂ [n]} ⊂ ZE where N = 2n−1. The cut polytope Cut�(G) of G is the convex
hull of AG. Let

XG :=
{(
a1
1

)
, . . . ,

(
aN
1

)}
⊂ ZE+1,

Z(XG) :=

{
N∑
i=1

zi

(
ai
1

) ∣∣∣∣ zi ∈ Z

}
⊂ ZE+1,

Q+(XG) :=

{
N∑
i=1

qi

(
ai
1

) ∣∣∣∣ 0 ≤ qi ∈ Q

}
⊂ QE+1,

Z+(XG) :=

{
N∑
i=1

zi

(
ai
1

) ∣∣∣∣ 0 ≤ zi ∈ Z

}
⊂ ZE+1.

Then Z+(XG) ⊂ Z(XG) ∩ Q+(XG) holds in general. The cut polytope Cut�(G) is called normal if we have Z+(XG) = Z(XG)
∩ Q+(XG).
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1.1. A conjecture on normal cut polytopes

Let K [t, s] = K [t1, . . . , tE, s] be the polynomial ring in E + 1 variables over a field K and let K [q] = K [q1, . . . , qN ]
the polynomial ring in N(= 2n−1) variables over K . For each nonnegative integer vector α = (α1, . . . , αE) ∈ ZE , we set
tα = tα11 · · · t

αE
E . Then the toric cut ideal IG of a graph G is the kernel of homomorphism π : K [q] −→ K [t, s] defined by

π(qi) = tais. Sturmfels–Sullivant [9, conjecture 3.7] conjectured that K [q]/IG is normal if and only if G has no K5 minor.
Since it is known (e.g., [8, proposition 13.5]) that K [q]/IG is normal if and only if Z+(XG) = Z(XG) ∩ Q+(XG) holds, their
conjecture is formulated as follows:

Conjecture 1.1. The cut polytope Cut�(G) is normal if and only if G has no K5 minor.

If Cut�(G) is normal and G′ is obtained from G by contracting an edge, then Cut�(G′) is normal ([9, Lemma 3.2 (2)]). Note
that, if a graph G has Km as a minor, then that minor can be realized by a sequence of edge contraction only. As stated in [9],
the ‘‘only if’’ part is true since Cut�(K5) is not normal. On the other hand, the ‘‘if’’ part is true for the following classes of
graphs:

• graphs with≤ 6 vertices (by a direct computation [9] together with [9, Theorem 1.2])
• graphs having no induced cycle of length≥ 5 (by [10, Theorem 3.2])
• ‘‘ring graphs’’ (Note that ring graphs have no K4 minor. See [7]).

1.2. Hilbert bases of cut polytopes

In order to avoid confusion, we must introduce ‘‘nonhomogeneous’’ version of this problem on cut polytopes. The
following sets are studied in, e.g., [5,6]:

Z(AG) :=

{
N∑
i=1

ziai

∣∣∣∣ zi ∈ Z

}
⊂ ZE

Q+(AG) :=

{
N∑
i=1

qiai

∣∣∣∣ 0 ≤ qi ∈ Q

}
⊂ QE

Z+(AG) :=

{
N∑
i=1

ziai

∣∣∣∣ 0 ≤ zi ∈ Z

}
⊂ ZE .

If Z+(AG) = Z(AG) ∩ Q+(AG) holds, then AG is called a Hilbert basis. It is known that Z+(AG) = Z(AG) ∩ Q+(AG) holds if one
of the following holds:

• G has no K5 minor ([5, Corollary 1.3]);
• G is K6 \ e or its subgraph ([6, Theorem 1.1]).

Moreover, Z+(AG) 6= Z(AG) ∩ Q+(AG) holds if

• G has a K6 minor ([6, proposition 1.2]).

On the other hand, it is known that the class of graphs G satisfying Z+(AG) = Z(AG) ∩ Q+(AG) is closed under

• contraction minors ([6, proposition 2.1]);
• clique sums ([6, proposition 2.7]);
• edge deletions satisfying some conditions ([6, proposition 2.3]).

Hence it is natural to have the following conjecture.

Conjecture 1.2. Let G be a connected graph. Then Z+(AG) = Z(AG) ∩ Q+(AG) if and only if G has no K6 minor.

The relation between our problem and this problem is as follows:

Proposition 1.3. If Z+(XG) = Z(XG) ∩ Q+(XG) holds, then we have Z+(AG) = Z(AG) ∩ Q+(AG).

Proof. Suppose that Z+(XG) = Z(XG)∩Q+(XG) holds. Let x ∈ Z(AG)∩Q+(AG). Since (0, . . . , 0, 1) ∈ Z(XG), there exists an
integer α such that(

x
α

)
∈ Z(XG) ∩ Q+(XG) = Z+(XG).

Thus x ∈ Z+(AG) as desired. �

Remark 1.4. The graph K5 is a counterexample of the converse of Proposition 1.3.
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1.3. Main results

The main purpose of the present paper is to prove that the set of graphs G such that Cut�(G) is normal is minor closed
(Corollary 2.4). Thanks to Corollary 2.4, we have large classes of normal cut polytopes (Theorem 3.3, Corollary 3.6 and
Theorem 3.8). In addition, in Section 4, we will show that, in order to study Conjecture 1.1, it is enough to consider 4-
connected plane triangulations.
Since the converse of Proposition 1.3 is not true in general (Remark 1.4), we cannot apply the results on Hilbert bases to

our problem directly. However there are a lot of useful ideas in [6]. For example, the idea of the proof of Theorem 2.3 comes
from that of [6, proposition 2.3] and the proof of Theorem 3.2 is similar to that of [6, proposition 2.7].

2. Deletion of an edge

Since the origin belongs to AG, we have (0, . . . , 0, 1) ∈ XG. Hence it follows from [6, p.258] that, for x ∈ ZE and α ∈ Z,(
x
α

)
∈ Z(XG) ⇐⇒

∑
e∈C

xe ≡ 0 (mod 2) (1)

for each cycle C of G. From now on, we always assume that G has no K5 minor. Then the following proposition is known.

Proposition 2.1 ([1]). Let G be a graph without K5 minor. Then Cut�(G) is the solution set of the following linear inequalities:

0 ≤ xe ≤ 1, e ∈ E∑
e∈F

xe −
∑
e∈C\F

xe ≤ |F | − 1

where C ranges over the induced cycles of G and F ranges over the odd subsets of C.

Thanks to Proposition 2.1, we have the following:

Corollary 2.2. Let G be a graph without K5 minor. For a vector x ∈ QE and a nonnegative integer α,
(
x
α

)
∈ Q+(XG) if and only

if

0 ≤ xe ≤ α, e ∈ E∑
e∈F

xe −
∑
e∈C\F

xe ≤ α (|F | − 1)

where C ranges over the induced cycles of G and F ranges over the odd subsets of C.

Proof. It follows from the following fact:

1
α
x ∈ Cut�(G)⇐⇒

(
x
α

)
∈ Q+(XG)

for 0 < α ∈ Z and x ∈ QE .

By using Eq. (1) together with Corollary 2.2, we have the following.

Theorem 2.3. Let G be a graph. If Cut�(G) is normal, then Cut�(G \ e0) is normal for any edge e0 of G.

Proof. The idea of the proof is obtained from that of [6, proposition 2.3]. Let G′ = G \ e0. Note that G and G′ have no K5
minor. Let AG′ = {a1, . . . , aN} and(

x
α

)
=

N∑
i=1

qi

(
ai
1

)
∈ Z(XG′) ∩ Q+(XG′)

where 0 < α ∈ Z and 0 ≤ qi ∈ Q for 1 ≤ i ≤ N . Since Cut�(G) is normal, it is enough to show that there exists a nonnegative
integer γ such that(

γ
x
α

)
∈ Z(XG) ∩ Q+(XG) = Z+(XG).
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Let x′ =
(
γ
x

)
where γ ∈ Q. Thanks to Corollary 2.2,

(
x′
α

)
∈ Q+(XG) if and only if

0 ≤ γ ≤ α (2)∑
e∈F

x′e −
∑
e∈C\F

x′e ≤ α (|F | − 1) (3)

where C ranges over the induced cycles of Gwith e0 ∈ C and F ranges over the odd subsets of C . Then Eqs. (2) and (3) have
a solution γ . In fact,

N∑
i=1

qi

(
δi
ai
1

)
=


N∑
i=1

qiδi

x
α

 ∈ Q+(XG),

where AG =
{(

δ1
a1

)
, . . . ,

(
δN
aN

)}
. Let

γmax = max
(C, F) | e0∈C\F

(∑
e∈F

x′e −
∑

e∈C\F , e6=e0

x′e − α (|F | − 1)

)
∈ Z,

γmin = min
(C, F) | e0∈F

(
−

∑
e∈F , e6=e0

x′e +
∑
e∈C\F

x′e + α (|F | − 1)

)
∈ Z.

Note that |F | − 1 is even. By (2) and (3) above, we have(
γ
x
α

)
∈ Q+(XG) ⇐⇒ max(0, γmax) ≤ γ ≤ min(α, γmin). (4)

On the other hand, let C be an arbitrary cycle of G containing e0. Then by (1),(
γ
x
α

)
∈ Z(XG)⇐⇒ γ ≡

∑
e∈C, e6=e0

x′e (mod 2). (5)

If max(0, γmax) < min(α, γmin), then max(0, γmax) + 1 ≤ min(α, γmin) and hence either γ = max(0, γmax) or γ =
max(0, γmax) + 1 satisfies the conditions (4) and (5). Suppose that max(0, γmax) = min(α, γmin). Let γ = max(0, γmax) =
min(α, γmin) ∈ Z. Since 0 < α, at least one of γ = γmax or γ = γmin holds. If γ = γmax, then there exists a cycle C of G
containing e0 such that

γ =
∑
e∈F

x′e −
∑

e∈C\F , e6=e0

x′e − α (|F | − 1)

≡

∑
e∈C, e6=e0

x′e (mod 2).

Similarly, if γ = γmin, then there exists a cycle C of G containing e0 such that

γ = −
∑

e∈F , e6=e0

x′e +
∑
e∈C\F

x′e + α (|F | − 1)

≡

∑
e∈C, e6=e0

x′e (mod 2).

In both cases, γ satisfies the conditions (4) and (5). Thus we have(
γ
x
α

)
∈ Z(XG) ∩ Q+(XG) = Z+(XG)

and hence
(
x
α

)
∈ Z+(XG′)as desired. �

It is known [9, Lemma 3.2 (2)] that, if Cut�(G) is normal and G′ is obtained from G by contracting an edge, then Cut�(G′)
is normal. Thus, we have the following:

Corollary 2.4. The set of graphs G such that Cut�(G) is normal is minor closed.
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3. Clique sums and normality

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs such that V1 ∩ V2 is a clique of both graphs. The new graph G = G1]G2
with the vertex set V = V1∪V2 and edge set E = E1∪ E2 is called the clique sum of G1 and G2 along V1∩V2. If the cardinality
of V1 ∩ V2 is k+ 1, this operation is called a k-sum of the graphs.

Proposition 3.1 ([9]). Let G = G1]G2 be a 0, 1 or 2 sum of G1 and G2. Then the set of generators (or Gröbner bases) of the toric
ideal IG of Cut�(G) consists of that of IG1 and IG2 together with some quadratic binomials.

It turns out that this holds even for normality.

Theorem 3.2. Let G = G1]G2 be a 0, 1 or 2 sum of G1 and G2. Then the cut polytope of G is normal if and only if the cut polytope
of Gi is normal for i = 1, 2.

Proof. This is similar to the proof of [6, proposition 2.7].
Since G1 and G2 are induced subgraphs of G, the ‘‘only if’’ part follows from [9, Lemma 3.2 (1)].
Suppose that the cut polytope of Gi is normal for i = 1, 2. Let {i1, . . . , ik} (1 ≤ k ≤ 3) denote the common vertices of G1

and G2. It is easy to see that we can express AG as

AG = {δG(S) | i1 ∈ S ⊂ [n]} ⊂ ZE . (6)

Case 1. k = 3.
By (6), we have AG = A++G ∪ A

+−

G ∪ A
−+

G ∪ A
−−

G where

A++G =

{( x
y
z0

) ∣∣∣∣ ( xz0
)
∈ A++G1 ,

(
y
z0

)
∈ A++G2

}
, z0 =

(0
0
0

)

A+−G =

{( x
y
z1

) ∣∣∣∣( xz1
)
∈ A+−G1 ,

(
y
z1

)
∈ A+−G2

}
, z1 =

(0
1
1

)

A−+G =

{( x
y
z2

) ∣∣∣∣( xz2
)
∈ A−+G1 ,

(
y
z2

)
∈ A−+G2

}
, z2 =

(1
0
1

)

A−−G =

{( x
y
z3

) ∣∣∣∣( xz3
)
∈ A−−G1 ,

(
y
z3

)
∈ A−−G2

}
, z3 =

(1
1
0

)
A++Gi = {δGi(S) | i1, i2, i3 ∈ S ⊂ [ni]} ⊂ ZEi

A+−Gi = {δGi(S) | i1, i2 ∈ S ⊂ [ni], i3 6∈ S} ⊂ ZEi

A−+Gi = {δGi(S) | i1, i3 ∈ S ⊂ [ni], i2 6∈ S} ⊂ ZEi

A−−Gi = {δGi(S) | i1 ∈ S ⊂ [ni], i2, i3 6∈ S} ⊂ ZEi .

Let


x
y
p
q
r
α

 ∈ Z(XG) ∩ Q+(XG) for a positive integer α. Then we have


x
p
q
r
α

 ∈ Z(XG1) ∩ Q+(XG1) = Z+(XG1),


y
p
q
r
α

 ∈ Z(XG2) ∩ Q+(XG2) = Z+(XG2).

Hence
x
p
q
r
α

 =
x(1)zk1
1

+
x(2)zk2
1

+ · · · +
x(α)zkα
1

 where
(
x(i)
zki

)
∈ AG1 (7)
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y
p
q
r
α

 =
y(1)zk′1
1

+
y(2)zk′2
1

+ · · · +
y(α)zk′α
1

 where
(
y(j)
zk′j

)
∈ AG2 . (8)

Let ξi (resp. ξ ′i ) denote the number of zi appearing in (7) (resp. (8)) for each i = 0, 1, 2, 3. Thenwe have p = ξ2+ξ3 = ξ
′

2+ξ
′

3,
q = ξ1 + ξ3 = ξ ′1 + ξ

′

3, r = ξ1 + ξ2 = ξ
′

1 + ξ
′

2, and α =
∑4
i=0 ξi =

∑4
i=0 ξ

′

i . Hence ξi = ξ
′

i for all i = 0, 1, 2, 3. Thus, by
changing the numbering, we have

x
y
p
q
r
α

 =
x

(1)

y(1)
zk1
1

+
x

(2)

y(2)
zk2
1

+ · · · +
x

(α)

y(α)
zkα
1

 ∈ Z+(XG).

Case 2. k = 1, 2.

By (6), if k = 1, then AG =
{(
x
y

) ∣∣∣∣x ∈ AG1 , y ∈ AG2}and if k = 2, then we have AG = A+G ∪ A−G where
A+G =

{(x
y
0

) ∣∣∣∣(x0
)
∈ A+G1 ,

(
y
0

)
∈ A+G2

}

A−G =

{(x
y
1

) ∣∣∣∣(x1
)
∈ A−G1 ,

(
y
1

)
∈ A−G2

}
A+Gi = {δGi(S) | i1, i2 ∈ S ⊂ [ni]} ⊂ ZEi

A−Gi = {δGi(S) | i1 ∈ S ⊂ [ni], i2 6∈ S} ⊂ ZEi .

In both cases, the desired conclusion follows from the similar (and simpler) argument in Case 1. �

A graph G = (V , E) is called edge-maximal without H minor, if G has noH minor but any graph G′ = (V , E ′) with E ′ =
E ∪ {e} and e 6∈ E hasH minor.
Let G be a graph with vertex set V = [n] = {1, . . . , n} and edge set E. The suspension of the graph G is the new graph Ĝ

whose vertex set equals [n+ 1] = V ∪ {n+ 1} and whose edge set equals E ∪ {{i, n+ 1} | i ∈ V }. A cut ideal ÎG corresponds
to the toric ideal arising from the binary graph model of G.

Theorem 3.3. Let G be a graph. Then Cut�(̂G) is normal if and only if G has no K4 minor.

Proof. If G has K4 minor, then Ĝ has K5 minor. Hence Cut�(̂G) is not normal.
It is known [4, proposition 7.3.1] that a graph with at least three vertices is edge-maximal without K4 minor if and only

if it is 1 sum of K3’s. Hence, if G is edge-maximal without K4 minor, then Ĝ is 2 sums of K4’s. Since the cut polytope of K4 is
normal, Cut�(̂G) is normal by Theorem 3.2. Thus for any subgraph G′ of G, Cut�(Ĝ′) is normal by Theorem 2.3. �

Remark 3.4. One of the referees pointed out that Theorem 3.3 implies the main result of [11].

Example 3.5. The cut polytope of a wheel graphWn = Ĉn is normal since the cycle Cn has no K4 minor.

By considering the subgraph of the graphs appearing in Theorem 3.3, we have

Corollary 3.6. If G has a vertex v such that the induced subgraph of G on V \ {v} has no K4 minor, then Cut�(G) is normal.

Example 3.7. Let G be a graph with≤ 5 vertices. Then the cut polytope of G is normal if and only if G 6= K5.

Theorem 3.8. Let G be a graph with no K5 \ e minor. Then Cut�(G) is normal.

Proof. It is known[3, p.180] that, if G is edge-maximal graph without K5 \ eminor, then G is obtained by 1 sum of the graphs
K3, K3,3,Wn, and the prism C3 × K2. Since the cut polytope of all of them are normal, Cut�(G) is normal by Theorem 3.2. By
Theorem 2.3, the cut polytope of any subgraph of G is normal. �
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4. Sturmfels–Sullivant conjecture

Although Conjecture 1.1 is still open, the following is known [3, p.181] in graph theory.

Proposition 4.1. Let G be an edge-maximal graph without K5 minor. If G has at least 3 vertices, then G is 1 or 2 sum of K3, K4,
4-connected plane triangulations and the graph V8.

The cut polytopes of K3 and K4 are normal. Moreover,

Example 4.2. Let V8 be the graph with the edge set

{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {1, 8}, {1, 5}, {2, 6}, {3, 7}, {4, 8}}.

Since V8 has an induced cycle of length 5, Cut�(V8) is not compressed by [10, Theorem 3.2]. It follows from Corollary 3.6 that
the cut polytope of any proper minor of V8 is normal. By the software Normaliz [2], we can check that Cut�(V8) is normal.

Thus, in order to prove Conjecture 1.1, it is enough to prove one of the following conjectures:

Conjecture 4.3. The cut polytope Cut�(G) is normal if G is a 4-connected plane triangulation.

Conjecture 4.4. The cut polytope Cut�(G) is normal if G is a grid graph.
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