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Abstract

An algorithm for the prime decomposition of polynomial ideals over small finite fields is
proposed and implemented on the basis of previous work of the second author. To achieve
better performance, several improvements are added to the existing algorithm, with strategies for
computational flow proposed, based on experimental results. The practicality of the algorithm is
examined by testing the implementation experimentally, which also reveals information about the
quality of the implementation.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of primary decomposition of ideals in noetherian rings is very classical,
with many works having studied the computation over fields of characteristic 0 (see
Decker et al.(1999) for a more detailed history and a summary of more recent work).
For fields of positive characteristic, existing works (Kalkberner, 1994; Gianni and Trager,
1996; Matsumoto, 2001; Kemper, 2002; Fortuna et al., 2002) on the subject and related
topics are largely general and theoretical. However, to develop a practical algorithm for the
primary decomposition of polynomial ideals over finite fields is not only very interesting
as a computational problem, but also very useful for studies on pure mathematics
and engineering problems. Thus, our goal is to develop a practical algorithm for the
primary decomposition of a polynomial ideal over a finite field. To do this, we apply
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the “localization technique” ofShimoyama and Yokoyama(1996), where primary
components are extracted from prime divisors. This technique is based on Gr¨obner basis
computation and does not depend on the characteristic of the coefficient field. Therefore
primary decomposition computations can be efficiently reduced to prime decomposition
computations.

We propose a precise algorithm for the prime decomposition of polynomial ideals
over small finite fields based onYokoyama(2002), and report on the results of our
implementation on a real computer. To achieve better performance, several improvements
are added to the work ofYokoyama(2002), with strategies regarding computational
flow proposed, based on experimental results. The practicality of the algorithm is
examined through experiments on examples, which also demonstrate the quality of the
implementation.

As noted byYokoyama(2002), there are differences between prime decompositions of
cases of characteristic 0 and those of positive characteristic, and we cannot apply methods
used for polynomial ideals over the rational number field directly to those over finite
fields. A procedure that handles the differences is therefore developed. To achieve the
most efficient computation, the algorithm and its implementation are given the following
features:

(1) We employ the well-established strategy ofGianni et al. (1988), but modify
the “decomposition using generic position” that is very successful in cases of
characteristic 0. (We note that the original method ofGianni et al.(1988) may work
in larger characteristic cases, where the problem in (2) hardly occurs.)

(2) To solve problems arising from positive characteristic, we introduce the notion
of “separable ideals” and “separable closure of ideals”. Using separable closure,
factorization of polynomials over finite fields results in true prime decomposition
(seeSection 2.2for details).

(3) Using factorization of the minimal polynomial of each variable, a partial
decomposition of the given ideal called “intermediate decomposition” is computed
(we call each computed ideal anintermediate ideal). In many cases, intermediate
ideals tend to be prime, and so this decomposition improves computational
efficiency.

(4) Radicals only need to be computed for some primary ideals, and in these cases, we
apply the efficient method ofMatsumoto(2001) based on “inverse Frobenius map
computation”. Note that the entire computation can be done without determining the
radical of the given idealI . To improve overall efficiency, it may be necessary to
compute the intersection of computed prime ideals (seeSection 3.6). In these cases,
the radical ideal of a given ideal is computed as a by-product. In our experiment,
there are cases where this computed radicals much faster than existing methods
(Matsumoto, 2001; Kemper, 2002).

(5) As we want to compute the prime divisors of a given idealI , we can make use of
“partial decompositions” (Caboara et al., 1997; Shimoyama and Yokoyama, 1996).
This is done by first applying the “pre-decomposition” suggested byShimoyama and
Yokoyama(1996), and involves factoring all elements in a Gr¨obner basis ofI . For
each computed ideal, we then apply an algorithm based onYokoyama(2002).
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Of course, as the whole procedure consists of basic arithmetical operations, Gr¨obner
basis computation and polynomial factorization over finite fields, overall efficiency is
dependent on the efficiencies of the individual computations. We thus apply the following
methods:

(6) Zech representation is employed to allow efficient arithmetic over extension fields
GF(q), as it is well suited to polynomial factorization overGF(q) (seeNoro and
Yokoyama, 2002).

(7) For polynomial factorization overGF(q), the most recent algorithms ofBernardin
and Monagan(1997) andNoro and Yokoyama(2002) are used.

(8) An “FGLM-type” methodFaugère et al.(1993) is used in Gr¨obner computations to
allow efficient computation of the minimal polynomial of each variable.

All procedures were implemented in Risa/Asir, with computational tests of a number
of examples conducted. Experimentally, the algorithm was found to work very well with
a set of examples. Although testing using only a limited number of examples cannot fully
verify the efficiency of the implementation, it does give an indication of the quality of the
algorithm and its implementation. Note that Pfister has also implemented the algorithm of
Yokoyama(2002) in SINGULAR, and this is used for comparison in our testing.

For fields of larger positive characteristic, the method ofWu (1984) and that of
Eisenbud et al.(1992) with integral closure computation algorithm ofde Jong(1998) may
also compute the prime/primary decomposition of polynomial ideals. But, these methods
suffer the same problem in (2) arising frominseparability in small characteristic cases
(seeSection 2.2for details), because the method ofWu (1984) requires factorization
of polynomials over algebraic extension fields of rational function fields, which implies
that it requireselements in generic position; also the method ofEisenbud et al.(1992)
requires such elements as it needs zero-dimensional prime decomposition. As this problem
is resolved by using “separable closures” proposed byYokoyama(2002), these methods
can be improved to handle such cases by utilizing our implementation.

The current problem is strongly related toradical ideal computation in positive
characteristic(Matsumoto, 2001; Fortuna et al., 2002; Kemper, 2002), with the difference
being analogous to that between the irreducible factorization of polynomials and square-
free factorization using only derivations. Since the algorithm uses minimal polynomials of
variables, it is similar to the radical ideal computation ofKemper(2002).

2. Review of approach and key points

A summary of the key points of the computation of prime decomposition in positive
characteristic ofYokoyama (2002) is given. Throughout this paper, we consider a
polynomial ring K [x1, . . . , xn], where K is a finite field GF(q) of order q and
characteristicp, and we denote the set of variables{x1, . . . , xn} by X. For a noetherian
commutative ringR, we write IdR( f1, . . . , ft ) for the ideal generated by elements
f1, . . . , ft of R, and(I : f ) for the quotient ideal of an idealI of an elementf of R. For
an idealI of R, we denote the radical by

√
I , the set of all prime divisors ofI by Ass(I )

and the set of all isolated prime divisors ofI by Assiso(I ). Then
√

I = ∩P∈Assiso(I ) P
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and Ass(
√

I ) = Assiso(I ). From the prime decomposition ofI , we thus mean to compute
Assiso(I ). For a polynomial idealJ of L[Z], whereL is an extension field ofK andZ is a
set of variables, we denote the algebraic variety ofJ, i.e. the set of all zeros ofJ, by VL̃(J),
where we consider zeros in the algebraic closureL̃ of L. Conversely, for an algebraic
varietyW, we denote its corresponding ideal{ f ∈ L[Z] | f (α) = 0 for anyα ∈ W} by
I L[Z](W).

2.1. Successive and simultaneous approaches

There are currently two approaches to prime decomposition,successiveand
simultaneous. Kalkberner(1994) discussed the prime decomposition of ideals ofR[x]
by inductive arguments for a noetherian commutative ringR with identity under the
assumption that one can compute the prime decomposition of ideals ofR and one can
compute factorization of univariate polynomials over the quotient fieldQ(R/P) for every
prime idealP. In our case, by computing pure-dimensional components (Gianni et al.,
1988; Shimoyama and Yokoyama, 1996; Caboara et al., 1997), we can reduce the problem
to that of zero-dimensional ideals over rational function fields. LettingL = K (Y) for some
Y ⊂ X, one can compute the prime decomposition of the elimination idealI ∩ L[Z ∪ {z}]
for Z ⊂ X\Y andz ∈ X\(Z ∪ Y) from that of I ∩ L[Z] if the factorization of univariate
polynomials over any algebraic extension field ofL can be calculated. This is exactly
equivalent to the “construction of successive extension fields over rational function fields”,
and we thus call it thesuccessive approach. (The method ofWu (1984) can be considered
as belonging to this approach in view of its procedure.)

If we employ thesuccessive approach, decomposition efficiency is related to the
efficient factorization of univariate polynomials over algebraic extension fields of
rational function fields. However, since this factorization reduces to the factorization of
polynomials over the ground field, a more practical approach to prime decomposition is the
simultaneous approachthrough which prime decomposition can be performed using non-
iterative methods. (The method ofEisenbud et al.(1992) can be considered as belonging to
this approach type.) Thestrategyof Gianni et al.(1988) anddecomposition using generic
positionare therefore used, as the most practical among the simultaneous approaches, to
develop an algorithm using the following principles:

• The notion ofseparable closureis introduced to overcome certain difficulties arising
in cases of positive characteristic.

• We only consider factorization of polynomials over the ground (perfect) fieldK =
GF(q) to increase the efficiency of the implementation.

2.2. Recasting the problem as decomposition of separable ideals

A general method for prime decomposition of zero-dimensional ideals using generic
position is first presented, with problems that arise in the method with regard to
positive characteristic noted where appropriate. The notion of separable closure and an
algorithm for computing it are then presented and, using these, we overcome the problems
surrounding positive characteristic.
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Hereafter, letY be a proper subset ofX, Z = X\Y andL = K (Y). For simplicity, we
write Z = {x1, . . . , xs} andY = {xs+1, . . . , xn}. Moreover,t is always used to represent
new variables.

2.2.1. Decomposition using generic position
We begin with giving the definition of minimal polynomials and polynomials in generic

position (slightly different from the standard one), and then show decomposition by using
(polynomials in) generic position.

Definition 2.1. Let J be a zero-dimensional ideal ofL[Z]. For a polynomial f (Z) in
L[Z], theminimal polynomial mf (t) with respect to Jis defined as the monic, univariate
polynomial overL having the smallest degree among all univariate polynomialsh such
thath( f ) ∈ J.

For each variablex in Z, the minimal polynomialmx(x) with respect toJ is the
generator of the elimination idealJ ∩ L[x].
Definition 2.2. Let J be an ideal ofL[Z]. A polynomial g(Z) ∈ L[Z] is said to be
in generic position with respect to Jif deg(mg(t)) = dimL(L[Z]/J) for the minimal
polynomialmg with respect toJ.

Proposition 2.3can be considered a special case of Proposition 8.69 ofBecker and
Weispfenning(1993).

Proposition 2.3. Let J be an ideal of L[Z], and suppose that a polynomial g(Z) is in
generic position with respect to J and that mg is the minimal polynomial of g(Z) with
respect to J . Moreover, suppose that

mg(t) = m1(t)
e1 · · ·mr (t)

er

is the irreducible factorization of mg over L. Then Pi = IdL[Z](J, mi (g)) is a prime
divisor for each mi , and

√
J = ∩r

i=1Pi is the prime decomposition of J .

Proof. As g(Z) is in generic position, there is a polynomialxi − hi (g(Z)) in J for
each variablex ∈ Z, wherehi is a univariate polynomial overL, considering the ideal
J ′ = IdL[Z∪{t}](J ∪ {t − g(Z)}). Then, J ′ is “in normal position” with respect tot in
the sense ofBecker and Weispfenning(1993). Hence, eachPi = IdL[Z](J, mi (g)) is a
primary ideal by Proposition 8.69 ofBecker and Weispfenning(1993). If

√
Pi �= Pi , then

dimL(L[Z]/√Pi ) < dimL(L[Z]/Pi ). This implies that the minimal polynomialm′
i of

g(Z) with respect to
√

Pi must be a non-trivial divisor ofmi . But, asmi is irreducible, this
is a contradiction. Hence,Pi is a prime ideal. �

By Gauss’s lemma, the factorization described inProposition 2.3can be performed in
K [X], where the minimal polynomialmg with respect toJ is taken to be a polynomial in
a new variablet of Y overK by removing the denominator.

Thus, once we find a polynomial in generic position, one can compute its prime
decomposition by factorization of its minimal polynomial. We refer to this procedure as
decomposition using generic position. When K is of characteristic 0, each radical ideal
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is separable(seeDefinition 2.4) and almost all of the linear polynomials are in generic
position. However, there are certain computational problems in applying this method:

• Even if J is a radical ideal, the existence of a polynomial in generic position is
not guaranteed. Moreover, even if such a polynomial does exist, there may not be
polynomials of lower degrees, such as linear polynomials overK , in generic position.
As the choice of a polynomial in generic position has a great impact on the total
efficiency, it is desirable to find linear polynomials in generic position.

• We cannot apply Seidenberg’s theorem (Seidenberg,1974) to compute radical ideals,
but instead have to rely on other existing algorithms (Matsumoto, 2001; Kemper,
2002). However, as radical ideal computation tends to be computationally difficult,
unnecessary radical ideal computation is to be avoided.

To overcome this difficulty, we introduce the notion of “separable closure”. From
the separable closure sc(J), one can compute the prime decomposition of sc(J) by
decomposition using generic position, from which one can extract the prime divisors ofJ.

2.2.2. Decomposition via separable closure

Definition 2.4. For an idealJ of L[Z], J is said to beseparableif

(1) J is a zero-dimensional radical ideal and

(2) for every prime divisorP of J, the residue class ringL[Z]/P is a separable extension
field of L.

Separability was also discussed byKemper(2002) and generalized byFortuna et al.(2002).

Definition 2.5. For a univariate polynomialf (x) over L, f is said to beseparableif f
has no multiple root in the algebraic closureL̃ of L. Moreover, if there is a separable
polynomialh such that f (x) = h(x pe

) for some non-negative integere, h is called the
separable closure of fand denoted by sc( f ).

Proposition 2.6. Let J be a zero-dimensional ideal of L[Z]. If the minimal polynomial mx
with respect to J of each x in Z is separable, then J is separable.

Proof. By the definition of separability, gcd(mx, dmx/dx) = 1 for everyx in Z. By
Lemma 92 ofSeidenberg(1974) or Lemma 8.13 ofBecker and Weispfenning(1993), J is
a radical ideal (see alsoKemper, 2002, Proposition 4).

Next consider Ass(J). For eachP ∈ Ass(J), L ′ = L[Z]/P is an extension field ofL
andL ′ ∼= L(α1, . . . , αs) for anyα = (α1, . . . , αs) in VL̃(P). Since eachαi is a root of the
separable polynomialmxi , eachαi is a separable element overL and, thus,L(α1, . . . , αs)

is a separable extension field ofL. �

For a separable ideal, a polynomial in generic position corresponds to a common
primitive element of separable extensions (this is used in the standard definition of “generic
position”). Conversely, if there is a primitive element for eachL[Z]/P, we can apply the
Chinese remainder theorem to show that there also exists a common primitive element by
the co-maximality of prime divisors.
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Lemma 2.7. Let J be a separable ideal of L[Z]. A polynomial g(Z) in L[Z] is in generic
position with respect to J if and only if for each prime divisor P of J, g(Z) is a primitive
element of the separable extension L[Z]/P.

As there exists a primitive element for each separable extension field, we can show the
existence of polynomials in generic position.

Corollary 2.8. Let J be a separable ideal of L[Z]. There exists a polynomial in L[Z] in
generic position with respect to J .

If K has enough number of elements, a polynomialg(Z) in generic position can be
found among the linear polynomials

∑
xi∈Z ai xi , ai ∈ K (seeLemma 3.2).

Example 2.9. In GF(p)(u, v)[x, y], Id(x p−u, yp−v) is prime but inseparable and thus
there are no polynomials in generic position. InGF(p)(z)[x, y], Q = Id(x p−z, yp−z) is
a primary ideal associated with the prime idealId(x p−z, x− y). The minimal polynomial
of each variable with respect toQ is irreducible but inseparable.

Definition 2.10. Let J be a zero-dimensional ideal ofL[Z]. If an idealJ ′ of L[Z] satisfies
the following conditions then we call it theseparable closure of Jand denote it by sc(J).

(1) J ′ is a separable ideal ofL[Z].
(2) There is a correspondence between the zeros ofJ (in VL̃(J)) and those ofJ ′ (in

VL̃(J ′)) as follows: for each zeroα = (α1, . . . , αs) of J there exists a unique zero

β = (β1, . . . , βs) of J ′ such thatβi = α
pei

i for eachi , whereei is a non-negative
integer determined byα.

The following theorem asserts the existence of the separable closure for a zero-
dimensional ideal. But, as we compute separable closures only for “ideals of special types”,
we omit the proof (seeYokoyama, 2002).

Theorem 2.11. For each zero-dimensional ideal J of L[Z], there exists a uniquesc(J).
Moreover, there is a correspondence between the prime divisors of J and those ofsc(J).
Suppose a prime divisor P of J corresponds to a prime divisor Q ofsc(J). Then there
exist non-negative integers e1, . . . , es such that each zero(α1, . . . , αs) of P corresponds
uniquely to a zero(αpe1

1 , . . . , α
pes

s ) of Q. We call E= (e1, . . . , es) the exponent vector
of P.

The correspondence, however, is not necessarily one to one, i.e. distinct prime divisors
of J may correspond to the same prime divisor of sc(J), but with different exponent
vectors. If J is of special type, as defined below, every prime divisor ofJ has the same
exponent vector, and the correspondence is one to one.

Definition 2.12. Let J be a zero-dimensional ideal ofL[Z]. J is said to beof special type,
if the minimal polynomialmxi of xi with respect toJ is irreducible for everyxi in Z.

Example 2.13. Consider the second example ofExample 2.9.

J = Id(x p − z, yp − z) ↔ sc(J) = Id(x − z, y − z)
V(J) � ( p

√
z, p

√
z) ↔ (z, z) ∈ V(sc(J))
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P = Id(x p − z, x − y) ↔ sc(J) = Q = Id(x − z, y − z).

In our algorithm, we do not compute sc(J) directly from J, but compute idealsJj

such that
√

J = ∩r
j=1

√
Jj and everyJj is of special type. We call each of theseJj ’ an

intermediate idealof J. For eachJj , we compute sc(Jj ) as follows.
Take an intermediate idealJj and write it simply asH . ThenH is a zero-dimensional

ideal of special type inL[Z]. By definition, the minimal polynomialmxi of xi with respect
to H is irreducible overL for everyxi in Z. (And by removing the denominator,mxi is
also irreducible overK .) By considering the square-free decomposition, it follows that a
separable closure sc(mxi ) exists for eachmxi and thatmxi (t) = sc(mxi )(t

qi ) andqi = pei

for eachxi ∈ Z. We now define theFrobenius map:

φE : L[Z] � f (x1, . . . , xs) → f (xq1
1 , . . . , xqs

s ) ∈ L[Z],
whereE = (e1, . . . , es). We can then compute sc(H ) as follows.

Theorem 2.14. For the separable closuresc(H ) of H , we have

sc(H ) = φ−1
E (H ) = { f ∈ L[Z] | φE( f ) ∈ H }.

Moreover, there is a one to one correspondence between the prime divisors P of H and the
prime divisors Q ofsc(H ) such that

Q = sc(P) = φ−1
E (P).

Proof. Let H ′ = φ−1
E (H ). For eachxi in Z, sc(mxi )(xi ) belongs to H ′ because

sc(mxi )(x
qi
i ) = mxi belongs toH . ThenH ′ is separable because its minimal polynomial

sc(mxi ) is a separable polynomial for every variablexi in Z. In addition, there is a one to
one correspondence betweenVL̃(H ) andVL̃(φ−1

E (H )) = VL̃(H ′) because for each zero
α = (α1, . . . , αs) of H , β = (α

q1
1 , . . . , α

qs
s ) is a zero ofH ′ and, conversely, for each zero

β = (β1, . . . , βs) of H ′, α = ( q1
√

β1, . . . ,
qs
√

βs) is a zero ofH . Thus, byDefinition 2.10,
we haveH ′ = sc(H ) and a correspondence between Ass(H ) and Ass(sc(H )). �

Once one has obtained all prime divisors of sc(H ), one can recover the corresponding
prime divisors ofH as follows:

Proposition 2.15. Let Q be a prime divisor ofsc(H ), P the corresponding prime divisor
of H and P0 = Id(φE(Q)). Then,

√
P0 = P, that is, P0 is either the corresponding prime

divisor or its associated primary ideal.

Proof. Consider each zeroα = (α1, . . . , αs) of P0. As P0 = Id(φE(Q)), (α
q1
1 , . . . , α

qs
s )

must be a zero ofQ, and henceα is a zero of the corresponding prime divisorP of Q.
Thus,VL̃(P0) ⊂ VL̃(P). But, asP is a maximal ideal, we haveVL̃(P0) = VL̃(P), and√

P0 = P by Nullstellensatz. �

Frobenius map computation

Both inverse Frobenius map computationφ−1
E (H ) and Frobenius map computation

Id(φE(Q)) can be performed by elimination ideal computation (seeAdams and
Loustaunau, 1994, Chapter 2).
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For the inverse Frobenius map, we introduce an elimination orderingxi � yj

and compute a Gr¨obner basisG0 of Id(H ∪ {x pei

i − yi | 1 ≤ i ≤ s}) in
L[x1, . . . , xs, y1, . . . , ys]. Then,G0 ∩ L[y1, . . . , ys] with yi replaced byxi for eachi is a
Gröbner basis ofφ−1

E (H ) (seeMatsumoto, 2001, Propositions 2.5 and 2.6).
For theFrobenius map, we introduce an elimination orderingxi � yj and compute a

Gröbner basisG1 of Id(Q ∪ {ypei

i − xi | 1 ≤ i ≤ s}) in L[x1, . . . , xs, y1, . . . , ys]. Then,
G1∩L[y1, . . . , ys] with yi replaced byxi for eachi is a Gröbner basis ofId(φE(Q)). This
can be shown by using the property thatφE is a ring endomorphism.

Radical ideal computation

When J �= √
J, the idealP obtained by Frobenius map computation may not be a

prime ideal but a primary ideal (seeProposition 2.15). We thus need to compute
√

P.
However, as our goal is to compute the prime divisors of the original idealI in K [X] and
(
√

P)c = √
P ∩ K [X] is the required prime divisor ofI (seeLemma 3.1), we compute

(
√

P)c directly using

(
√

P)c = √
Pc = √

P ∩ K [X],
where Pc denotes thecontractionof P, that is, Pc = P ∩ K [X]. In this case, as the
ground field ofK is GF(q), we can compute the radical

√
Pc efficiently using the method

of Matsumoto(2001) which consists of inverse Frobenius map computation andp-th root
computation of field elements. We can modify the method ofKemper(2002) to suit our
situation, which may correspond to radical computation using the exponent vectorE, while
the method ofMatsumoto(2001) may correspond to that without usingE.

3. Computation of prime decomposition

This section describes the proposed algorithm in its entirety. LetI be an ideal of
K [X]. As we want to compute prime divisors ofI , we make use of a number of existing
decomposition formulas (Shimoyama and Yokoyama, 1996; Caboara et al., 1997). For
example, the following are used frequently:

(A)
√

Id(I , f g) = √
Id(I , f ) ∩√

Id(I , g),

(B)
√

I = √
(I R f ∩ R) ∩√

Id(I , f ).

3.1. Pre-decomposition

If I has no inseparable prime divisors, we can apply the same procedure as in the
characteristic 0 case without using the special procedure described inSection 2. As it
seems very unlikely that randomly generated ideals will have an inseparable divisor, we
must consider ideals with inseparable prime divisors asspecial cases. In implementation,
it is thus not efficient to apply the procedure designed for special cases to all cases of
I directly; it is better to compute “partial decompositions” obtained by simply applying
useful decomposition formulas to each generator ofI . Our implementation employs
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the following pre-procedure as proposed in Section 5.1 ofShimoyama and Yokoyama
(1996).

Pre-procedure

By applying decomposition (A) to the given idealI , we can compute idealsIi , i =
1, . . . , r , such that

√
I = √

I1 ∩ · · · ∩ √
Is and for eachi , every element of the computed

Gröbner basis ofIi is irreducible inK [X].
We call eachIi a pre-componentof

√
I . The prime decomposition of

√
I is then

obtained by gathering isolated prime divisors of all pre-componentIi .

3.2. Reduction to zero-dimensional ideals

We first compute pure-dimensional components fromI by techniques using
independent setsmodulo I (seeBecker and Weispfenning, 1993, Chapter 8 for details).
Using a Gröbner basis, we compute a maximal strongly independent setY modulo I ,
and lift I to its extension ideal Jof K (Y)[Z], whereZ = X\Y. Then, for each prime
divisor P of J, we extract the corresponding prime divisorPc = P∩K [X] by contraction
computation, giving the following prime decompositions:

√
J = ∩r

i=1Pi ,
√

I = (∩r
i=1Pc

i ) ∩√
I ′,

where I ′ = IdK [X](I , f ) for some polynomial f computed from J such that√
(I R f ∩ R) = ∩r

i=1Pc
i . Useful properties of contractions follow (seeBecker and

Weispfenning, 1993).

Lemma 3.1. Let J be an ideal of L[Z] and Jc = J ∩ K [X] a contraction. Then:

(i) If J is a radical ideal, then Jc is also a radical ideal.

(ii) If J is a prime ideal, then Jc is also a prime ideal.

(iii) If J is a primary ideal, then Jc is also a primary ideal.

As I is a proper subset ofI ′, we can compute all prime divisors ofI in finitely many steps
by applying the above computations toI ′ recursively. Decomposition (A) is also applied
to improve total efficiency. Using the factorizationf = ∏s

i=1 f ei
i in K [X], we get

√
I ′ = √

IdK [X](I , f ) = ∩s
i=1

√
IdK [X](I , fi ).

We then compute the prime decomposition of eachIdK [X](I , fi ), instead ofI ′.

3.3. Intermediate decomposition

We consider a zero-dimensional idealJ of L[Z], whereY ⊂ X, L = K (Y) and
Z = X\Y. For each variablexi ∈ Z, we compute the minimal polynomialmxi (t) with
respect toJ. This can be considered a polynomial int and Y over K by removing its
denominator. We then factorize overK to give

mxi (t) =
∏

j

mi, j (t)
ei, j ,
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where eachmi, j is irreducible overK and thus overK [Y]. By Gauss’s lemma,mi, j

is also irreducible overL. Adjoining eachmi, j to J gives the following intermediate
decomposition, where eachJk is of special type:

√
J = ∩r

k=1

√
Jk.

Let Fi be the set of all distinct irreducible factors ofmxi over K , andni = #Fi for each
i . Since intermediate ideals are of the formIdL[Z](J, g1, . . . , gs), where eachgi is chosen
fromFi , we have to deal withn1 · · ·ns combinations of(g1, . . . , gs), which will require a
large number of computations. Moreover, many of these computations are unnecessary, that
is, they tend to coincide withL[Z]. And worse, computation of all the minimal polynomials
at once tends to be very difficult. It is thus better to applyincremental decomposition
where we adjoingi to each ideal and then compute the next minimal polynomialgi+1,
successively.

3.4. Prime decomposition of intermediate ideals

LetJ be the intermediate decomposition ofJ. We present a concrete method for prime
decomposition ofH in J . Let gi denote the minimal polynomial ofxi for eachxi in Z.
The idealH can be classified as one of the following cases:

Generic Casein which somexi ∈ Z are in generic position with respect toH :

By Proposition 2.3, the factorization of the minimal polynomialgi (xi ) gives the
prime decomposition. But asgi (xi ) is already irreducible,H is a prime ideal.

Non-Generic and Separable Casein which no xi is in generic position, butH is a
separable ideal:

As H is a separable ideal, there exists a polynomial in generic position. Thus, we
search for such a polynomialh among all linear polynomials, and then compute the
prime decomposition by factorization of the minimal polynomial ofh. (Note: if H is
zero-dimensional overK , thenH is always separable.)

Non-Generic and Inseparable Casein which no xi is in generic position andH is an
inseparable ideal:

We first compute the separable closure sc(H ). Then sc(gi ) is the minimal polynomial
of xi with respect to sc(H ). This case can be further divided into the following sub-
cases:

Generic Sub-Casein which somexi ∈ Z are in generic position with respect to
sc(H ):
In this case, sc(H ) is a prime ideal, and so the corresponding idealH is a prime
or a primary ideal. Thus, the prime ideal is calculated by computing

√
H .

Non-Generic Sub-Case:This case is similar to theNon-Generic and Separable
Case. We search for a linear polynomialh in generic position with respect
to sc(H ). We then compute the prime decomposition of sc(H ) using the
factorization of the minimal polynomial ofh, and compute the corresponding
prime ideals by Frobenius map computation and radical ideal computation.
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3.5. Remarks on finding polynomials in generic position

By Proposition 2.3, we can find a polynomialg in generic position by checking
whether the degree of the minimal polynomialmg equals dimL(L[Z]/sc(H )). To increase
efficiency, we want to find a linear polynomialg(Z) in generic position for the following
reasons:

(1) The efficiency of computation of minimal polynomials increases for polynomials of
smaller degrees.

(2) An efficient strategy for choosing candidate polynomials in generic position from all
linear polynomials, by which we place a bound on the number of trials as shown
in Lemma 3.2, is applied (seeYokoyama et al., 1992, for details). The bound in
Lemma 3.2is theoretical and it is likely that we will find a linear polynomial in
generic position even ifK does not satisfy this bound.

(3) Even if the ground field is extended, the effect on the efficiency of basic arithmetical
operations is small because we are using the Zech representation.

Lemma 3.2 (Theorem 4.2 inYokoyama et al.(1992)). Let T = s × � × dimL

(L[Z]/sc(H )), where s= #Z and� = #Ass(sc(H )). Then, if#K > T , there exists a
polynomial g in generic position among all linear polynomials in Z over K .

If the order of the finite ground fieldK is too small, a problem may occur in finding a
linear polynomial in generic position. To avoid this, we extendK to K ′ to a large enough
order. After computing the prime decomposition over an extension field, we recover the
prime decomposition overK as follows.

Consider the case where we must replaceK with the extension fieldK1. In this case,
we deal with the idealJ1 = K1 ⊗ J of K1(Y)[Z] instead of the idealJ. We then apply
prime decompositionto obtain the setPK1 of all prime divisors ofJc

1 = J1 ∩ K1[X]. By
the action of the Galois groupG = Galois(K1/K ) ⊂ Galois(K̃/K ), PK1 is divided into
G-orbits, whereG acts onK1[X] asG acts on the coefficients of polynomials, and thus acts
on the set of idealsPK1 by σ(PK1) = {σ(h) | h ∈ PK1}. Then, from Nullstellensatz and
the fact that the conjugate of each zeroα of a prime ideal inPK1 is also a zero of some
prime ideal inPK1, we have the following:

Lemma 3.3. Suppose that PK1,1, PK1,2, . . . , PK1,r form one G-orbit. Then, W =
VK̃ (PK1,1) ∪ · · · ∪ VK̃ (PK1,r ) forms a minimal invariant set among unions of sets inPK1

for G. (We noteK̃ = K̃1.) Thus, there exists a unique prime divisor P of Jc = J ∩ K [X]
such that ṼK (P) = W.

There are two ways to compute the prime idealP in Lemma 3.3: one is to compute the
intersection of thePK1,i s and the other is to use elimination techniques. For the intersection
of PK1,i s, using the same notation as in3.3:

Lemma 3.4. Let P′ = ∩r
i=1PK1,i and G′ be the reduced Gröbner basis of P′ such that

the leading coefficient of g is 1 for every element g in G′. Then G′ ⊂ K [X] and G′ is the
Gröbner basis of P.

Lemma 3.4can be seen by the fact that for anyg ∈ G′ andσ ∈ G, σ (g) also belongs to
P′ and must be reduced to 0 byG′.
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The method using elimination is now explained. ConsiderPK1 in PK1. As K1 is a finite
extension field ofK , it can be considered asK [T]/P0, whereT is a set of new variables
and P0 is a maximal ideal ofK [T]. Consider a Gr¨obner basisGK1 of PK1 as a set of
K [T, X] and letP′ = IdK [T,X](P0, GK1). Then,PK1 containsP′ ∩ K [X] as subsets of
K1[X], and theG-conjugates ofPK1 also containP′ ∩ K [X]. It can then be shown that
P′ ∩ K [X] is the prime divisor ofJc corresponding toPK1. This divisor can be computed
by Gröbner basis computation using the elimination orderingT � X.

Remark 3.5. As the ideal over a larger field tends to have prime divisors with smaller
linear dimension as zero-dimensional ideals over rational function fields, using an
extension fieldK1 may improve the total efficiency of the prime decomposition. However,
there are also cases where this effect might reduce the total efficiency. For example,
consider the case where the idealJc is a prime ideal overK but not over an extension field
K1. In this case, unnecessary Gr¨obner computations are performed. An efficientprimality
checkis thus needed to handle such cases.

3.6. Removing redundant divisors and early termination

Throughout the procedure, a number of redundant prime ideals appear because we
calculate prime ideals from a number of different ideals appearing in the computation.
To access the true prime divisors, we need to eliminate all redundant prime ideals. We
therefore give a procedure for such elimination, from which we derive an effective check
for “early termination” of the procedure and another for avoiding unnecessary prime
decomposition. If these checks are computed efficiently, they greatly improve the total
efficiency (see examples inSection 5).

LetP be the set of all computed prime ideals, andP be a newly computed prime ideal.

Redundant ideal elimination

If P contains a prime idealP′ in P , thenP is a redundant prime ideal and we discard it.
Otherwise, we addP to P . Moreover, ifP is contained in a prime idealP′ in P , we have
to removeP′ fromP . The “ideal inclusion”A ⊂ B for idealsA andB can be checked by
computing the normal forms of generatorsA with respect to a Gr¨obner basis ofB.

Early Termination

If P passes the above check, we compute the intersectionJ = P ∩ (∩Q∈P Q), where
∩Q∈P Q has already been computed. (Note that if there is a prime idealP′ containing
P and P′ is removed fromP , the intersectionJ will be unchanged. Thus, in this case
P ∩ (∩Q∈P Q) = P ∩ (∩Q∈P\{P′}Q).) The entire procedure can then be terminated if√

I = J.
Of course, if we have already computed

√
I , theEarly Terminationcheck is merely a

test of the coincidence of Gr¨obner bases. However, as the radical computation tends to be
very time-consuming, we can perform the check without computing

√
I as follows:

If
√

I ⊃ J, we get the equality
√

I = J because
√

I ⊂ J. To check whether√
I ⊃ J it suffices to check whether each generatorf of J belongs to

√
I by radical

membership computation. Actually, the radical membership off can be determined by
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checking whether(J : f ∞) = K [X]. Since we already computed a Gr¨obner basis ofJ
with respect to some term order>, we can compute(J : f ∞) efficiently as the elimination
ideal IdK [X∪{t}](J, f ·t−1)∩K [X] with respect to a block order>′ such that the restriction
>′

X of >′ on X coincides with>.
As radical ideal computation can be conducted in a similar manner to prime

decomposition, it seems inefficient to do the computations independently. For an input
ideal with a smaller number of prime divisors, a smaller number of checks inEarly
Terminationare required, improving overall efficiency.

Moreover,Lemma 3.6also suggests the use of theEarly Terminationtechnique.

Lemma 3.6. Let P be the set of prime ideals that have already been computed at some
point in a computation, J= ∩P∈P P and I′ be a newly computed ideal to which we apply
prime decomposition. If J⊂ √

I ′, then there is no prime divisor of I among all the prime
divisors of I′, and we avoid unnecessary computation for I′.

4. Implementation details

4.1. Multivariate factorization and GCD over finite fields

To decompose an ideal, it is necessary to factorize the minimal polynomials. If the
minimal polynomials are computed over fields of rational functions, then a multivariate
factorizer over finite fields is required. A multivariate polynomial can be factorized by a
modular algorithm composed of evaluation at a point, multivariate Hensel lifting and trial
division. The current implementation is based on the algorithm described byBernardin
and Monagan(1997), who noted that cases where we cannot find feasible evaluation
points are often encountered. In these cases we have to extend the ground field. In
our implementation, such field extension is represented in Zech representation, that is,
GF(q)\{0} is represented by{1, α, α2, . . . , αq−2}, whereα is a primitive(q − 1)-th root
of unity. Addition inGF(q) is performed via a table of lengthq− 1 and ifq is sufficiently
small, e.g. ifq < 216, performance loss is negligible. Practically speaking, if the order
of the ground field is more than 104, it is large enough for finding feasible evaluation
points. We therefore currently use the ordinary representation forGF(p) with p > 214,
and consequently our implementation can handle any “reasonable” input ideal overGF(p)

when p is a prime of the machine integer size.
In cases of characteristic 0, we can apply the modular method to square-free

factorization and GCD computation. But in cases of positive characteristic, evaluation
points for execution of the modular method do not often exist. Therefore, in the current
implementation we apply the Chinese remainder theorem to a set of GCDs computed at
sufficiently many evaluation points. Field extension is used where necessary.

4.2. Incremental intermediate decomposition

Intermediate decomposition of the radical of a zero-dimensional idealJ can be
performed by extracting non-trivial ideals from the set of ideals:

{IdK [X](J, g1, . . . , gn) | gi is an irreducible factor of the minimal polynomial ofxi }.
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In general, manyIdK [X](J, g1, . . . , gn) turn out to be the trivial ideal. To avoid
such unnecessary computations, we adopt an incremental method for intermediate
decomposition. When we decompose an idealI , we proceed with recursive decomposition
by adjoining one irreducible factor of the minimal polynomial of a variable at each step.
With each factor adjoined, the degrees of the minimal polynomials of other variables
may be decreased, making subsequent computations faster. Furthermore, ifx is in generic
position with respect toI , then

√
I = ∩IdK [X](I , mi (x)), where{mi (x)} is the set of all

irreducible factors of the minimal polynomial ofx. In this case, we do not have to consider
the minimal polynomials of variables other thanx.

We note that this kind of incremental decomposition is also applicable to the complete
decomposition of each intermediate ideal. To this end, we attempt to find a polynomial in
generic position. Usually this is done by generating a linear polynomialg and computing
the minimal polynomialmg. Even if g is not in generic position, ifmg is reducible, then
we obtain a non-trivial decomposition using the procedure described above (see alsoAnai
et al., 1996).

4.3. Computation of minimal polynomials

It is often hard to compute minimal polynomials using the Buchberger algorithm
because Gr¨obner bases have to be computed with respect to an elimination order. To
overcome this difficulty, we implemented a direct computation of minimal polynomials via
an FGLM methodFaugère et al.(1993) when the ground field is a finite field or a field of
univariate rational functions. The former is obvious and we briefly explain the latter case.

The argument ofNoro and Yokoyama(1999) can be generalized as the following
lemma:

Lemma 4.1. Let φ : h(u1, . . . , ul )  → h(a1, . . . , al ) be an evaluation map from K[U ]M
to K , where U= {u1, . . . , ul }, (a1, . . . , al ) ∈ K l and K[U ]M is the localization of K[U ]
at M = Id(x1 − a1, . . . , xl − al ). Let G ⊂ K [U ]M [X] be a reduced Gr̈obner basis
over K(U). Thenφ(G) ⊂ K [X] is well defined and is a Gröbner basis over K . Letm(t)
be the minimal polynomial ofφ( f ) for a given f ∈ K [U ][X]. If there exists a monic
m(t) ∈ K [U ]M [t] such thatdegt (m(t)) = degt (m(t)) andφ(m(t)) = m(t), then m(t) is
the minimal polynomial of f over K(U).

The coefficients ofm(t) satisfy a system of linear equations overK (U), which
is derived from the membership condition with respect to the Gr¨obner basisG.
The coefficients f (U) can be computed by a modular method similar to that used
for rational number coefficients. Starting from the minimal polynomial overK , we
compute the solution modMk by Hensel lifting. We then apply polynomial–rational
function transformation. That is, we try to find polynomialsg(U) and h(U) such that
deg(g), deg(h) < k/2 and h(U) f (U) ≡ g(u) mod Mk for each component of the
mod Mk solution. Only the univariate case is implemented, with efficient implementation
of the general case left as a future work.

4.4. Competitive computation

To fully implement the procedure, there are a number of parameters in various parts
of the procedure that need to be determined. For example, it is necessary to choose a
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term ordering for Gr¨obner basis computation, and this is often crucial for efficiency. We
have two methods of minimal polynomial computation: elimination by the Buchberger
algorithm and the direct method described in the previous section. Experimentally, we
have found that it is difficult to predict which is better for any given case. For this reason,
competitive computation is applied as described byMaekawa et al.(2001). When the
ground field is a finite field or a field of univariate rational functions, the two methods are
executed simultaneously on two different servers, with the result returned first used. The
remaining server is reset immediately and the subsequent minimal polynomial computation
can start at once.

5. Experiments

The entire algorithm was implemented on Risa/Asir,1 using the built-in multivariate
factorizer and Buchberger algorithm driver over small finite fields. In addition to the
examples fromCaboara et al.(1997) andMatsumoto(2001), we prepared several examples
from famous benchmark problems and those derived from generic polynomials of small
Galois groups inKemper and Mattig(2000). The ideals are all positive dimensional
because we are primarily interested in cases in which inseparable ideals may appear.

Logar: 2ahi + bh2 + 2cd j − cei− cgh− deh, ai2 + 2bhi + 2cf j − cgi + d2 j − dei−
dgh− ef h, bi2 + 2d f j − dgi − ef i − f gh, f ( f j − gi).

83: C+cE−eC− E, F −C, E−G, eF+ f H +hE− f E−hF−eH, f G−gF, gH+
G − hG− H, cH − hC.

H katsura(n) (homogenized katsura-n) system:ul u − ∑n
i=−n ui ul−i (l = 0, . . . , n −

1),
∑n

l=−n ul − u whereu� = u−�.

H cyclic (n) (homogenized cyclic-n) system:
∑n

i=1
∏k+ j−1

j=i cj mod n(k = 1, . . . , n −
1),

∏n
j=1 cj − cn.

P4444: x8 + x2 + t, y8 + y2 + t, z8 + z2 + t, u8 + u2 + t .
P666: x12+ x2 + t, y12 + y2 + t, z12+ z2 + t .
P765: z14 + z2 + t, y12 + z2y10 + z4y8 + z6y6 + z8y4 + z10y2 + z12 + 1, x10 + (y2 +

z2)x8 + (y4 + z2y2 + z4)x6 + (y6 + z2y4 + z4y2 + z6)x4 + (y8 + z2y6 + z4y4 +
z6y2 + z8)x2 + y10+ z2y8 + z4y6 + z6y4 + z8y2 + z10.

P12,12,12: x12+ x10+ x8 + x2 + t, y12+ y10+ y8 + y2 + t, z12+ z10 + z8 + z2 + t .
Q765: z21+ z3 + t2, y18+ z3y15+ z6y12+ z9y9 + z12y6 + z15y3 + z18+ 1, x15+ (y3 +

z3)x12+ (y6 + z3y3 + z6)x9 + (y9 + z3y6 + z6y3 + z9)x6 + (y12+ z3y9 + z6y6 +
z9y3 + z12)x3 + y15+ z3y12+ z6y9 + z9y6 + z12y3 + z15.

Q4321: z9+ z3 + t2, y9 + z3y6+ z6y3+ z9 + 1, x6+ (y3+ z3)x3 + y6 + z3y3+ z6, y6+
(z3 + u3)y3 + z6 + u3z3 + u6.

R543: z25+ z5+ t2, y20+ z5y15+ z10y10+ z15y5+ z20+ 1, x15+ (y5+ z5)x10+ (y10+
z5y5 + z10)x5 + y15+ z5y10+ z10y5 + z15.

1 http://www.math.kobe-u.ac.jp/Asir/asir.html.

http://www.math.kobe-u.ac.jp/Asir/asir.html
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Table 1
Prime decomposition of the radical overG F(2)

Dim Comp ET TC TD TB Singular

Logar 7 8 on 12 12 12 20
Logar – – off – >5 min – –
83 5 3 on 8.4 8.6 8.4 0.8
Hcyclic(6) 3 6 on 2 2 2 >5 min
Hcyclic(6) 3 6 off 0.8 0.8 0.8 –
P4444 1 36 on 1.9 12 1.4 2
P666 1 5 on 2.4 4 >5 min 20
P765 1 2 on 6 6 >5 min 24
P12,12,12 1 5 on 11 10 >5 min 8

For each problem, the prime decomposition of its radical was computed using a number
of different methods. In the following tables,Field, Dim andComprepresent the ground
field, the dimension of the ideal and the number of prime components respectively.ET
indicates whether Early Termination was enabled or not.TC, TD and TB indicate the
elapsed computing times when the competitive computation (StrategyC), direct com-
putation (StrategyD) and elimination using the Buchberger algorithm (StrategyB) were
used for minimal polynomial computation. As a reference, we also show the timing data
of minAssGTZ in Singular 2-0-4.2 In Asir, computations are done over sufficiently large
extension fields and final results are computed using the method described inSection 3.5.
All measurements were performed on an SMP PC containing two Athlon MP1900+. Times
are shown in seconds, with “–” indicating “not measured” or “unnecessary”.

Table 1shows the results overGF(2). In Asir, computation overGF(213) is used
internally. During the computation ofLogar, a large number of unnecessary components
are calculated and so Early Termination works very well with this kind of input.P666 and
P12,12,12 could not be computed using StrategyB, but the minimal polynomials were easily
computed by StrategyD. However, the result forP4444 shows that there is a case where
minimal polynomials are computed efficiently by StrategyB. Furthermore, we observe that
TC < min(TD, TB) for P666and so neither StrategyD nor StrategyB is superior throughout
the computation in this case. Competitive computation is thus very effective in such cases.

Table 2shows results over various finite fieldsGF(3), GF(5) and GF(53), where
GF(37), GF(55) and GF(532) were used internally. The results ofHkatsura(6) and
Hkatsura(7) overGF(53) show the performance of the minimal polynomial computation
of StrategyD. For HkatsuraandHcyclic, Early Termination does not improve efficiency
because they are low dimensional ideals and the number of redundant components
produced during the whole procedure is thus very small. IfET is on, TC = 326 for
Hcyclic(6) and TC = 47 for Hkatsura(6). The additional computational cost is due
to the computation of ideal intersections and radical equality checks.

For prime decomposition of each example over extension fields, the efficiency of the
basic arithmetic does not change. Therefore, the elapsed computing times are almost the

2 http://www.singular.uni-kl.de/.

http://www.singular.uni-kl.de/


1244 M. Noro, K. Yokoyama / Journal of Symbolic Computation 38 (2004) 1227–1246

Table 2
Prime decomposition of the radical over various fields

Field Dim Comp ET TC TD TB Singular

Logar G F(3) 7 8 on 32 32 32 >5 min
Logar G F(53) 7 8 on 92 95 93 32
83 G F(3) 5 3 on 1 1 1 0.5
83 G F(53) 5 3 on 14 14 14 2
Q765 G F(3) 1 1 on 22 22 >5 min >5 min
Q4321 G F(3) 2 2 on 1 1 3 >5 min
R543 G F(5) 1 6 on 1.2 1.6 1.2 >5 min
Hcyclic(6) G F(3) 2 6 off 2.5 2.5 2.5 >5 min
Hcyclic(6) G F(53) 2 65 off 39 39 38 >5 min
Hkatsura(6) G F(3) 1 6 off 5 5 5 26
Hkatsura(6) G F(53) 1 10 off 22 22 80 >5 min
Hkatsura(7) G F(53) 1 11 off 238 229 1190 >1 h

same as their counterparts if each decomposition has the same form as that over the prime
field. For those overGF(213), GF(37), GF(55) andGF(532), the elapsed computation
times do not exceed those over the corresponding prime fieldsGF(2), GF(3), GF(5) and
GF(53).

6. Concluding remarks

We have implemented an algorithm for prime decomposition of polynomial ideals over
small finite fields on a computer, and have evaluated the practicality and quality of our
implementation by computational experiments on several examples.

As prime decomposition consists of many sub-procedures, the efficiencies of the sub-
procedures and basic arithmetical operations affect the overall efficiency. Moreover, the
choice of strategy (i.e. combination of sub-procedures) also affects the overall efficiency.
We summarize our results and give recommendations for future work:

• Partial decomposition
To compute the prime divisors ofI , we can incorporate existing decomposition

algorithms (Caboara et al., 1997; Shimoyama and Yokoyama, 1996). We have
employed two types of partial decomposition: pre-decomposition and intermediate
decomposition. In twofold partial decomposition, many of the intermediate ideals
tend to be prime. Thus, a special procedure for inseparable intermediate ideals is
applied only to a limited number of such ideals.

• Computation of minimal polynomials
The experiments showed that direct computation of minimal polynomials is

efficient in many cases. In some cases, however, elimination by the Buchberger
algorithm is more efficient than the direct method. By applying competitive compu-
tation, we can benefit from both methods. Even if a single CPU machine is used,
total elapsed time does not exceed twice the time taken by the faster algorithm,
and we eliminate large delays that can result from choosing a single inefficient
algorithm.
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• Basic arithmetical operations, Gr¨obner basis computation and polynomial
factorization

Computation over an extension field can be reduced to computation over the
ground field by considering the defining polynomial of the extension as a member
of the ideal to be decomposed, but this adds a substantial overhead. As we have
implemented such extension fields as “primitive data types” and implemented all
necessary functionality over them, the performance losses due to field extension
are negligible. However, the performance of Gr¨obner basis computation over
finite fields is not fully optimized and affects overall performance in some cases.
Although the multivariate factorizer is efficient in most cases, we often encounter
minimal polynomials that are difficult to factor using the standard modular method.
Fortunately a practical method for factorizing such polynomials has been developed
(Noro and Yokoyama, 2002), by which we are able to factorize them efficiently.

• Special procedure for non-generic and inseparable cases
Experimentally, the special procedure aimed at inseparable cases works primarily

in cases of small characteristic such asp = 2, 3, 5, because, in practice, it is difficult
to handle idealsJ with large dimL(L[Z]/J). (If the characteristicp is not small, the
ideals that we can handle are separable and we simply apply ordinarydecomposition
using generic position.) Thus, in order to utilize such small characteristics, it is im-
portant to improve the efficiency of the basic arithmetical operations. The Zech rep-
resentation is employed in our implementation for this reason. For zero-dimensional
ideals overGF(q), there always exists a polynomial in generic position. It is thus
better to design another method optimized for zero-dimensional ideals overGF(q).

• Early Termination
Unnecessary computations were avoided by employing anEarly Termination

scheme. As the checking procedure can be performed without computing the rad-
ical ideal of the inputI , Early Terminationwas found to improve overall efficiency
very much in a number of test cases. However, the check requires additional com-
putation, ideal intersection computation and radical membership computation, and
therefore offers a “trade-off”. It seems very difficult to estimate the complexity of
the algorithm theoretically. And thus we will search for a good strategy based on
further experimental work.

References

Adams, W.W., Loustaunau, P., 1994. An Introduction to Gr¨obner Bases. Graduate Studies in
Mathematics, vol. 3. American Mathematical Society.

Anai, H., Noro, M., Yokoyama, K., 1996. Computation of the splitting fields and the Galois
groups of polynomials. In: Algorithms in Algebraic Geometry and Applications. Birkh¨auser,
Basel, pp. 29–50.

Becker, T., Weispfenning, V., 1993. Gr¨obner Bases. Springer-Verlag, New York.
Bernardin, L., Monagan, M.B., 1997. Efficient multivariate factorization over finite fields.

In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-12). Lecture
Notes in Computer Science, vol. 1255. pp. 15–28.

Caboara, M., Conti, P., Traverso, C., 1997. Yet another ideal decomposition algorithm. In: Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-12). Lecture Notes in
Computer Science, vol. 1255. pp. 39–54.



1246 M. Noro, K. Yokoyama / Journal of Symbolic Computation 38 (2004) 1227–1246

Decker, D., Greuel, G.-M., Pfister, P., 1999. Primary decomposition: algorithms and comparisons.
In: Algorithmic Algebra and Number Theory. Springer, pp. 187–220.

de Jong, T., 1998. An algorithm for computing the integral closure. J. Symbolic Comput. 26,
273–277.

Eisenbud, D., Huneke, C., Vasconcelos, W.V., 1992. Direct methods for primary decomposition.
Invent. Math. 110, 207–235.

Faugère, J.-C., Gianni, P., Lazard, D., Mora, T., 1993. Efficient computation of zero-dimensional
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