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Abstract

An algorithm for the prime decomposition of polynomial ideals over small finite fields is
proposed and implemented on the basis of previous work of the second author. To achieve
better performance, several improvements are added to the existing algorithm, with strategies for
computational flow proposed, based on experimental results. The practicality of the algorithm is
examined by testing the implementation experimentally, which also reveals information about the
quality of the implementation.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of primary decomposition of ideals in noetherian rings is very classical,
with many works having studied the computation over fields of characteristic O (see
Decker et al(1999 for a more detailed history and a summary of more recent work).
For fields of positive characteristic, existing work&(kberner 1994 Gianni and Trager
1996 Matsumoto 2001, Kemper 2002 Fortuna et al.2002 on the subject and related
topics are largely general and theoretical. However, to develop a practical algorithm for the
primary decomposition of polynomial ideals over finite fields is not only very interesting
as a computational problem, but also very useful for studies on pure mathematics
and engineering problems. Thus, our goal is to develop a practical algorithm for the
primary decomposition of a polynomial ideal over a finite field. To do this, we apply
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the “localization technique” ofShimoyama and Yokoyam#l996, where primary
components are extracted from prime divisors. This technique is basedobneé®iiasis
computation and does not depend on the characteristic of the coefficient field. Therefore
primary decomposition computations can be efficiently reduced to prime decomposition
computations.

We propose a precise algorithm for the prime decomposition of polynomial ideals
over small finite fields based o¥iokoyama (2002, and report on the results of our
implementation on a real computer. To achieve better performance, several improvements
are added to the work ofYokoyama (2002, with strategies regarding computational
flow proposed, based on experimental results. The practicality of the algorithm is
examined through experiments on examples, which also demonstrate the quality of the
implementation.

As noted byYokoyama(2002), there are differences between prime decompositions of
cases of characteristic 0 and those of positive characteristic, and we cannot apply methods
used for polynomial ideals over the rational number field directly to those over finite
fields. A procedure that handles the differences is therefore developed. To achieve the
most efficient computation, the algorithm and its implementation are given the following
features:

(1) We employ the well-established strategy @fanni et al. (1988, but modify
the “decomposition using generic position” that is very successful in cases of
characteristic 0. (We note that the original metho®adnni et al (1988 may work
in larger characteristic cases, where the problem in (2) hardly occurs.)

(2) To solve problems arising from positive characteristic, we introduce the notion
of “separable ideals” and “separable closure of ideals”. Using separable closure,
factorization of polynomials over finite fields results in true prime decomposition
(seeSection 2.Zor details).

(3) Using factorization of the minimal polynomial of each variable, a partial
decomposition of the given ideal called “intermediate decomposition” is computed
(we call each computed ideal &mermediate idegl In many cases, intermediate
ideals tend to be prime, and so this decomposition improves computational
efficiency.

(4) Radicals only need to be computed for some primary ideals, and in these cases, we
apply the efficient method dflatsumoto(2001) based on “inverse Frobenius map
computation”. Note that the entire computation can be done without determining the
radical of the given ideal. To improve overall efficiency, it may be necessary to
compute the intersection of computed prime ideals Gaetion 3.§. In these cases,
the radical ideal of a given ideal is computed as a by-product. In our experiment,
there are cases where this computed radicals much faster than existing methods
(Matsumote 2001 Kemper 2002).

(5) As we want to compute the prime divisors of a given idealve can make use of
“partial decompositions"Gaboara et 411997 Shimoyama and Yokoyam&996).

This is done by first applying the “pre-decomposition” suggestegtignoyama and
Yokoyama(1996), and involves factoring all elements in adbrier basis of . For
each computed ideal, we then apply an algorithm baseétbknyama(2002.
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Of course, as the whole procedure consists of basic arithmetical operatias)eBr”
basis computation and polynomial factorization over finite fields, overall efficiency is
dependent on the efficiencies of the individual computations. We thus apply the following
methods:

(6) Zech representation is employed to allow efficient arithmetic over extension fields
GF(q), as it is well suited to polynomial factorization ovérF(q) (seeNoro and
Yokoyama 2002).

(7) For polynomial factorization ove® F(q), the most recent algorithms &ernardin
and Monagarf1997 andNoro and Yokoyam#&2002 are used.

(8) An “FGLM-type” methodFaugere et al(1993 is used in Gobner computations to
allow efficient computation of the minimal polynomial of each variable.

All procedures were implemented in Risa/Asir, with computational tests of a number
of examples conducted. Experimentally, the algorithm was found to work very well with
a set of examples. Although testing using only a limited number of examples cannot fully
verify the efficiency of the implementation, it does give an indication of the quality of the
algorithm and its implementation. Note that Pfister has also implemented the algorithm of
Yokoyama(2002 in SINGULAR, and this is used for comparison in our testing.

For fields of larger positive characteristic, the methodVad (1984 and that of
Eisenbud et al(1992 with integral closure computation algorithmaé Jong1998 may
also compute the prime/primary decomposition of polynomial ideals. But, these methods
suffer the same problem in (2) arising fromseparabilityin small characteristic cases
(see Section 2.2for details), because the method Wiu (1984 requires factorization
of polynomials over algebraic extension fields of rational function fields, which implies
that it requireselements in generic positipmlso the method oEisenbud et al(1992
requires such elements as it needs zero-dimensional prime decomposition. As this problem
is resolved by using “separable closures” proposeddioyama(2002), these methods
can be improved to handle such cases by utilizing our implementation.

The current problem is strongly related tadical ideal computation in positive
characteristic(Matsumotg 2001, Fortuna et al.2002 Kempet 2002, with the difference
being analogous to that between the irreducible factorization of polynomials and square-
free factorization using only derivations. Since the algorithm uses minimal polynomials of
variables, it is similar to the radical ideal computatiorkeimper(2002.

2. Review of approach and key points

A summary of the key points of the computation of prime decompasition in positive
characteristic ofYokoyama (2002 is given. Throughout this paper, we consider a
polynomial ring K[x1,...,X,], where K is a finite field GF(q) of order g and
characteristicp, and we denote the set of variables, ..., Xy} by X. For a noetherian
commutative ringR, we write 1dr(f1,..., ft) for the ideal generated by elements
f1,..., fr of R, and(l:f) for the quotient ideal of an ideal of an elementf of R. For
an ideall of R, we denote the radical by/I, the set of all prime divisors df by Asg(1)
and the set of all isolated prime divisors bfby Assso(1). Then/1 = NPeasseo() P
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and As$v/1) = Assso(l). From the prime decomposition of we thus mean to compute
Assso(l). For a polynomial ideal of L[Z], whereL is an extension field ok andZ is a
set of variables, we denote the algebraic variety dfe. the set of all zeros af, by V; (J),
where we consider zeros in the algebraic closuref L. Conversely, for an algebraic
variety W, we denote its corresponding idddl € L[Z] | f(«) = O for anya € W} by
lL(z)(W).

2.1. Successive and simultaneous approaches

There are currently two approaches to prime decompositBugcessiveand
simultaneousKalkberner(1994) discussed the prime decomposition of idealsRjk]
by inductive arguments for a noetherian commutative mgvith identity under the
assumption that one can compute the prime decomposition of idedtsapid one can
compute factorization of univariate polynomials over the quotient fi@&/P) for every
prime ideal P. In our case, by computing pure-dimensional componeatanni et al,

1988 Shimoyama and Yokoyam&996 Caboara et 811997, we can reduce the problem

to that of zero-dimensional ideals over rational function fields. Letting K (Y) for some

Y C X, one can compute the prime decomposition of the elimination idedl[Z U {z}]

for Z ¢ X\Y andz € X\(Z UY) from that of| N L[Z] if the factorization of univariate
polynomials over any algebraic extension field lofcan be calculated. This is exactly
equivalent to the “construction of successive extension fields over rational function fields”,
and we thus call it theuccessive approacfirhe method ofVu (1984 can be considered

as belonging to this approach in view of its procedure.)

If we employ thesuccessive approactdecomposition efficiency is related to the
efficient factorization of univariate polynomials over algebraic extension fields of
rational function fields. However, since this factorization reduces to the factorization of
polynomials over the ground field, a more practical approach to prime decompositionis the
simultaneous approadirough which prime decomposition can be performed using non-
iterative methods. (The methodBisenbud et a1992) can be considered as belonging to
this approach type.) Thatrategyof Gianni et al.(1988 anddecomposition using generic
positionare therefore used, as the most practical among the simultaneous approaches, to
develop an algorithm using the following principles:

e The notion ofseparable closures introduced to overcome certain difficulties arising
in cases of positive characteristic.

e We only consider factorization of polynomials over the ground (perfect) Helg
GF(q) to increase the efficiency of the implementation.

2.2. Recasting the problem as decomposition of separable ideals

A general method for prime decomposition of zero-dimensional ideals using generic
position is first presented, with problems that arise in the method with regard to
positive characteristic noted where appropriate. The notion of separable closure and an
algorithm for computing it are then presented and, using these, we overcome the problems
surrounding positive characteristic.
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Hereatfter, lety be a proper subset of, Z = X\Y andL = K (Y). For simplicity, we
write Z = {X1, ..., Xs} andY = {Xs41, ..., Xn}. Moreovert is always used to represent
new variables.

2.2.1. Decomposition using generic position

We begin with giving the definition of minimal polynomials and polynomials in generic
position (slightly different from the standard one), and then show decomposition by using
(polynomials in) generic position.

Definition 2.1. Let J be a zero-dimensional ideal &f[Z]. For a polynomialf (Z) in
L[Z], theminimal polynomial m(t) with respect to Js defined as the monic, univariate
polynomial overL having the smallest degree among all univariate polynonhiagach
thath(f) e J.

For each variablex in Z, the minimal polynomiaimy(x) with respect toJ is the
generator of the elimination idedlN L[x].

Definition 2.2. Let J be an ideal ofL[Z]. A polynomialg(Z) € L[Z] is said to be
in generic position with respect to @ deg(mg(t)) = dim_(L[Z]/J) for the minimal
polynomialmg with respect tal.

Proposition 2.3can be considered a special case of Proposition 8.@eoker and
Weispfenning1993.

Proposition 2.3. Let J be an ideal of [Z], and suppose that a polynomia{g) is in
generic position with respect to J and thatris the minimal polynomial of @) with
respect to J. Moreover, suppose that

mg(t) = my()* - m ()

is the irreducible factorization of gnover L. Then P = Idyz(J, mi(9)) is a prime
divisor for each m, and+/J = Ni_, P is the prime decomposition of J.

Proof. As g(Z) is in generic position, there is a polynomigl — hj(g(2)) in J for
each variablex € Z, whereh; is a univariate polynomial ovelr, considering the ideal
J' = ldzupy(J U {t — g(2)}). Then,J’ is “in normal position” with respect tb in
the sense oBecker and Weispfennin@993. Hence, eact’ = Id_z(J, mi(Q)) is a
primary ideal by Proposition 8.69 &ecker and Weispfenning.993. If ./ # P, then
dim_ (L[Z]/v/P) < dim_(L[Z]/P). This implies that the minimal polynomian of
g(Z) with respect to/P; must be a non-trivial divisor afy . But, asm; is irreducible, this
is a contradiction. Hence? is a prime ideal. O

By Gauss’s lemma, the factorization describednoposition 2.3an be performed in
K [X]1, where the minimal polynomiahg with respect tal is taken to be a polynomial in
a new variable of Y overK by removing the denominator.

Thus, once we find a polynomial in generic position, one can compute its prime
decomposition by factorization of its minimal polynomial. We refer to this procedure as
decomposition using generic positidWwhen K is of characteristic 0, each radical ideal
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is separable(seeDefinition 2.4 and almost all of the linear polynomials are in generic
position. However, there are certain computational problems in applying this method:

e Even if J is a radical ideal, the existence of a polynomial in generic position is
not guaranteed. Moreover, even if such a polynomial does exist, there may not be
polynomials of lower degrees, such as linear polynomials Kyén generic position.

As the choice of a polynomial in generic position has a great impact on the total
efficiency, it is desirable to find linear polynomials in generic position.

e We cannot apply Seidenberg’s theore®eidenbergl 974 to compute radical ideals,
but instead have to rely on other existing algorithie(sumoto 200L Kemper
2002. However, as radical ideal computation tends to be computationally difficult,
unnecessary radical ideal computation is to be avoided.

To overcome this difficulty, we introduce the notion of “separable closure”. From
the separable closure (s, one can compute the prime decomposition ofJscby
decomposition using generic positidrom which one can extract the prime divisorsdbf

2.2.2. Decomposition via separable closure

Definition 2.4. For an ideal) of L[Z], J is said to beseparabldf

(1) Jis a zero-dimensional radical ideal and

(2) forevery prime divisoP of J, the residue class ring[Z]/P is a separable extension
field of L.

Separability was also discussedemper(2002 and generalized biyortuna et al(2002.

Definition 2.5. For a univariate polynomiaf (x) overL, f is said to beseparablef f
has no multiple root in the algebraic closureof L. Moreover, if there is a separable
polynomialh such thatf (x) = h(xpe) for some non-negative integerh is called the
separable closure of &nd denoted by ¢ ).

Proposition 2.6. Let J be a zero-dimensional ideal ofZ]. If the minimal polynomial ga
with respect to J of each x in Z is separable, then J is separable.

Proof. By the definition of separability, g¢thy, dmy/dx) = 1 for everyx in Z. By
Lemma 92 ofSeidenberg@1974) or Lemma 8.13 oBecker and Weispfennin@.993, J is
a radical ideal (see aldtemper 2002 Proposition 4).

Next consider Asg)). For eachP € AsqJ), L’ = L[Z]/P is an extension field of
andL’ = L(aa, ..., as) foranya = (a1, ..., as) in V (P). Since eacly; is a root of the
separable polynomiahy, , eachw; is a separable element overand, thusl (a1, .. ., as)
is a separable extension fieldlof [

For a separable ideal, a polynomial in generic position corresponds to a common
primitive element of separable extensions (this is used in the standard definition of “generic
position”). Conversely, if there is a primitive element for eddtz]/P, we can apply the
Chinese remainder theorem to show that there also exists a common primitive element by
the co-maximality of prime divisors.
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Lemma 2.7. Let J be a separable ideal off[Z]. A polynomial gZ) in L[Z] is in generic
position with respect to J if and only if for each prime divisor P 0§(d2) is a primitive
element of the separable extensigrZl/P.

As there exists a primitive element for each separable extension field, we can show the
existence of polynomials in generic position.

Corollary 2.8. Let J be a separable ideal of(EZ]. There exists a polynomial in[EZ] in
generic position with respect to J.

If K has enough number of elements, a polynorgia) in generic position can be
found among the linear polynomidls, ., aixi,a € K (seeLemma 3.2.

Example2.9. In GF(p)(u, v)[X, ¥], Id(xP—u, yP —v) is prime but inseparable and thus
there are no polynomials in generic position@F (p) (2)[X, y], Q = Id(xP—z, yP—2z)is

a primary ideal associated with the prime ided{x” — z, x — y). The minimal polynomial
of each variable with respect @ is irreducible but inseparable.

Definition 2.10. Let J be a zero-dimensional ideal bf Z]. If an idealJ’ of L[Z] satisfies
the following conditions then we call it theeparable closure of and denote it by €d).

(1) J' is a separable ideal &f[ Z].
(2) There is a correspondence between the zerak (@ V; (J)) and those ofd’ (in
V; (J") as follows: for each zera = (a1, ..., as) of J there exists a unique zero

B = (B1,...,Bs) of I such thatg; = oeipq for eachi, whereg is a non-negative
integer determined by.

The following theorem asserts the existence of the separable closure for a zero-
dimensional ideal. But, as we compute separable closures only for “ideals of special types”,
we omit the proof (se¥okoyama 2002).

Theorem 2.11. For each zero-dimensional ideal J of Z], there exists a uniqusc(J).
Moreover, there is a correspondence between the prime divisors of J and thesd of
Suppose a prime divisor P of J corresponds to a prime divisor ®o@f). Then there

exist non-negative integerg,e. ., e such that each zer@x, ..., as) of P corresponds
. €s

uniquely to a zerqalpel, ...,ad ) of Q. We call E= (e, ..., es) the exponent vector

of P.

The correspondence, however, is not necessarily one to one, i.e. distinct prime divisors
of J may correspond to the same prime divisor ofJ¢ but with different exponent
vectors. IfJ is of special typeas defined below, every prime divisor éfhas the same
exponent vector, and the correspondence is one to one.

Definition 2.12. Let J be a zero-dimensional ideal bf Z]. J is said to beof special type
if the minimal polynomialmy, of x; with respect ta] is irreducible for every; in Z.

Example 2.13. Consider the second example®fample 2.9

J=1ldxP -z yP -2 osaqd)=1d(x—2zy—2)
V() > (Vz, ¥2) » (z.2) e V(saJ))
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P=ldxP-zx—-y)<sa))=Q=I1ldx—-2zYy—2).

In our algorithm, we do not compute b directly from J, but compute ideals);
such thaty/J = N'_,,/Jj and everyJ; is of special type. We call each of theg¢ an
intermediate ideadJJf J. For eachJj, we compute s@Jj) as follows.

Take an intermediate ided| and write it simply asH. ThenH is a zero-dimensional
ideal of special type ih.[Z]. By definition, the minimal polynomiahy, of x; with respect
to H is irreducible overL for everyx; in Z. (And by removing the denominatany; is
also irreducible oveK.) By considering the square-free decomposition, it follows that a
separable closure goy, ) exists for eactm,, and thaimy, (t) = samy,)(t%) andg; = p®
for eachx; € Z. We now define th&robenius map

¢E : LI[Z]3 f(Xt, ..., %) — FOGL, ..., x¥) e L[Z],
whereE = (ey, ..., ). We can then compute @d) as follows.

Theorem 2.14. For the separable closurea(H) of H, we have

sqH) = ¢pg*(H) = (f € L[Z] | ¢e(f) € H}.

Moreover, there is a one to one correspondence between the prime divisors P of H and the
prime divisors Q obaH) such that

Q=saP) = ¢ (P).

Proof. Let H' = ¢E1(H). For eachx; in Z, samy,)(xi) belongs toH’ because
sc(mxi)(xiq‘) = my, belongs toH. ThenH’ is separable because its minimal polynomial
samy, ) is a separable polynomial for every varialllen Z. In addition, there is a one to
one correspondence betwe€n(H) andV; (¢E1(H)) = V; (H’) because for each zero
@ = (a1,...,a5) Of H, B = (7", ..., @) is a zero ofH’ and, conversely, for each zero

B=(B1,....,8s) of H',a = (¥B1, ..., ¥/Bs) is a zero ofH. Thus, byDefinition 2.1Q
we haveH’ = sq(H) and a correspondence between @&ssand AsgsaH)). O

Once one has obtained all prime divisors oft4g, one can recover the corresponding
prime divisors ofH as follows:

Proposition 2.15. Let Q be a prime divisor a§a(H ), P the corresponding prime divisor
of Hand B = Id(¢e(Q)). Then,./Py = P, thatis, R is either the corresponding prime
divisor or its associated primary ideal.

Proof. Consider each zew = (a1, ..., as) of Po. As Py = 1d(¢e(Q)), (g, ..., ad)
must be a zero o, and hencex is a zero of the corresponding prime divis@rof Q.
Thus,V; (Po) C V;(P). But, asP is a maximal ideal, we havé; (Po) = V;(P), and
/Py = P by Nullstellensatz. O

Frobenius map computation

Both inverse Frobenius map computati@&‘gl(H) and Frobenius map computation
Id(¢e(Q)) can be performed by elimination ideal computation (S&gams and
Loustaunaul994 Chapter 2).
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For the inverse Frobenius mapwe introduce an elimination ordering > ;
and compute a @bner basisGg of Id(H U {xipq -y | 1 < i < sgphin
L[X1,...,X%s, Y1, ..., Ys]. Then,GoN L[y, ..., Ys] with y; replaced by; for eachi is a
Grobner basis o&gl(H) (seeMatsumotq 2001, Propositions 2.5 and 2.6).

For theFrobenius mapwe introduce an elimination ordering > y; and compute a

Grébner basis; of 1d(Q U {yipq —% |1<i<s)inL[Xy,...,Xs, Y1,...,Ysl. Then,
GiNLlys, ..., Ys] with y; replaced by; for eachi is a Giobner basis ofd (¢ (Q)). This
can be shown by using the property thatis a ring endomorphism.

Radical ideal computation

WhenJ # +/J, the idealP obtained by Frobenius map computation may not be a
prime ideal but a primary ideal (sé@roposition 2.15 We thus need to comput¢P.
However, as our goal is to compute the prime divisors of the original ideaK [ X] and
(v/P)¢ = VP N K[X] is the required prime divisor df (seeLemma 3.}, we compute
(+~/P)¢ directly using

(vP)¢ =P =,/PNKI[X],

where P¢ denotes theontractionof P, that is, P° = P n K[X]. In this case, as the
ground field ofK is G F(q), we can compute the radicalP¢ efficiently using the method
of Matsumoto(2001) which consists of inverse Frobenius map computation audtid root
computation of field elements. We can modify the metho&efper(2002 to suit our
situation, which may correspond to radical computation using the exponent ¥ etbile
the method oMatsumoto(2001) may correspond to that without usitig

3. Computation of prime decomposition

This section describes the proposed algorithm in its entirety.ILbe an ideal of
K[X]. As we want to compute prime divisors bf we make use of a number of existing
decomposition formulasShimoyama and Yokoyamd996 Caboara et a/.1997). For
example, the following are used frequently:

(A) J/1d(, fg) = /Id(I, f)n/1d(, 9),
(B) VI =,/UR; "R NJId(T, ).

3.1. Pre-decomposition

If 1 has no inseparable prime divisors, we can apply the same procedure as in the
characteristic 0 case without using the special procedure describgdction 2 As it
seems very unlikely that randomly generated ideals will have an inseparable divisor, we
must consider ideals with inseparable prime divisorspesial casedn implementation,
it is thus not efficient to apply the procedure designed for special cases to all cases of
I directly; it is better to compute “partial decompositions” obtained by simply applying
useful decomposition formulas to each generatod ofOur implementation employs
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the following pre-procedure as proposed in Section 5.Blmimoyama and Yokoyama
(1996.

Pre-procedure

By applying decomposition (A) to the given idebl we can compute ideals,i =
1,...,r,suchthat/l = /Ty N--- N /Ts and for each, every element of the computed
Grobner basis ofj is irreducible inK [ X].

We call eachl; a pre-componenbf /1. The prime decomposition of/1 is then
obtained by gathering isolated prime divisors of all pre-compohent

3.2. Reduction to zero-dimensional ideals

We first compute pure-dimensional components frdmby techniques using
independent setsiodulo | (seeBecker and Weispfennind993 Chapter 8 for details).
Using a Gobner basis, we compute a maximal strongly independenY sebdulo |,
and lift | to its extension ideal Dbf K(Y)[Z], whereZ = X\Y. Then, for each prime
divisor P of J, we extract the corresponding prime divistff = P N K[X] by contraction
computation, giving the following prime decompositions:

VIi=nl_R, VI =(_ PNV,

where I’ = Idkx;(l, f) for some polynomialf computed fromJ such that
VURfNR) = ni_;P". Useful properties of contractions follow (s&ecker and
Weispfenning1993.

Lemma 3.1. Let J be anideal of [Z] and J* = J N K[X] a contraction. Then:

(i) If J is aradical ideal, then 3is also a radical ideal.
(i) If J is a prime ideal, then Jis also a prime ideal.
(iii) If J is a primary ideal, then Jis also a primary ideal.

As | is a proper subset df, we can compute all prime divisors bifin finitely many steps
by applying the above computationsltorecursively. Decomposition (A) is also applied
to improve total efficiency. Using the factorizatidn= [];_, fie‘ in K[X], we get

VT = JTdepa (L D) = 08 /T (1 .

We then compute the prime decomposition of ebatkx; (I, fi), instead ofl ".
3.3. Intermediate decomposition

We consider a zero-dimensional idealof L{Z], whereY c X,L = K(Y) and
Z = X\Y. For each variable; € Z, we compute the minimal polynomiaty; (t) with
respect toJ. This can be considered a polynomialtimndY over K by removing its
denominator. We then factorize oviérto give

my (1) = [ [mij®%,
j
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where eachm; j is irreducible overK and thus overK[Y]. By Gauss's lemmam; j
is also irreducible ovet. Adjoining eachm; j to J gives the following intermediate
decomposition, where each is of special type:

Let Fi be the set of all distinct irreducible factorsmf, overK, andn; = #F; for each

i. Since intermediate ideals are of the fotth [z)(J, 91, . . ., Os), where eacly; is chosen

from F;, we have to deal with - - - ng combinations ofgs, . . ., gs), which will require a

large number of computations. Moreover, many of these computations are unnecessary, that
is, they tend to coincide with[Z]. And worse, computation of all the minimal polynomials

at once tends to be very difficult. It is thus better to apiplgremental decomposition
where we adjoirg; to each ideal and then compute the next minimal polynogiad,
successively

3.4. Prime decomposition of intermediate ideals

Let 7 be the intermediate decompositionhfWe present a concrete method for prime
decomposition oH in 7. Let gi denote the minimal polynomial of; for eachx; in Z.
The idealH can be classified as one of the following cases:

Generic Casein which somex; € Z are in generic position with respect tb:

By Proposition 2.3the factorization of the minimal polynomiaj (x;) gives the
prime decomposition. But a5 (x;) is already irreducibleH is a prime ideal.

Non-Generic and Separable Case which no x; is in generic position, buH is a
separable ideal:

As H is a separable ideal, there exists a polynomial in generic position. Thus, we
search for such a polynomialamong all linear polynomials, and then compute the
prime decomposition by factorization of the minimal polynomiahofNote: if H is
zero-dimensional ovef, thenH is always separable.)

Non-Generic and Inseparable Case which no x; is in generic position andd is an
inseparable ideal:

We first compute the separable closur@$t Then scg;) is the minimal polynomial
of x; with respect to sH ). This case can be further divided into the following sub-
cases:

Generic Sub-Casén which somex; € Z are in generic position with respect to
saH):
In this case, ) is a prime ideal, and so the corresponding idéat a prime
or a primary ideal. Thus, the prime ideal is calculated by computikt

Non-Generic Sub-Casethis case is similar to thé&lon-Generic and Separable
Case We search for a linear polynomidl in generic position with respect
to sqH). We then compute the prime decomposition of g using the
factorization of the minimal polynomial df, and compute the corresponding
prime ideals by Frobenius map computation and radical ideal computation.
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3.5. Remarks on finding polynomials in generic position

By Proposition 2.3 we can find a polynomiag in generic position by checking
whether the degree of the minimal polynomia equals dim (L[Z]/saH)). To increase
efficiency, we want to find a linear polynomig{Z) in generic position for the following
reasons:

(1) The efficiency of computation of minimal polynomials increases for polynomials of
smaller degrees.

(2) An efficient strategy for choosing candidate polynomials in generic position from all
linear polynomials, by which we place a bound on the number of trials as shown
in Lemma 3.2 is applied (seé’okoyama et al.1992 for details). The bound in
Lemma 3.2is theoretical and it is likely that we will find a linear polynomial in
generic position even KK does not satisfy this bound.

(3) Evenifthe ground field is extended, the effect on the efficiency of basic arithmetical
operations is small because we are using the Zech representation.

Lemma 3.2 (Theorem 4.2 irYokoyama etal(1992). Let T = s x £ x dimg
(L[Z]/saH)), where s= #Z and{¢ = #AsqsqH)). Then, if#K > T, there exists a
polynomial g in generic position among all linear polynomials in Z over K.

If the order of the finite ground fiel& is too small, a problem may occur in finding a
linear polynomial in generic position. To avoid this, we extéhdo K’ to a large enough
order. After computing the prime decomposition over an extension field, we recover the
prime decomposition ovef as follows.

Consider the case where we must repl&cwith the extension fieldK. In this case,
we deal with the ideall; = K3 ® J of K1(Y)[Z] instead of the ideal. We then apply
prime decompositioto obtain the sePx, of all prime divisors ofJf = J; N K1[X]. By
the action of the Galois group = GaloigK1/K) ¢ GaloigK/K), Pk, is divided into
G-orbits, whergj acts onK1[ X] asg acts on the coefficients of polynomials, and thus acts
on the set of ideal®x, by o (Pk,) = {o(h) | h € Px,}. Then, from Nullstellensatz and
the fact that the conjugate of each zerof a prime ideal inPy, is also a zero of some
prime ideal inPk,, we have the following:

Lemma 3.3. Suppose that & 1, Pk,,2, ..., Pk, r form one G-orbit. Then, W =
Vig(Pky,1) U -+ U Vi (Pg, r) forms a minimal invariant set among unions of set®jq
for G. (We noteK = K1.) Thus, there exists a unique prime divisor P 6f=3 J N K[X]
suchthat \ (P) = W.

There are two ways to compute the prime idBah Lemma 3.3 0ne is to compute the
intersection of thé>x, ;s and the other is to use elimination techniques. For the intersection
of Pk,,is, using the same notation as3r8:

Lemma3.4. Let P = N{_, Px,.i and G be the reduced @bner basis of Psuch that
the leading coefficient of g is 1 for every element g inThen G c K[X] and G is the
Grobner basis of P.

Lemma 3.4can be seen by the fact that for agyg G’ ando € G, o (g) also belongs to
P’ and must be reduced to 0 I&/.
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The method using elimination is now explained. Consiglef in Pk, . As K1 is a finite
extension field oK, it can be considered a§[T]/ Py, whereT is a set of new variables
and Py is a maximal ideal ofK[T]. Consider a Gobner basisGk, of Pk, as a set of
K[T, X] and letP’” = ldkT,x3(Po, Gk,). Then, Pk, containsP’ N K[X] as subsets of
K1[X], and theG-conjugates ofPk, also containP’ N K[X]. It can then be shown that
P’ N K[X] is the prime divisor ofJ€ corresponding tdk, . This divisor can be computed
by Grobner basis computation using the elimination ordefling X.

Remark 3.5. As the ideal over a larger field tends to have prime divisors with smaller
linear dimension as zero-dimensional ideals over rational function fields, using an
extension fieldK; may improve the total efficiency of the prime decomposition. However,
there are also cases where this effect might reduce the total efficiency. For example,
consider the case where the iddélis a prime ideal oveK but not over an extension field

K1. In this case, unnecessarydbrier computations are performed. An efficiprimality
checkis thus needed to handle such cases.

3.6. Removing redundant divisors and early termination

Throughout the procedure, a number of redundant prime ideals appear because we
calculate prime ideals from a number of different ideals appearing in the computation.
To access the true prime divisors, we need to eliminate all redundant prime ideals. We
therefore give a procedure for such elimination, from which we derive an effective check
for “early termination” of the procedure and another for avoiding unnecessary prime
decomposition. If these checks are computed efficiently, they greatly improve the total
efficiency (see examples Bection 5.

LetP be the set of all computed prime ideals, dnthe a newly computed prime ideal.

Redundant ideal elimination

If P contains a prime ided®’ in P, thenP is a redundant prime ideal and we discard it.
Otherwise, we ad® to P. Moreover, if P is contained in a prime ide&’ in P, we have
to removeP’ from P. The “ideal inclusion”A c B for idealsA andB can be checked by
computing the normal forms of generatdksvith respect to a Gatiner basis 0B.

Early Termination

If P passes the above check, we compute the intersedtienP N (Ngep Q), where
NgepQ has already been computed. (Note that if there is a prime iBéabntaining
P and P’ is removed fromP, the intersection) will be unchanged. Thus, in this case
P N (NgepQ) = P N (Ngep\(p}Q).) The entire procedure can then be terminated if
Vi=1.

Of course, if we have already computed , the Early Terminationcheck is merely a
test of the coincidence of @bher bases. However, as the radical computation tends to be
very time-consuming, we can perform the check without compuifihgs follows:

If VI o J, we get the equality/I = J becausey/I c J. To check whether
V1 o J it suffices to check whether each generafoof J belongs toy/I by radical
membership computation. Actually, the radical membershig afan be determined by
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checking whethetJ : f°°) = K[X]. Since we already computed adbrier basis of]
with respect to some term order, we can computél : f *°) efficiently as the elimination
idealldk xuitn(J, f-t—1)NK[X]with respectto a block ordef” such that the restriction
> of > on X coincides with>.

As radical ideal computation can be conducted in a similar manner to prime
decomposition, it seems inefficient to do the computations independently. For an input
ideal with a smaller number of prime divisors, a smaller number of checkSaity
Terminationare required, improving overall efficiency.

MoreoverLemma 3.6also suggests the use of tharly Terminatiortechnique.

Lemma 3.6. Let P be the set of prime ideals that have already been computed at some
point in a computation, & Npp P and I' be a newly computed ideal to which we apply
prime decomposition. If & +/1/, then there is no prime divisor of | among all the prime
divisors of I', and we avoid unnecessary computation for |

4. Implementation details
4.1. Multivariate factorization and GCD over finite fields

To decompose an ideal, it is necessary to factorize the minimal polynomials. If the
minimal polynomials are computed over fields of rational functions, then a multivariate
factorizer over finite fields is required. A multivariate polynomial can be factorized by a
modular algorithm composed of evaluation at a point, multivariate Hensel lifting and trial
division. The current implementation is based on the algorithm describékhyardin
and Monagan(1997, who noted that cases where we cannot find feasible evaluation
points are often encountered. In these cases we have to extend the ground field. In
our implementation, such field extension is represented in Zech representation, that is,
GF(q)\{0} is represented b, o, &2, ..., @972}, wherex is a primitive(q — 1)-th root
of unity. Addition inG F(q) is performed via a table of length— 1 and ifq is sufficiently
small, e.g. ifq < 216, performance loss is negligible. Practically speaking, if the order
of the ground field is more than 40it is large enough for finding feasible evaluation
points. We therefore currently use the ordinary representatio6 fefp) with p > 214,
and consequently our implementation can handle any “reasonable” input ide& Bye)
whenpis a prime of the machine integer size.

In cases of characteristic 0, we can apply the modular method to square-free
factorization and GCD computation. But in cases of positive characteristic, evaluation
points for execution of the modular method do not often exist. Therefore, in the current
implementation we apply the Chinese remainder theorem to a set of GCDs computed at
sufficiently many evaluation points. Field extension is used where necessatry.

4.2. Incremental intermediate decomposition

Intermediate decomposition of the radical of a zero-dimensional ideahn be
performed by extracting non-trivial ideals from the set of ideals:
{ldk[x1(J, 91, ..., On) | Gi is an irreducible factor of the minimal polynomial xf}.
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In general, manyldkx;(J, 91, ..., 0n) turn out to be the trivial ideal. To avoid
such unnecessary computations, we adopt an incremental method for intermediate
decomposition. When we decompose an ideale proceed with recursive decomposition
by adjoining one irreducible factor of the minimal polynomial of a variable at each step.
With each factor adjoined, the degrees of the minimal polynomials of other variables
may be decreased, making subsequent computations faster. Furthermasenifjeneric
position with respect td, then/1 = Nldkx (I, mi(x)), where{m; (x)} is the set of all
irreducible factors of the minimal polynomial &f In this case, we do not have to consider
the minimal polynomials of variables other than

We note that this kind of incremental decomposition is also applicable to the complete
decomposition of each intermediate ideal. To this end, we attempt to find a polynomial in
generic position. Usually this is done by generating a linear polynogréaidd computing
the minimal polynomiamg. Even ifg is not in generic position, ifng is reducible, then
we obtain a non-trivial decomposition using the procedure described above (sémaiso
et al, 1996.

4.3. Computation of minimal polynomials

It is often hard to compute minimal polynomials using the Buchberger algorithm
because Gitiner bases have to be computed with respect to an elimination order. To
overcome this difficulty, we implemented a direct computation of minimal polynomials via
an FGLM methodraugere et al(1993 when the ground field is a finite field or a field of
univariate rational functions. The former is obvious and we briefly explain the latter case.

The argument oNoro and Yokoyamg1999 can be generalized as the following
lemma:

Lemma4.l. Let¢ : h(ug,...,u) — h(a,...,a) be an evaluation map from [KJ ]
to K, where U= {uy, ..., u}, (@1, ..., a) € K' and K[U]w is the localization of KU ]
atM = ld(xy —ag,...,x —a). Let G ¢ K[U]m[X] be a reduced Gibner basis
over K(U). Theng (G) c K[X] is well defined and is a @bner basis over K. Lafi(t)
be the minimal polynomial af(f) for a given f € K[U][X]. If there exists a monic
m(t) € K[U]m[t] such thatdeg (m(t)) = deg(m(t)) and¢(m(t)) = M(t), then mt) is
the minimal polynomial of f over KJ).

The coefficients ofm(t) satisfy a system of linear equations ovi€rU), which
is derived from the membership condition with respect to theb@ei basisG.
The coefficientsf (U) can be computed by a modular method similar to that used
for rational number coefficients. Starting from the minimal polynomial oerwe
compute the solution motK by Hensel lifting. We then apply polynomial-rational
function transformation. That is, we try to find polynomigldJ) and h(U) such that
degg),degh) < k/2 andh(U)f(U) = g(u) mod MK for each component of the
mod MK solution. Only the univariate case is implemented, with efficient implementation
of the general case left as a future work.

4.4. Competitive computation

To fully implement the procedure, there are a number of parameters in various parts
of the procedure that need to be determined. For example, it is necessary to choose a
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term ordering for Gobner basis computation, and this is often crucial for efficiency. We
have two methods of minimal polynomial computation: elimination by the Buchberger
algorithm and the direct method described in the previous section. Experimentally, we
have found that it is difficult to predict which is better for any given case. For this reason,
competitive computation is applied as describedMigekawa et al(2001). When the
ground field is a finite field or a field of univariate rational functions, the two methods are
executed simultaneously on two different servers, with the result returned first used. The
remaining server is resetimmediately and the subsequent minimal polynomial computation
can start at once.

5. Experiments

The entire algorithm was implemented on Risa/Asirsing the built-in multivariate
factorizer and Buchberger algorithm driver over small finite fields. In addition to the
examples fronCaboara et a[1997) andMatsumotq2001), we prepared several examples
from famous benchmark problems and those derived from generic polynomials of small
Galois groups inKemper and Mattig(2000. The ideals are all positive dimensional
because we are primarily interested in cases in which inseparable ideals may appear.

Logar. 2ahi+ bh?+ 2cdj — cei— cgh— deh ai2 + 2bhi + 2cfj — cgi + d2j — dei—
dgh—efh bi®+2dfj —dgi —efi — fgh, f(fj — gi).

83: C+cE—eC-E,F-C,E-G,eF+ fH+hE—fE—hF—-eH, fG—gF,gH+
G-hG-H,cH-hC.

H katsura(n) (homogenized katsum) system:uju — > L. uiui—i( = 0,...,n —
1), >, u — uwhereu, = u_,.

H cyclic (n) (homogenized cyclicy) system:3 ", ]_['J(J:rlJ -1
1), H?:l cj —c.

Pagag XB+x2+t,y8+y2+t, 8+ 22 +t,u8 +u2 +t.

Poss: X'2+x2+t,y2+y2+t, 712+ 22 +t.

Pros 7144+ 72 41, y12 4 22y10 4 ZAyB | Z6y6 4 B4 | F10v2 | S12 4 q 4104 (y2 4
22)x8 4 (y* + 22y2 + 7% + (yB + 22y + 24y + 28)x4 + (yB + 226 + ZAy4 +
20y2 + ZB)x? + y10 4 72y8 4+ ZAy6 4 2Py 4 ZBy2 4 710,

Piai212 X2+ x104+ x84+ x2 +t,yt2 4 yl0p y8 4 y2 41,2124 2104+ 28 4 22 4t

Qres 221+ 28412, y18 4 2Byl 4 76y12 | ,9\0 | #1206 4 7153 L 718 4 1 15 (y34
2)x12 1 (y6 1+ 23y3 4+ X9+ (y° + 23yB + 20y3 + 29X + (y12+ 73y + Z5y6 4
2093 4 7253 4 y15 | F8y12 | 76y0 4 96 | 71203 /15

Quaot 22+ B +12,yO+23y0 + 2y3+ 294+ 1, x6 1 (3 + X3+ YO+ y3 4 26, yB +
(22 + ud)y® + 2% + udZ® + 5.

Reag 725+ 75+ 12, y20 1 75y15 4 710y10 L #1505 4 720 4 4 415 4 (454 /6)10. (y10|
25y5 + 210)x5 1 y15 4 75y10 | 710y5 4 715

ijodn(k = 17"‘7n -

1 http://ww.math.kobe-u.ac.jp/Asir/asir.html
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Table 1
Prime decomposition of the radical ov@r~(2)
Dim Comp ET € Tp TB Singular

Logar 7 8 on 12 12 12 20
Logar - - off - >5min - -
83 5 3 on 8.4 8.6 8.4 0.8
H cyclic(6) 3 6 on 2 2 2 >5min
Hcyclic(6) 3 6 off 0.8 0.8 0.8 —
Pa444 1 36 on 1.9 12 1.4 2
Pesss 1 5 on 2.4 4 >5min 20
P765 1 2 on 6 6 >5min 24
P121212 1 5 on 11 10 >5min 8

For each problem, the prime decomposition of its radical was computed using a number
of different methods. In the following tableBield, Dim and Comprepresent the ground
field, the dimension of the ideal and the number of prime components respeckviely.
indicates whether Early Termination was enabled or figt. Tp and Tg indicate the
elapsed computing times when the competitive computation (Stra@ggdirect com-
putation (Strategy) and elimination using the Buchberger algorithm (StratByyvere
used for minimal polynomial computation. As a reference, we also show the timing data
of minAssGTZ in Singular 2-0-Z In Asir, computations are done over sufficiently large
extension fields and final results are computed using the method descriBection 3.5
All measurements were performed on an SMP PC containing two Athlon MR190thes
are shown in seconds, with “=" indicating “not measured” or “unnecessary”.

Table 1shows the results oveB F(2). In Asir, computation oveiG F(213) is used
internally. During the computation dfogar, a large number of unnecessary components
are calculated and so Early Termination works very well with this kind of inpggs and
P12.12.12 could not be computed using Stratdgjybut the minimal polynomials were easily
computed by Strategh. However, the result foP4444 Shows that there is a case where
minimal polynomials are computed efficiently by Strat&yurthermore, we observe that
Tc < min(Tp, Tg) for Psgsand so neither Stratedynor Strateg\B is superior throughout
the computation in this case. Competitive computation is thus very effective in such cases.

Table 2shows results over various finite fiel@sF(3), GF(5) and GF(53), where
GF(37), GF(5°) and GF(53?%) were used internally. The results éfkatsura6) and
Hkatsura7) overG F(53) show the performance of the minimal polynomial computation
of StrategyD. For HkatsuraandH cyclic, Early Termination does notimprove efficiency
because they are low dimensional ideals and the number of redundant components
produced during the whole procedure is thus very smalET is on, Tc = 326 for
Hcyclic(6) and Tc = 47 for Hkatsura6). The additional computational cost is due
to the computation of ideal intersections and radical equality checks.

For prime decomposition of each example over extension fields, the efficiency of the
basic arithmetic does not change. Therefore, the elapsed computing times are almost the

2 http://www.singular.uni-kl.de/
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Table 2
Prime decomposition of the radical over various fields
Field Dim Comp ET € Tp Tg Singular

Logar GF(3) 7 8 on 32 32 32 >5 min
Logar GF(53 7 8 on 92 95 93 32
83 GF(d 5 3 on 1 1 1 0.5
83 GF(53 5 3 on 14 14 14 2
Q765 GF(3) 1 1 on 22 22 >5min >5min
Q4321 GF(@3) 2 2 on 1 1 3 >5min
Rs43 GF(5 1 6 on 1.2 1.6 1.2 >5 min
Hcyclic(6) GF®3 2 6 off 2.5 2.5 2.5 >5min
Hcyclic(6) GF(53 2 65 off 39 39 38 >5min
Hkatsura6) GF® 1 6 off 5 5 5 26
Hkatsura6) GF(53 1 10 off 22 22 80 >5min
Hkatsura?7) GF(53 1 11 off 238 229 1190 >1h

same as their counterparts if each decomposition has the same form as that over the prime
field. For those ove6 F(213), GF(37), GF(5°) and G F(53%), the elapsed computation

times do not exceed those over the corresponding prime f&@kER), G F(3), GF(5) and
GF(53.

6. Concluding remarks

We have implemented an algorithm for prime decomposition of polynomial ideals over
small finite fields on a computer, and have evaluated the practicality and quality of our
implementation by computational experiments on several examples.

As prime decomposition consists of many sub-procedures, the efficiencies of the sub-
procedures and basic arithmetical operations affect the overall efficiency. Moreover, the
choice of strategy (i.e. combination of sub-procedures) also affects the overall efficiency.
We summarize our results and give recommendations for future work:

e Partial decomposition
To compute the prime divisors df we can incorporate existing decomposition
algorithms Caboara et al.1997 Shimoyama and Yokoyamd996. We have
employed two types of partial decomposition: pre-decomposition and intermediate
decomposition. In twofold partial decomposition, many of the intermediate ideals
tend to be prime. Thus, a special procedure for inseparable intermediate ideals is
applied only to a limited number of such ideals.
e Computation of minimal polynomials
The experiments showed that direct computation of minimal polynomials is
efficient in many cases. In some cases, however, elimination by the Buchberger
algorithm is more efficient than the direct method. By applying competitive compu-
tation, we can benefit from both methods. Even if a single CPU machine is used,
total elapsed time does not exceed twice the time taken by the faster algorithm,
and we eliminate large delays that can result from choosing a single inefficient
algorithm.
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e Basic arithmetical operations, @fier basis computation and polynomial
factorization
Computation over an extension field can be reduced to computation over the
ground field by considering the defining polynomial of the extension as a member
of the ideal to be decomposed, but this adds a substantial overhead. As we have
implemented such extension fields as “primitive data types” and implemented all
necessary functionality over them, the performance losses due to field extension
are negligible. However, the performance ofoBnér basis computation over
finite fields is not fully optimized and affects overall performance in some cases.
Although the multivariate factorizer is efficient in most cases, we often encounter
minimal polynomials that are difficult to factor using the standard modular method.
Fortunately a practical method for factorizing such polynomials has been developed
(Noro and Yokoyamg2002), by which we are able to factorize them efficiently.
e Special procedure for non-generic and inseparable cases
Experimentally, the special procedure aimed at inseparable cases works primarily
in cases of small characteristic suchms: 2, 3, 5, because, in practice, it is difficult
to handle ideald with large dim_(L[Z]/J). (If the characteristig is not small, the
ideals that we can handle are separable and we simply apply ordieepynposition
using generic positiof Thus, in order to utilize such small characteristics, it is im-
portant to improve the efficiency of the basic arithmetical operations. The Zech rep-
resentation is employed in our implementation for this reason. For zero-dimensional
ideals overG F(q), there always exists a polynomial in generic position. It is thus
better to design another method optimized for zero-dimensional ideal&dver).
e Early Termination
Unnecessary computations were avoided by employindearty Termination
scheme. As the checking procedure can be performed without computing the rad-
ical ideal of the input, Early Terminationwas found to improve overall efficiency
very much in a number of test cases. However, the check requires additional com-
putation, ideal intersection computation and radical membership computation, and
therefore offers a “trade-off”. It seems very difficult to estimate the complexity of
the algorithm theoretically. And thus we will search for a good strategy based on
further experimental work.
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