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Abstract

It has been shown in [G.A. Vilkovisky, hep-th/0511182] that the metric in the semiclassical region of the collapse spacetime is expressed purely
kinematically through the Bondi charges. Here the Bondi charges are expressed through this metric by calculating the vacuum radiation against
its background. The result is closed equations for the metric and the Bondi charges. Notably, there is a nonvanishing flux of the vacuum-induced
matter charge.
© 2006 Elsevier B.V.

In Ref. [1], a new approach is proposed to the problem of backreaction of the Hawking radiation. For the spherically symmetric
collapse of a compact matter source it has been shown that, in the semiclassical region [1] of the expectation-value spacetime, the
gravity equations close purely kinematically leaving the arbitrariness only in the data functions. The data functions are two Bondi
charges appearing as coefficients of the expansion of the metric at the future null infinity I+

(1)(∇r)2
∣∣
I+ = 1 − 2M(u)

r
+ Q2(u)

r2
+ O

(
1

r3

)
,

(2)(∇r,∇u)|I+ = −1 − c1

r
+ O

(
1

r2

)
.

Here c1 is a constant [1], and, for the model of the vacuum considered below, c1 = 0. The notation in Eqs. (1), (2) and below is
conventional for spherical symmetry and is the same as in Ref. [1] with the following exception. The retarded time u+ normalized
at the future null infinity is in the present notation just u, and the retarded time u− counted out by an early falling observer [1] will
here be denoted as

(3)u− = U(u),
du−

du+ = U̇ (u).

The advanced time v that also figures below remains normalized at the past null infinity I−. The partial derivative ∂u is the derivative
at fixed v.

As shown in Ref. [1], the metric in the semiclassical region depends only on the Bondi charges M(u) and Q2(u). On the other
hand, the Bondi charges depend only on the metric in the semiclassical region, this dependence being already a subject of the
quantum dynamics. Having both dependences obtained, one gets self-consistent equations for the Bondi charges and, thereby, for
the expectation value of the metric in the semiclassical region.

The calculation thus falls into three stages. The first stage: solving the kinematical equations for the metric in terms of the Bondi
charges is accomplished in Ref. [1]. The purpose of the present work is the second stage: calculation of the vacuum radiation against
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the thus obtained gravitational background. This should express the Bondi charges through themselves, and there will remain only
the last stage: solving the resultant self-consistent equations.

Both Bondi charges M(u) and Q2(u) appear in the expansion of the flux component of the energy–momentum tensor at I+:

(4)
∫

d2S r2T μν ∇μv∇νv

(∇v,∇u)2

∣∣∣∣
I+

= −∂uM+ 1

2
∂uQ

2 1

r
+ O

(
1

r2

)
.

Here the integration is over the unit 2-sphere S entering the product I+ = (u-axis) × S . Since the collapsing matter source is
assumed having a compact spatial support [1], the T μν in Eq. (4) is the energy–momentum tensor of the in-vacuum, T

μν
vac . The

quantity (4) with T μν = T
μν

vac is the only one that needs to be calculated. There is more than one way to do this calculation in
semiclassical theory. The present calculation uses the WKB technique along the lines of Refs. [2,3].

To model the vacuum, the simplest quantum field will be chosen: a massless scalar field satisfying the equation

(5)(� − ξR)Φ = 0, ξ = const,

and having the energy–momentum tensor

(6)Tμν = (1 − 2ξ)∇μΦ∇νΦ − 2ξΦ∇μ∇νΦ + ξRμνΦ2 + gμν

[(
2ξ − 1

2

)
(∇Φ)2 + 2ξΦ�Φ − 1

2
ξRΦ2

]
.

The calculation will be carried out with an arbitrary ξ but the case of interest is ξ = 1/6. The latter is important because the locality
of the trace of T

μν
vac is assumed in Ref. [1].

The T
μν
vac at I+ can be obtained by a direct averaging of the operator (6):

(7)T μν
vac

∣∣
I+ = [〈in vac|Tμν |in vac〉 − 〈out vac|Tμν |out vac〉]∣∣I+ ,

and here one of the main points emerges. The subtraction in Eq. (7) is necessary because there is a noise at I+ even when the
background field is absent. The principal requirement that the subtraction term must satisfy is its locality in the background field. In
the effective-action technique, this requirement is secured by the locality of the counterterms. In the present technique, it should be
secured by the choice of the quantum state in the subtraction term. The definition of this state should not involve the quantum-field
operators in the future or past of the observation point of T

μν
vac . With the observation point at I+, the normalization state is the

out-vacuum. Below, the notation is introduced

(8)〈X〉 = 〈in vac|X|in vac〉 − 〈out vac|X|out vac〉.
From Eq. (6) one obtains

(9)T μν
vac

∇μv∇νv

(∇v,∇u)2

∣∣∣∣
I+

= 〈
(∂uΦ)2〉 − ξ∂2

uu

〈
Φ2〉 + O

(
1

r4

)
.

Expanding Φ in spherical harmonics, one can replace the quantum field in 4 dimensions with a sequence of quantum fields Φ l in
2 dimensions. The fields Φ l , l = 0,1, . . . , are defined on the Lorentzian subspace of a spherically symmetric spacetime and, there,
satisfy the equation

(10)Φ l = 1

r
Ψ l ,

(11)

(
� − � r

r
− ξR − l(l + 1)

r2

)
Ψ l = 0

with � the D’Alembert operator in this subspace. In terms of Ψ l one obtains from Eq. (9)

(12)
∫

d2S r2T μν
vac

∇μv∇νv

(∇v,∇u)2

∣∣∣∣
I+

=
∞∑
l=0

(2l + 1)

[〈
(∂uΨ l )

2〉 − ξ∂2
uu

〈
Ψ l

2〉 + 1

r

(
1

2
− 2ξ

)
∂u

〈
Ψ l

2〉 + O

(
1

r2

)]
.

The expansion of Ψ l at I+ is readily obtained from Eq. (11). One needs the retarded solution which is

(13)Ψ l |I+ = Ψ l (u) + 1

r

l(l + 1)

2

u∫
−∞

duΨ l(u) + O

(
1

r2

)
.

Here Ψ l (u) are the data for Ψ l at I+. Inserting this expansion in Eq. (12) and using Eq. (4) one obtains finally

(14)−∂uM=
∞∑

(2l + 1)
[〈(

∂uΨ l(u)
)2〉 − ξ∂2

uu

〈
Ψ l

2(u)
〉]
,

l=0
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Fig. 1. Choice of the Cauchy surface Σ for the inner product, Σ = Σ1 ∪ Σ2. The division into Σ1 and Σ2 is specified by the location of the observation point u

at I+ . The event horizon EH if any is in the future of Σ .

(15)∂uQ
2 =

∞∑
l=0

(2l + 1)

[
(1 − 4ξ)∂u

〈
Ψ l

2(u)
〉 + l(l + 1)∂u

〈
Ψ l

2(u)
〉 − ξ l(l + 1)∂3

uuu

〈( u∫
−∞

duΨ l(u)

)2〉]
.

The flux of Q2 in Eq. (15) appears as a total derivative (candidate for discarding) but appearances may deceive.
Eqs. (14), (15) leave one with the expectation values of the form

(16)
〈(
DΨ l (u)

)2〉 = 〈(
DΨ l(x)

)2〉∣∣
x∈I+ ,

where D = D(∂u) is some (retarded) linear operator. Let ψ in
la (x), a = εin, be the solution of Eq. (11) that asymptotically at I−

becomes the eigenfunction of the energy operator with the eigenvalue εin. Let ψout
lA (x), A = εout, be the solution defined by a

similar condition at I+. Normalized with the aid of the inner product, the ψ in
la (x) and ψout

lA (x) make two bases of solutions of
Eq. (11) (for each l), related by the Bogolyubov transformation

(17)ψout
lA (x) = αl

Aaψ
in
la (x) + βl

Aaψ
† in
la (x).

(Summation is assumed over the repeating a or/and A but not l.) The dagger designates complex conjugation, and “the complex
conjugate quantity” will be abbreviated as c.c. Expanding the quantum field Ψ l (x) in any of the bases and calculating the difference
in Eq. (8) one obtains

(18)
〈(
DΨ l (x)

)2〉 = −(
Dψ

† out
lA (x)

)(
Dψ

† in
la (x)

)
βl

Aa + c.c.,

(19)βl
Aa = i

∫
d2x (2)g1/2δ(σ )(∇μσ)

(
ψ in

la ∇μ ψout
lA (x) − ψout

lA ∇μ ψ in
la (x)

)
.

Here d2x (2)g1/2 is the volume element of the Lorentzian subspace, and the equation

(20)Σ : σ(x) = 0

with ∇σ past-directed describes an arbitrary Cauchy surface Σ in this subspace.
To see that the expectation value (18) with x ∈ I+ is causal, i.e., does not contain the background field in the future of the

observation point, note that it can be expressed through the commutator function of the field Ψ l

(21)Gl(x, x′) = 1

i

[
Ψ l (x),Ψ l (x

′)
] = −iψ in

la (x)ψ
† in
la (x′) + c.c. = −iψout

lA (x)ψ
† out
lA (x′) + c.c.

Namely,〈(
DΨ l (x)

)2〉 = ∫
d2x′ (2)g′1/2δ(σ ′)(∇′

μσ ′)
[(
Dψ

† out
lA ψ ′out

lA −Dψ
† in
la ψ ′ in

la

)
D∇′μGl(x, x′)

(22)+ (
Dψ in

la ∇′μ ψ
′† in
la −Dψout

lA ∇′μ ψ
′†out
lA

)
DGl(x, x′)

]
.

With the observation point x at I+ at a given value of u, choose the Cauchy surface Σ as shown in Fig. 1, Σ = Σ1 ∪ Σ2. The
contribution of Σ2 drops out of (22) because the commutator function vanishes when x′ is outside the light cone of x. Then shift
Σ1 to I+. The result is

(23)
〈(
DΨ l (u)

)2〉 = −i
(
Dψ

† out
lA (u)

)(
Dψ

† in
la (u)

) u+0∫
du′ [ψout

lA (u′) ∂u′ ψ in
la (u′) − ψ in

la (u′)∂u′ψout
lA (u′)

] + c.c.
−∞
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Here ψout
lA (u) and ψ in

la (u) are the data at I+ for the basis functions ψout
lA (x) and ψ in

la (x). Only these data and only in the past of the
observation point u are needed to calculate the expectation value (23).

The WKB solution for ψ in
la (x) boils down to the solution for the geodesics in the background metric. The background metric is

the sought for expectation value of the metric—the final goal of the calculation—but kinematics gives it in terms of arbitrary Bondi
charges [1]. One needs to solve for the congruence of the null geodesics that start at I− with one and the same energy εin and one
and the same angular momentum L = h̄l. It suffices to know which of these geodesics come to the point u of I+, and what then is
their energy with respect to the Killing vector at I+. Denote this energy as

(24)ε+ = ε+(u, εin,L).

One can put the question differently. Consider the geodesic that comes to the point u of I+ with the energy ε+ and angular
momentum L, and trace it back to I−. Then what is its energy with respect to the Killing vector at I−? The answer is given by
Eq. (24) solved with respect to εin. The result is

(25)ε+ =
{

εin, L > εinH(u),

εin
dU(u)

du
, L � εinH(u)

dU(u)
du

.

Two functions of the background metric govern this behaviour. One is the U(u) of Eq. (3), and the other one, H(u), may be
interpreted as defining the variable height of the centrifugal barrier. Both are expressed through the Bondi charges:

(26)H−2(u) = 2
M(u) + √

9M2(u) − 8Q2(u)

(3M(u) + √
9M2(u) − 8Q2(u) )3

,

and [1]

(27)
d

du
ln

dU(u)

du
= −κ(u),

(28)κ(u) =
√
M2(u) − Q2(u)

(M(u) + √
M2(u) − Q2(u) )2

, u > u0.

Here u0 labels the radial light ray tangent to the apparent horizon [1]. Expression (28) is invalid for early u, and the range of u for
which Eq. (25) holds is u > u0 +O(M) but this is the range in which one needs to calculate the radiation. At earlier u, the radiation
is negligible. The geodesics whose εin and L do not satisfy either of the inequalities in Eq. (25) do not come to the point u of I+.

The derivation of the result above will here be omitted. It will only be mentioned that the geodesics corresponding to the second
line of Eq. (25) turn (in r) three times. The respective particles start at I− as incoming and turn the first time before the black
hole has formed. They are outgoing already when the collapsing mass comes and turns them back. They cross the apparent horizon
and continue falling down but, before they reach small r and even before they cross a possible event horizon [1], gravity weakens
and lets them go. They cross the apparent horizon the second time, next turn the third time, and go out to I+. The third turn is a
quantum effect.

The congruence of geodesics considered is hypersurface orthogonal, and the function (24) determines the phase of ψ in
la (x) at I+.

Hence one obtains the data at I+ for the basis functions:

(29)ψ in
la (u) = 1√

4πεin

[
θ(εinHU̇ − l) exp(−iεinU) + θ(l − εinH) exp(−iεinu)

]
,

(30)ψout
lA (u) = 1√

4πεout
exp(−iεoutu).

The expectation values (23) will thus be expressed entirely through the functions H(u) and U(u). It is important that, even kinemat-
ically, the Bondi charges are not completely arbitrary [1]. By their properties, H(u) and κ(u) in Eq. (27) are macroscopic quantities
whereas the derivatives of these functions in u are microscopic quantities. In the notation of Ref. [1],

(31)|O| < H,
1

κ
<

1

|O| ,
d

du
H =O,

d

du

1

κ
=O,

(32)U̇ =O, u > u0,

where O vanishes when the quantum parameter tends to zero.
In the upper limit of the integral in Eq. (23) one may exploit condition (32):

(33)U̇(u + 0) < U̇(u) =O

and set U̇(u+ 0) = 0. In view of Eqs. (27) and (31), this is equivalent to setting u+ 0 = ∞, and then the integration by parts proves
that the two terms of the integral are equal. In the product of two functions (29) that figures in Eq. (23) only one diagonal term
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survives and takes the form

(34)ψ
† in
la (u)ψ in

la (u′) =
∞∫

0

dεin

4πεin
θ(εinHU̇ − l) exp

(
iεin(U − U ′)

)

because, for u > u′, HU̇ < H ′U̇ ′. The contribution of the other diagonal term to the expectation values vanishes because the
contribution of the term (34) vanishes when κ ≡ 0, and expression (23) vanishes when ψ in = ψout. The cross terms vanish because
they imply U̇ > |O| or U̇ ′ > |O|.

It follows from Eqs. (23) and (34) that

(35)
∞∑
l=0

p1(l)
〈(
DΨ l (u)

)2〉 = p1(0)
〈(
DΨ l(u)

)2〉∣∣
l=0 +

∞∫
0

dl p2(l)
〈(
DΨ l(u)

)2〉
,

where p1(l) is any given polynomial, and p2(l) is some other polynomial. Doing the sum over l first and the sum over εout last,
one obtains each contribution to (35) as a spectral integral over the energy εout, the spectral function being a combination of the
functions

(36)In(εout, u) =
∞∫

0

dεin U̇(iεinU̇ )n

∞∫
−∞

du′ εinU̇
′ exp

(
i(Ω − Ω ′)

)
,

(37)Ω − Ω ′ = εin(U − U ′) + εout(u − u′).

Specifically,

(38)
〈(
∂uΨ l (u)

)2〉∣∣
l=0 = 2

(4π)2

∞∫
0

dεout I0(εout, u) + c.c.,

(39)
〈
Ψ l

2(u)
〉∣∣

l=0 = 2

(4π)2

∞∫
0

dεout
1

iεout
I−1(εout, u) + c.c.

In Eq. (36) introduce the new integration variables

(40)y = εinU̇
1

κ
, x = εinU̇

′ 1

κ ′
to obtain

(41)In(εout, u) = κn+1

∞∫
0

dy (iy)n

∞∫
0

dx

w
exp

(
i(Ω − Ω ′)

)
,

(42)w = 1 − d

du′
1

κ ′ .

Next use Eq. (27) to write

(43)U̇ = exp

(
−

u∫
−∞

dū κ̄

)
,

(44)U ′ − U =
u′∫

u

du′′ exp

(
−

u′′∫
−∞

dū κ̄

)

and integrate in u′′ by parts:

(45)U ′ − U =
(

1 + d

du

1

κ
+ d

du

(
1

κ

d

du

1

κ

)
+ · · ·

)
1

κ
U̇ −

(
1 + d

du′
1

κ ′ + d

du′

(
1

κ ′
d

du′
1

κ ′

)
+ · · ·

)
1

κ ′ U̇
′.

Owing to condition (31), all the corrections with the derivatives of κ are negligible both in (42) and (45):

(46)w = 1, εin(U − U ′) = x − y.
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There remains to be expressed through x and y the difference (u − u′) in Eq. (37). For that one has the equation

(47)ln
y

x
=

u′∫
u

du′′ κ ′′
(

1 − d

du′′
1

κ ′′

)

in which the last term is negligible. This equation can be solved by expanding in the derivatives of κ :

(48)κ(u′ − u) = ln
y

x
+ 1

2

(
d

du

1

κ

)
ln2 y

x
+ 1

6

(
d

du

(
1

κ

d

du

1

κ

))
ln3 y

x
+ · · ·

but here the corrections with the derivatives are not unconditionally negligible as they are in Eqs. (42) and (45). The point here is
that the integrals in x and y are cut off by oscillations at both the upper and lower limits so that the integration regions for lnx and
lny are effectively compact. Then ln(y/x) is bounded, and, in Eq. (48), all the terms with the derivatives of κ are negligible. As a
consequence, the spectral function (41) is calculable. Another important consequence is

(49)κ(u′ − u) <
1

|O| .
It was tacitly assumed in the derivations above that conditions (31), (32) valid at the observation point u are valid also at the
integration point u′. Eq. (49) proves that this is the case.

Now one comes to the central point of the present consideration. The argument above about the effective compactness of the
integration regions for lnx and lny needs a reserve. At the upper limits, the integrals in x and y are cut off by oscillations always
whereas at the lower limits only when εout �= 0. Therefore, the argument may break down for the low-energy part of the spectrum:
εout → 0. This can be checked. Introduce the notation

(50)z = εout

κ(u)
.

If the corrections in Eq. (48) are small indeed, their contributions to the spectral function can be calculated by expanding the
exponential

(51)exp
(
iεout(u − u′)

) =
[

1 + P

(
iz, ln

x

y

)]
exp

(
iz ln

x

y

)
.

Here P is a series of the form

(52)P

(
iz, ln

x

y

)
=

∑
O(iz)k

(
ln

x

y

)s

, k � 1, s � k + 1.

Insertion of the expansion (51) in Eq. (41) yields the following result:

(53)In(εout, u) = κn+1(u)

[
1 + P

(
iz,

d

diz

)]
Fn(z),

(54)Fn(z) = e−πzΓ (n + 1 − iz)Γ (1 + iz),

where Γ is the Euler’s function. When n � 0, the function Fn(z) and all its derivatives are bounded including at z → 0. Then the
entire contribution of P in Eq. (53) is O and is negligible. However, when n < 0, the function Fn(z) behaves as 1/z at z → 0. Then,
because, in the series P , the power of (d/diz) exceeds the power of (iz) at least by one, the corrections due to P are even more
singular, and, therefore, at εout → 0 they are not small.

Thus, for n � 0 the spectral function (36) is successfully calculated. One has

(55)n � 0: In(εout, u) = κn+1(u)e−πzΓ (n + 1 − iz)Γ (1 + iz)

with z in Eq. (50). Hence one obtains, in particular, the expectation value (38)

(56)
〈(
∂uΨ l (u)

)2〉∣∣
l=0 = 4

(4π)2

∞∫
0

dεout
2πεout

e2πz − 1

but does not obtain (39).
For In with n < 0 one has a difficulty. In order that the function κ(u) could be regarded as slowly varying, the operator D acting

on ψ† in(u) in Eq. (23) should be ∂u to the power 1 or higher. This suggests the way of overcoming the difficulty. For D = ∂u
0 and

D = ∂u
−1 write in Eq. (23)

(57)ψ† in(u) =
u∫

dū ∂ū ψ̄† in,
−∞
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(58)

u∫
−∞

duψ† in(u) =
u∫

−∞
dū (u − ū)∂ū ψ̄† in.

Alternatively, write in Eq. (36)

(59)exp(iεinU) =
u∫

−∞
dū (iεin

˙̄U) exp(iεinŪ )

to obtain

(60)I−1(εout, u) =
u∫

−∞
dū I0(εout, ū) exp

(
iεout(u − ū)

)
.

This calculates I−1 through I0, and for I0 one has the result (55) but the new obstacle is that the integral (60) involves u down to
u = −∞ whereas the result (55) is valid only for u > u0. Indeed, only at late u is κ(u) slowly varying by virtue of condition (31).
The obstacle is not big, however. Expression (55) is inaccurate at early time but, since the radiation at early time is negligible
altogether, this inaccuracy is unessential. The specific form of κ(u) at early time is also unessential. It is only important that κ(u)

falls off at u → −∞ so that the integral in Eq. (43) converges. For the calculational purposes, one may just set κ(u) = 0 for u < u0,
this being equivalent to switching off the background curvature at early time.

Using Eqs. (60) and (55), one obtains the expectation value (39):

(61)
〈
Ψ l

2(u)
〉∣∣

l=0 = 4

(4π)2

∞∫
0

dεout

u∫
−∞

dū
2π sin(εout(u − ū))

e2πz̄ − 1
,

where z̄ = εout/κ̄ , and κ̄ = κ(ū). The integral over εout can be done:

(62)
〈
Ψ l

2(u)
〉∣∣

l=0 = 4

(4π)2

u∫
−∞

dū κ̄

[
π

2
− π

κ̄(u − ū)
+ π

eκ̄(u−ū) − 1

]
,

and finally one obtains

(63)
〈
Ψ l

2(u)
〉∣∣

l=0 = 4

(4π)2

[
π

2

( u∫
−∞

dū κ̄

)
− π ln

( u∫
−∞

dū κ̄

)
+ O(1)

]
,

( u∫
−∞

dū κ̄

)
→ ∞.

This is the message of the present Letter. The operator Φ2|I+ averaged over the in-vacuum or out-vacuum is infrared-divergent.
The expectation value 〈Φ2〉|I+ obtained as the difference in Eq. (8) is finite but growing at late time. Its first derivative contributes
significantly to the fluxes (14), (15):

(64)∂u

〈
Ψ l

2(u)
〉∣∣

l=0 = 4

(4π)2

π

2
κ(u)(1 +O)

whereas the second derivative is already negligible:

(65)∂2
uu

〈
Ψ l

2(u)
〉∣∣

l=0 = O

(
dκ

du

)
= κ2O.

This mechanism of emergence of the vacuum fluxes is familiar. In the effective-action technique they all emerge as total derivatives
of growing vertex functions [4].

An alternative way of calculating expression (61) is introducing the integration variables

(66)γ = εout(u − ū), σ = κ̄(u − ū), ū > u0

and doing the integral over σ first. It works also when calculating the l > 0 contributions to the expectation values. Using Eqs. (57),
(58) one obtains

(67)

∞∫
dl ln

〈
Ψ l

2(u)
〉 = 4

(4π)2

n!
n + 1

Hn+1(u)κn+1(u)

{−(−1)
n
2 ln

(∫ u

−∞ dū κ̄
) + O(1), n even,

O(1), n odd,

0
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(68)

∞∫
0

dl ln

〈( u∫
−∞

duΨ l (u)

)2〉
= 1

(4π)2

n!
n + 1

Hn+1(u)κn−1(u)

⎧⎨
⎩

(−1)
n
2
( ∫ u

−∞ dū κ̄
)2 + O

( ∫ u

−∞ dū κ̄
)
, n even,

(−1)
n+1

2 2π
( ∫ u

−∞ dū κ̄
) + O

(
ln

(∫ u

−∞ dū κ̄
))

, n odd.

Here the powers of growth are different for even and odd powers of l but in all cases this growth is insufficient. Since, in Eq. (15),
on the terms (67) there acts ∂u and on the terms (68) ∂3

uuu, the contributions of all of these terms are negligible. Only the s-mode
contributes to the flux of the charge Q2.

The l > 0 modes contribute only to the flux of the gravitational charge M via

(69)

∞∫
0

dl ln
〈(
∂uΨ l(u)

)2〉 = 2

(4π)2

1

n + 1
Hn+1(u)κn+1(u)

∞∫
0

dεout εout
[−(−i)ne−πzΓ (n + 1 − iz)Γ (1 + iz) + c.c.

]
.

The WKB technique is inaccurate for l of order 1 but the contribution of the s-mode is unambiguous and so is the contribution
of the l � 1 modes. The latter is given by the highest power of l in the polynomial p2(l) in Eq. (35). Retaining only these two
contributions one obtains

(70)−∂uM= 4

(4π)2
2π

∞∫
0

dεout
εout + H 2(u)ε3

out

e2πz − 1
.

The contribution of the s-mode describes correctly the low-energy behaviour of the spectral function, and the contribution of the
l � 1 modes describes correctly the high-energy behaviour. The inaccuracy at intermediate energies is a question of the grey-body
factor.

The final result is the following set of equations for the Bondi charges:

(71)−∂uM= 1

48π
κ2(u)

(
1 + 1

10

(
H(u)κ(u)

)2
)

,

(72)∂uQ
2 = 1

8π
κ(u)(1 − 4ξ).

The contribution of the l � 1 modes to the total energy flux (71) is by an order of magnitude less than the contribution of the
s-mode because the high-energy part of the Planckian spectrum is exponentially suppressed. The flux of the charge Q2 depends on
the value of ξ , and there are values for which it is zero or negative but, if ξ �= 1/6, the present calculation is inconsistent because
the background metric of Ref. [1] is invalid. The nonvanishing flux of the charge Q2 is a surprise.

In conclusion, a failure of the 2-dimensional effective action is worth mentioning. At ξ = 0, to the s-mode Ψ 0 there corresponds
the effective action in the Lorentzian subspace:

(73)(2)Svac = − 1

96π

∫
d2x (2)g1/2 (2)R

1

�
(2)R

so that

(74)
2

(2)g1/2

δ (2)Svac

δgμν

∇μv∇νv

(∇v,∇u)2
= 〈

(∂uΨ 0)
2〉

(with the retarded current on the left-hand side). Eq. (74) is to be compared with Eq. (12) at ξ = 0 and l = 0. Only to the leading
order in 1/r do these expressions coincide. The effective action (73) should, therefore, give the correct energy flux for the s-mode,
and it does. But the flux of the charge Q2 is not contained in this action even for the s-mode and even at ξ = 0. This may explain
why the 2-dimensional models of the effective equations miss the backreaction of radiation. The 4-dimensional effective action
should, of course, reproduce the present results in full but here it will not be considered.

The equations above for the Bondi charges close. Thereby, the expectation-value equations for the metric close already at the
level of functions of one variable [1]. The solution will be reported.
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