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The cancer stem cell (CSC) model has been established as a cellular mechanism that contributes to pheno-
typic and functional heterogeneity in diverse cancer types. Recent observations, however, have highlighted
many complexities and challenges: the CSC phenotype can vary substantially between patients, tumors may
harbor multiple phenotypically or genetically distinct CSCs, metastatic CSCs can evolve from primary CSCs,
and tumor cells may undergo reversible phenotypic changes. Although the CSC concept will have clinical
relevance in specific cases, accumulating evidence suggests that it will be imperative to target all CSC
subsets within the tumor to prevent relapse.
Introduction
Phenotypic and functional heterogeneity is a defining feature of

many leukemias and solid tumors. Several factors contribute to

this heterogeneity, including genetic mutations, epigenetic

changes, interactions with the microenvironment, and the

presence or absence of a cellular hierarchy. Different cellular

mechanisms have been postulated to account for intratumoral

heterogeneity. The acquisition of genetic (or epigenetic) alter-

ations underpins the clonal evolution theory (Nowell, 1976) in

which cells in the dominant clonal population(s) possess similar

tumorigenic potential. Conversely, the cancer stem cell (CSC)

model postulates a hierarchical organization of cells such that

only a small subset is responsible for sustaining tumorigenesis

and establishing the cellular heterogeneity inherent in the

primary tumor. Although CSCs exhibit the stem cell properties

of self-renewal and differentiation, they do not necessarily origi-

nate from the transformation of normal tissue stem cells

(Figure 1). This model has received wide attention because it

provides an explanation for resistance to both radiation and

chemotherapy and eventual tumor relapse. In addition, quies-

cent or slow cycling CSCs may survive therapeutic intervention

and result in recurrence. The first prospective identification of

a CSC was made by Dick and colleagues for AML (Bonnet and

Dick, 1997; Lapidot et al., 1994). CSCs were subsequently

demonstrated to occur in diverse solid tumors (reviewed

in Visvader and Lindeman, 2008). Although the existence of

CSCs has been well established for specific cancers, it is clear

that the CSC model does not account for functional heteroge-

neity in all tumors.

Over the last few years, emphasis in the CSC field has shifted

more toward the use of freshly isolated tumor specimens and

early-passage xenografts for transplantation studies rather

than the use of cultured tumor cells. Furthermore, there is in-

creased awareness that the nature of the xenotransplantation

assay is critical for evaluating the existence of CSCs (Quintana

et al., 2008). Here we review recent developments in this rapidly

moving field, including the variable phenotype of CSCs, the pres-

ence of multiple CSC pools within individual tumors, the ability of
CSCs to undergo genetic evolution, and the potential of non-

CSCs to switch to CSC-like cells (Figure 2). These observations

highlight the dynamic nature of CSCs and further indicate that

the clonal evolution and CSC models can act in concert. They

also somewhat dampen the original therapeutic promise of the

CSC model, as it seems that all CSC subsets within the tumor

will need to be defined and targeted in order to influence clinical

outcome. In the case of solid tumors, which exhibit extraordinary

genomic instability, it will probably be necessary to target both

CSCs and non-CSCs to achieve durable remission. Despite

these complexities, the recent derivation of a stem cell-like or

‘‘self-renewal’’ gene expression signature that is predictive of

patient outcome in human leukemia lends credence to the

CSC hypothesis and its clinical relevance (Eppert et al., 2011;

Gentles et al., 2010).

CSC Markers Are Not Universal for Any Cancer Type
CSCs must be defined functionally by well-validated assays

such as in vivo transplantation rather than on the basis of immu-

nophenotype alone. Nonetheless, a number of markers have

proven useful for the isolation of subsets enriched for CSCs in

multiple types of solid tumors, including CD133, CD44, EpCAM,

and ALDH activity. In the case of human leukemia, a combination

of CD34, CD38, and IL3Ra has enabled the prospective isolation

of leukemia stem cells. It should be noted that none of these

markers are exclusively expressed by CSCs. With the passage

of time, it has become increasingly evident that the CSC pheno-

type varies between individual patient tumors of the same

subtype, raising the question of whether the markedly different

clinical outcomes reflect differences in their CSC populations.

CD133 (prominin) is one example of a cell surface protein that

has been widely explored as a CSC marker. CD133 was initially

described as a CSC marker for glioblastoma multiforme (Singh

et al., 2004). Moreover, direct imaging of matched CSCs and

non-CSCs in the same in vivo microenvironment of primary glio-

blastoma tumors demonstrated that only the CD133+ subset had

the ability to maintain tumorigenesis and generate heterogeneity

(Lathia et al., 2011a). However, CD133 does not always mark
Cell Stem Cell 10, June 14, 2012 ª2012 Elsevier Inc. 717

https://core.ac.uk/display/82566811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:visvader@wehi.edu.au
http://dx.doi.org/10.1016/j.stem.2012.05.007


Figure 1. Schemata of the Clonal Evolution
and Cancer Stem Cell Models
(A) The clonal evolution model is a nonhierarchical
model where mutations arising in tumor cells
confer a selective growth advantage. Depicted
here is a cell (red) that has acquired a series of
mutations and produced a dominant clone. Tumor
cells (red and orange) arising from this clone have
similar tumorigenic capacity. Other derivatives
(grey) may lack tumorigenicity due to stochastic
events. Tumor heterogeneity results from the
diversity of cells present within the tumor.
(B) The cancer stem cell model is predicated on
a hierarchical organization of cells, where a small
subset of cells has the ability to sustain tumori-
genesis and generate heterogeneity through
differentiation. In the example shown, a muta-
tion(s) in a progenitor cell (depicted as the brown
cell) has endowed the tumor cell with stem cell-like
properties. These cells have self-renewing capa-
bility and give rise to a range of tumor cells (de-
picted as gray and green cells), thereby
accounting for tumor heterogeneity.

Cell Stem Cell

Perspective
CSCs and appears to be modulated by extrinsic factors. The

search for more robust markers of CSCs in glioblastoma and

other brain tumors has revealed SSEA-1/CD15/Lewis X and

a6-integrin. SSEA-1 (stage-specific embryonic antigen) was

identified as a CSC marker in both human glioblastoma and

syngeneic mouse models of medulloblastoma (Read et al.,

2009; Son et al., 2009; Ward et al., 2009). Despite a high propor-

tion of specimens lacking CD133+ cells, SSEA-1 enriched for

CSCs by 100-fold in almost every human glioblastoma tumor

evaluated (Son et al., 2009). In another approach, Rich and

colleagues examined the perivascular microenvironment in

which brain CSCs reside and identified a6-integrin as a CSC

marker that was required for maintenance of CSCs in vivo (Lathia

et al., 2010). Coexpression of CD133 and a6-integrin was

observed in some but not all tumors.

The limited overlap evident between the phenotypes of CSCs

isolated from the same tumor type may reflect the presence of

multiple CSC pools or technical variation arising from differ-

ing enzymatic digestion conditions, the use of cultured versus

freshly sorted cells, or extensively passaged versus early xeno-

graft tumors. Another confounding factor is that stringent assays

to prove self-renewing activity have not always been applied.

The genetic mutation profile may also influence the nature and

phenotype of CSCs, as suggested by studies on different genetic

mouse models of lung adenocarcinoma (Curtis et al., 2010),

whereas epigenetic changes in regulatory genes could impact

marker expression itself. In breast cancer, although CD44

and CD24 have been extensively used to isolate CSCs, they

should not be viewed as universal markers. CD44 and CD24

did not selectively enrich for CSCs in ER-negative and triple-

negative breast tumors as shown by the fact that CSCs were
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found in both the CD44+CD24� and

CD44+CD24+ fractions (Meyer et al.,

2010). Furthermore, the ALDHhi and

CD44hiCD24lo CSC-enriched subsets in

breast cancer bear little overlap within

the same tumor (Ginestier et al., 2007). A

similar story holds true for colorectal
cancer in which the EpCAMhiCD44+ CSC subpopulation

shared minor overlap with CD133 (Dalerba et al., 2007), and for

pancreatic cancer, where overlap between the CD133+ and

CD44+CD24+ populations varied considerably between speci-

mens (Hermann et al., 2007). In ovarian cancers, strikingly little

concordance was found between CD133 and reported ovarian

CSC markers including CD117, CD44, and ALDH1 activity

(Curley et al., 2009;Stewart et al., 2011),mostprobably explained

by many groups relying on cultured cells as opposed to freshly

sorted tumors. Finally, in patientswith non-small cell lung cancer,

although CD133, CD44, and EpCAM proved ineffective for the

isolation of CSCs, CD166 emerged as a robust marker in more

than 50%of cases (Zhang et al., 2012). Nevertheless, a combina-

tion of markers can refine the CSC phenotype. For example,

CD44expression combinedwith high levels of the tyrosine kinase

receptor c-MET provided robust selection of pancreatic CSCs

(Li et al., 2011), and high ALDH activity together with CD133

expression resulted in significant enrichment such that 1 in 11

ovarian tumor cells exhibited CSC properties (Silva et al., 2011).

Highly Variable Frequency of CSCs between Tumors
The true frequency of CSCs in most human tumors has probably

been underestimated because of barriers imposed by xeno-

transplantation, species-specific differences in growth factors/

receptors, and the level of immune recognition. However,

CSCs and tumor-initiating cells in many solid tumors tend to

be relatively infrequent, even when measured under more per-

missive conditions (Ishizawa et al., 2010; Stewart et al., 2011).

The term ‘‘tumor-initiating’’ is generally used by the field as an

operational term to define cells that initiate tumors upon trans-

plantation but it is not necessarily synonymous with a CSC.



Figure 2. Schematic Models of Tumor Propagation by CSCs
Depicting Variations that Can Contribute to Tumor Heterogeneity
(A) One CSC subset may be present within the tumor. As described in Figure 1,
non-CSCs are incapable of generating a tumor.
(B) Multiple distinct CSC pools, each independently capable of tumor propa-
gation, may exist with an individual tumor.
(C) Long-lived dormant CSCs may produce local and/or distant tumor recur-
rence after activation (depicted here as a yellow CSC with a red rim) many
years after anticancer therapy.
(D) As tumor progression occurs, a second distinct CSC may arise as a result
of clonal evolution. This may result from the acquisition of an additional
mutation or by epigeneticmodification. Themore aggressive CSCwill become
dominant and drive tumor formation.
(E) The CSC phenotype may be unstable, resulting in phenotypic reversion of
cell surface markers and switching of the CSC phenotype. This may occur in
response to cell-intrinsic or microenvironmental cues.
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Tumors that do not follow a CSC model also contain tumor-

initiating cells but these do not exhibit stem cell-like properties.

In head and neck, pancreatic, and non-small cell lung cancers,

the frequency of tumor-initiating cells varied dramatically but

always comprised a very small population (<0.02%). Interest-

ingly, the frequency was not dependent on the immune status

of the recipient (Ishizawa et al., 2010). CSCs in serous ovarian

cancers were also found to be infrequent (<0.04%) and again

varied substantially among patients (Stewart et al., 2011). Anal-

ogous to these observations, evaluation of leukemic stem cells

(LSCs) under improved xenotransplantation conditions revealed

highly variable LSC frequencies in the range of 1 in 103�106 cells

(Eppert et al., 2011).

CSCs may not necessarily constitute a minor component of

the tumor. A relatively high proportion of leukemia-propagating

cells has been observed in specific syngeneic mouse models

of lymphomas and leukemias, whereas lower frequencies of

CSCs generally occur in murine models of epithelial and other

solid tumors (reviewed in Visvader and Lindeman, 2008). Inter-
estingly, initiating ‘‘driver’’ mutations were found to affect the

frequencies of LSCs in mouse models of AML (Heuser et al.,

2009; Somervaille et al., 2009). In high-grade tumors from

patients, an increased pool of CSCs may underlie their aggres-

sive behavior (Boiko et al., 2010; Pece et al., 2010; Zhang

et al., 2012). Indeed, the CSC model of heterogeneity may apply

more readily to early-stage than to advanced tumors, in which

dominant clones probably drive tumor progression.

Instability of the CSC Phenotype
Substantial differences in the immunophenotype of tumor-

propagating cells between primary cancer specimens and their

corresponding xenografts have been reported. Whereas most

primary serous ovarian cancers contained CD133+ CSCs, the

majority of xenografted tumors contained significant numbers

of CD133� tumor-initiating cells that could not be attributed to

contamination (Stewart et al., 2011). The marked changes in

copy number variation between these primary and xenografted

tumors suggest that genetic change is driving tumor progres-

sion, although the pre-existence of subclonal diversity cannot

be excluded. These data not only reflect heterogeneity within

the tumor-propagating compartment but also indicate that the

CSC phenotype may not be stable upon xenograft passaging.

Although the frequency of CSCs for some ovarian (Stewart

et al., 2011) and breast cancer (Meyer et al., 2010) xenografts

remained constant, the frequency of CSCs has been observed

to increase during serial transplantation, thus emphasizing the

need to study early-passage tumors (Boiko et al., 2010; Ishizawa

et al., 2010).

Existence of Multiple CSC Pools within Individual
Tumors
Cancers can harbor heterogeneous and biologically distinct

populations of CSCs. Recent studies have identified molecularly

distinct leukemic stem cell populations defined by CD34, CD38,

and/or IL3Ra expression. In the majority of AML patients, two

hierarchically organized LSCs were shown to coexist. These

populations are more closely related to normal progenitor

subtypes than hematopoietic stem cells (HSCs) (Goardon

et al., 2011), implying that the progenitors have aberrantly

acquired stem cell properties. Complementary findings were

made with a large number of AML patient samples, in which

both progenitor and more primitive HSC-like fractions contained

LSCs and generated the same phenotypic diversity found in the

primary samples (Eppert et al., 2011; Sarry et al., 2011). Notably,

another study revealed that CD38+ AML cells may have previ-

ously escaped detection because of their unexpected clearance

by the antibody (Taussig et al., 2008). In a HoxA9-Meis1-driven

mouse model of AML, multiple phenotypically distinct LSCs

were identified, and each was capable of recapitulating the orig-

inal disease histopathology (Gibbs et al., 2012). Collectively,

these findings demonstrate heterogeneity within the LSC com-

partment of individual patient specimens and also indicate that

AML often appears as a progenitor disease. In at least some of

these AMLs, a hierarchical relationship appears to exist among

the different LSC subsets. The observation that different pools

can clonally recapitulate the immunophenotype of the primary

specimen suggests that LSCs may dedifferentiate or exhibit

phenotypic interconversion.
Cell Stem Cell 10, June 14, 2012 ª2012 Elsevier Inc. 719



Figure 3. CSC Subsets within Primary Tumors May Harbor
Metastatic and Tumor-Propagating Capacity
(A) A CSC may be responsible for both local and disseminated tumor propa-
gation. In the example shown, a CSC (blue) enters the vasculature and
metastasizes to a distant organ, where it seeds a heterogeneous tumor
deposit exhibiting the hallmark features of the primary tumor.
(B) Alternatively, genetic and/or epigenetic mechanisms acting in the primary
CSC could lead to the emergence of a self-renewing metastatic CSC (green)
expressing distinct markers from the original CSC. This metastatic CSC,
through a series of invasive processes, seeds secondary tumors in distant
organs.
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Heterogeneous CSC compartments have recently been

unmasked in solid tumors. In ovarian, breast, and squamous

cell carcinomas, distinct CSC populations that regenerate the

phenotypic and functional heterogeneity of the parental tumor

have been described (Meyer et al., 2010; Schober and Fuchs,

2011; Stewart et al., 2011). In the case of primary colorectal

cancers, three different types of tumor-initiating cells were

resolved on the basis of clonal sphere cultures from individual

patient tumors: a rare subset of CSCs that maintained tumor

growth on serial transplantation, a tumor-initiating cell with

limited self-renewal capacity (therefore not defined as a CSC),

and a more latent CSC that apparently was activated in sec-

ondary or tertiary transplantation assays (Dieter et al., 2011).

Because spheres generated from single cells comprised three

cell types defined by differences in self-renewal, epigenetic

rather than genetic mechanisms may account for the functional

differences. Clonal heterogeneity among tumor-initiating cells

was also observed in PTEN-deficient glioblastoma, in which a

series of phenotypically distinct self-renewing cells was ob-

served in both the CD133+ and CD133� fractions (Chen et al.,

2010). These cells were arranged in a linear hierarchy and gener-

ated tumors with different growth kinetics in serial transplanta-

tion experiments. However, both of these studies relied on

sphere cultures of cells maintained under specific conditions,

and therefore need to be validatedwith fresh primary tumor sam-

ples. Although tumor-propagating ability can reflect sphere-

forming capacity, it is important to note that they do not always

equate because the selection of specific cells may occur in vitro

(Read et al., 2009).

Adding a further layer of complexity, distinct CSC subsets

within a tumor have the potential to interconvert. In skin squa-

mous cell carcinomas, two CSC subsets located along the

tumor-stroma interface displayed different tumor growth kinetics

and could interchange phenotype (Schober and Fuchs, 2011).

These may not represent distinct CSC pools but rather sto-

chastic variation within a single CSC population in response to

microenvironmental signals. Phenotypic conversion also occurs

among nonhierarchically organized tumor cells in melanoma

(Quintana et al., 2010).

Metastatic CSCs May Be the Same or Distinct from
the Primary CSC
There is growing evidence for the existence of functionally

distinct subsets of tumor cells that impart metastatic activity.

CSC subsets within primary tumors may harbor CSC subsets

with tumor-propagating and/or metastatic capacity (Figure 3).

In breast cancer, noninvasive imaging indicated that primary

tumor CSCs characterized by CD44 expression are directly

involved in metastasis (Liu et al., 2010). Similarly, in colorectal

cancer, metastasis was almost exclusively a property of the

CSCs that exhibited long-term self-renewing capacity (Dieter

et al., 2011). Multiple disseminating CSCs homed to the bone

marrow and generated liver metastases but only single clones

were detected in peripheral blood, suggesting that metastatic

CSCs enter the circulation transiently. In a related study on colo-

rectal cancer, a subset of CD26+ cells resident within primary

and metastatic tumors demonstrated tumor propagation, che-

moresistance, and liver metastatic potential after implantation

at the orthotopic site (the cecal wall). Significantly, the presence
720 Cell Stem Cell 10, June 14, 2012 ª2012 Elsevier Inc.
of CD26+ cells in primary tumors also predicted metastasis in

patients (Pang et al., 2010). In these epithelial malignancies,

the epithelial mesenchymal transition (EMT) may underlie the

metastatic process and give rise to precursors of metastatic

CSCs at the invading edge of the tumor (Mani et al., 2008).

In other tumors, a unique subset of metastatic CSCsmay drive

metastasis. In pancreatic cancer, only CD133+CXCR4+ cells

(not CD133+CXCR4� cells) demonstrated metastatic activity,

despite both subsets having tumor-propagating capacity

(Hermann et al., 2007). Moreover, inhibition of CXCR4 signaling

profoundly reduced the metastatic potential of pancreatic

tumors without altering their tumorigenic potential. This meta-

static CSC may have evolved from the primary tumor CSC or,

alternatively, from a non-CSC within the tumor. The delineation

of functionally distinct pools of CSCs will ultimately require cell

tracing studies in vivo, via either mouse models relevant to

human disease or minimally manipulated human cells for trans-

plantation. Tracking of tumor cells in the circulation should also

provide insight into metastatic CSCs.

Not All Cancers Harbor CSCs
Not all cancers will be sustained by CSCs. In melanoma, the high

proportion of tumorigenic cells (as many as 50%) assayed
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under more permissive conditions and with a wide spectrum of

markers (e.g., CD271), argues against a CSCmodel of heteroge-

neity (Quintana et al., 2010). On the other hand, there are data

from two groups indicating that melanoma lesions contain

a CSC subset characterized by CD271 expression with nude

recipient mice (Boiko et al., 2010; Civenni et al., 2011). However,

in more immunocompromised strains such as NOD-SCID-

IL2Rg�/– mice, both subsets were found to be tumorigenic,

although the CD271� fraction did not phenocopy the original

tumor histology (Civenni et al., 2011). One factor contributing

to these disparities (besides recipient strain) will include the

use of trypsin during tissue dissociation (Quintana et al., 2010),

given that the CD271 antigen was shown to be sensitive to this

enzyme (Civenni et al., 2011). Thus, the inclusion of trypsin in

the dissociation procedure will result in contamination of the

negative fraction with cells that actually express the antigen.

Nevertheless, a large number of markers evaluated by Morrison

and colleagues (Quintana et al., 2010) yielded cell populations

that were tumorigenic irrespective of marker expression. It

seems plausible that other parameters such as implantation

conditions and tumor grade also contribute to the discrepant

findings. Another potential issue is that the frequency of CSCs

can vary widely from 2.5% to 41% (Boiko et al., 2010), suggest-

ing that the CSC model is not applicable to those tumors con-

taining a high proportion of tumor-forming cells. Melanoma

may also use distinct cellular mechanisms from most other solid

malignancies, given the highly migratory nature of neural crest

cells and their ability to respond to immune-based therapies.

Role of the CSC Niche
Cancers comprise malignant cells together with inflammatory

cells, hematopoietic cells, associated stroma, and vasculature.

Although some CSCs conceivably do not require a dedicated

niche, others will be dependent on a specific set of extrinsic

interactions with their microenvironment. The niche effect on

tumor cells may be inductive or selective but will inevitably differ

for every tumor subtype. The perivascular niche of CSCs in brain

cancers is the best characterized to date (reviewed in Gilbertson

and Rich, 2007). In at least some glioblastomas, the relationship

between the CSC and local environment appears to be bidirec-

tional: the niche can alter the cellular fate of cancer cells and,

conversely, CSCs can modify their microenvironment (Heddles-

ton et al., 2009; Hjelmeland et al., 2011; Ricci-Vitiani et al., 2010;

Wang et al., 2010b). Indeed, CSCs in glioblastoma have been

demonstrated to secrete VEGF that directly supports the devel-

opment of the local vasculature (Gilbertson and Rich, 2007). In

the reverse direction, endothelial cells secrete nitric oxide that

induces Notch signaling in glioma cells (Charles et al., 2010). It

is relevant that CSCs but not non-CSCs in gliomas were shown

to be dependent on nitric oxide synthase-2 (Eyler et al., 2011).

Intriguingly, CSCs in glioblastomas can directly contribute to

the microvasculature through their transdifferentiation into

vascular cells (Ricci-Vitiani et al., 2010; Wang et al., 2010b),

underscoring the close relationship between brain CSCs and

their niche. The perivascular niche also serves a crucial role in

the case of cutaneous squamous cell carcinomas. CSCs in this

vascular niche establish an autocrine loop in which VEGF

promotes CSC activity by governing both the microenvironment

and intrinsic self-renewal pathways in CSCs (Beck et al., 2011).
Even in nonsolid tumors, microenvironmental cues from cyto-

kines, growth factors, or the immune-deficient strain play an

instructive role in determining the lineage fate of LSCs in a human

model of leukemia (Wei et al., 2008). Hence, there has been

considerable interest in targeting the putative CSC niche.

Cells within the tumor-associated stroma, such as myofibro-

blasts, are likely to have a prominent role in controlling CSC

homeostasis in many tumor types. In colorectal cancer, myofi-

broblasts secrete HGF that maintains CSC function by activating

the Wnt pathway. Interestingly, tumor cells with an active Wnt

canonical pathway were preferentially located adjacent to

stromal myofibroblasts (Vermeulen et al., 2010). Moreover,

HGF-mediated activation of the Wnt pathway could induce

CSC features and tumorigenic capacity in differentiated cancer

cells that otherwise had limited tumorigenic capacity. Although

these studies used spheroid cultures of primary colorectal

cancers rather than fresh patient specimens, they suggest that

the microenvironment can govern tumor cell ‘‘stemness.’’ Selec-

tive targeting of myofibroblasts or the HGF/c-MET pathway

would be predicted to interfere with the maintenance of CSCs

and to potentially prevent the generation of CSCs from the

non-CSC compartment. Notably, HGF is a potent inducer of

the EMT,which plays a role inmediating invasion andmetastasis.

Using a mouse model of mammary tumorigenesis, another

stromal factor, periostin, was shown to be essential for meta-

static colonization by governing interactions between CSCs

and their metastatic niche (Malanchi et al., 2012). Finally, the

perturbation of other stromal mesenchymal cells such as osteo-

progenitors candisrupt homeostasis, resulting inmyelodysplasia

and secondary leukemia (Raaijmakers et al., 2010). These find-

ings support the notion of niche-induced transformation and

suggest that selective targeting of the tumor microenvironment

may represent an alternative or adjunct to targeting the CSC.

Even though it will be extraordinarily difficult to delineate the

niche for human tumor CSCs and recapitulate the immune

system of cancer patients, it is crucial to use an orthotopic trans-

plantation assay to mimic the tumor environment as closely as

possible. The coinoculation of human stromal cells to create

a more appropriate environment for tumor development is also

a relevant parameter to consider. The site of injection has been

shown to directly influence the frequency of tumor-initiating

cells, underscoring the relevance of context. For example, the

frequency of tumor-initiating cells in ovarian tumors was highest

and most reliably read-out by the mammary fat pad assay rather

than the ovarian bursa (Stewart et al., 2011). However, the ques-

tions arise as to why thesemicroenvironments differentially influ-

ence cell tumorigenicity and whether the tumor-initiating cells

measured in the fat pad are in fact different from those assayed

in the ovarian bursa.

Pathways Regulating CSC Function
Elucidation of the pathways that regulate the maintenance and

survival of CSCs is important for the development of novel ther-

apies. Not surprisingly, many CSC subsets and normal tissue

stem cells seem to share core regulatory genes and develop-

mental pathways such as c-myc, Bmi-1, and the Hedgehog

(Hh), Notch, and Wnt pathways. Indeed, there is substantial

evidence that restricted progenitors can generate LSCs by the

reactivation of distinct self-renewal programs (Krivtsov et al.,
Cell Stem Cell 10, June 14, 2012 ª2012 Elsevier Inc. 721
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2006; Somervaille and Cleary, 2006; Somervaille et al., 2009). In

chronic myeloid leukemia (CML), Hh signaling is essential for the

maintenance and function of LSCs, and loss of Hh activity via

disruption of Smoothened led to depletion of LSCs in vivo and

prolonged animal survival (Dierks et al., 2008; Zhao et al.,

2009). In the transition to the blast cell crisis phase, the LSC

appears to originate from the granulocyte-macrophage progen-

itor cell through the acquired activation of the Wnt pathway

(Jamieson et al., 2004). The Wnt pathway also plays a prominent

role in the generation and self-renewal of LSCs in AML (Wang

et al., 2010c). Significantly, b-catenin activation endowed pro-

genitor cells with self-renewing capability but was not essential

for the renewal of normal adult HSCs. Parallel findings were

made for cutaneous CSCs versus normal skin stem cells in

mouse models of skin cancer (Malanchi et al., 2008). Hence,

the genetic programs governing self-renewal may be differen-

tially active in normal and malignant stem cells, thereby opening

therapeutic avenues.

Cell polarity andmetabolic pathways have recently been impli-

cated in governing the function of CSCs. TAZ, a transcriptional

effector in the Hippo pathway, was found to be frequently over-

expressed in high-grade breast cancers and to maintain the self-

renewing capacity of tumorigenic cells isolated from established

cell lines (Cordenonsi et al., 2011). A key link was established

between the Hippo pathway and the cell polarity gene Scribbled,

suggesting that cell polarity pathwaysmay impact CSC function.

It will be important to extend these studies to fresh tumor spec-

imens because cancer cell lines do not reflect in vivo tumor cell

behavior. In a metabolic context, glycine decarboxylase was

demonstrated to regulate the activity of tumor-propagating cells

in non-small cell lung cancer (Zhang et al., 2012). Aberrant

expression of glycine decarboxylase occurs in multiple cancer

types and leads to changes in glycine/serine metabolism. The

observation that CSC activity was dependent on glycine decar-

boxylase function provides a direct link between glycine metab-

olism and tumorigenesis. Although it is presumed that metabolic

processes play a crucial role in all tumor cells, it is intriguing that

they can selectively influence CSC function.

CSCs and Stemness Signatures
In spite of the heterogeneity exhibited by CSCs, recent gene

expression profiling studies have provided important insights

into the prognostic significance of CSCs. The molecular anal-

yses of functionally defined LSC populations from AML patients

led to the generation of a LSC signature that largely reflects

a self-renewal or stemness signature (Eppert et al., 2011). This

signature was found to be a strong predictor of poor prognosis,

with the implication that it may be possible to identify patients at

highest risk and to inform both the type and duration of their

therapy. In a murine model of AML, a conserved signal transduc-

tion network was unveiled among different LSCs (Gibbs et al.,

2012). Other recently derived ‘‘stem cell’’ signatures also exhibit

prognostic value. In colorectal cancer, a gene signature derived

for adult intestinal stem cells predicted relapse in patients

and identified EphB2-positive CSCs in tumors (Merlos-Suárez

et al., 2011). Moreover, an embryonic stem cell (ESC)- andmeta-

static cell-based stem cell signature was found to increase with

tumor grade and mortality in multiple tumor types (Shats et al.,

2011), while an ESC-like transcriptional program evident in
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diverse epithelial cancers predicted poor prognosis (Wong

et al., 2008). Preliminary data suggest that activation of this tran-

scriptional program in adult cells may lead to the generation of

CSCs. Another important player in ESCs, STAT3, was implicated

in maintaining the stemness of glioma CSCs (Guryanova et al.,

2011). Overall, these findings suggest that targeting self-renewal

pathways may represent one of the most effective strategies for

eradicating CSCs (see below).

Therapeutic Strategies to Target CSCs
From a clinical perspective, it is important to decipher mecha-

nisms of chemo- and radioresistance that operate in CSCs.

Quiescent CSCs are thought to be more resistant to therapies

while most CSCs seem to evade cytotoxic or radiotherapy

through active mechanisms. There is clinical evidence for a

subpopulation of chemotherapy-resistant ‘‘CSCs’’ in a number

of solid tumors including breast cancer (Li et al., 2008; Yu

et al., 2007). Furthermore, the analysis of breast tissue taken

from patients pre- and postendocrine therapy or chemotherapy

for gene expression changes revealed that residual breast

cancers may be enriched for tumor cells with CSC-like and

mesenchymal characteristics (Creighton et al., 2009). In patients

with del(5q) myelodysplastic syndrome, rare stem cells were

found to be refractory to therapeutic targeting in individuals in

remission, which probably accounts for relapse (Tehranchi

et al., 2010).

Different aspects of CSCs have been explored in recent

targeting strategies including quiescence, self-renewal path-

ways, radioresistance, and CSC-specific cell surface molecules.

Several reports, predominantly for hematopoietic malignancies,

indicate that CSCs can be selectively targeted without ablating

normal stem cell function. Stem cell maintenance pathways

are emerging as prime targets to eradicate CSCs. This ap-

proach, however, will be applicable only if the genetic programs

controlling self-renewal are differentially active in malignant

versus normal stem cells. It will be imperative to carefully eval-

uate the toxicity of anti-CSC agents on normal stem cell function

in preclinical models. There are little data on the use of differen-

tiation therapy in the context of CSCs but BMPsmay be effective

in inducing glial differentiation in glioblastomas and attenuating

tumor growth (Piccirillo et al., 2006). In all likelihood, given the

large number of mutations incurred by solid tumors such as

breast (Wood et al., 2007), it will be essential to target multiple

pathways that have been activated in CSCs in a given tumor.

Quiescence or dormancy is a property of at least some CSCs

such as those in leukemia. This feature has recently been ex-

ploited to provide a window for therapeutic intervention. Cyto-

kines such as G-CSF efficiently induced quiescent LSCs in

AML to enter the cell cycle, thus sensitizing them to different

chemotherapeutic agents (Saito et al., 2010). Indeed, combined

G-CSF with chemotherapy elicited profound apoptosis and

eradication of human AML stem cells in vivo. Inhibition of DNA

repair mechanisms may also be harnessed for eradication of

slow cycling LSCs (Viale et al., 2009). Although LSCs may reside

in amore quiescent state, emerging evidence suggests that solid

tumor CSCs follow a different pattern. In glioblastoma, CSCs are

actively self-renewing and cellular diversity is most probably

generated through symmetric cell division (Lathia et al., 2011b).

Despite the observation that mouse mammary CSCs appear to



Figure 4. Possible Mechanisms of Metastatic Relapse after Anticancer Therapy and Evaluation of Anti-CSC Treatments
(A) Late relapse can be accounted for by CSC dormancy. Here a dormant CSC (pink) that is resistant to both chemotherapy and targeted therapy has seeded to
distant organs. After a considerable latency period, reactivation of a CSCwill result in tumor growth and clinical emergence ofmetastases. Intriguingly, the clinical
appearance of metastases is often synchronous in breast cancer.
(B) One of the challenges facing the field is the clinical translation of anti-CSC therapies. Strategies will need to be deployed in clinical trials that enable
reproducible assays of CSC activity. In the scenario depicted here, biopsy material from a newly diagnosed breast cancer is subjected to a variety of assays to
measure CSCs, including functional assays and gene expression profiling, in parallel with the collection of blood samples and tumor imaging. The latter could
include nanoparticle-labeling of anti-CSC markers coupled with in vivo imaging. These assays can be repeated after neoadjuvant therapy to determine whether
the therapy has elicited a response against putative CSCs.
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undergo more frequent symmetrical division than normal mam-

mary stem cells in mammosphere cultures (Cicalese et al.,

2009), it is tempting to speculate that the long period between

primary tumor detection and relapse in patients with ER-positive

breast cancer (up to 20 years) may reflect a dormant stem cell

subset (Figure 4).

Of the key developmental pathways frequently deregulated in

CSCs, considerable progress has been made in the case of

targeted therapies against Notch and Hh, but the development

of Wnt inhibitors has proven difficult. Significantly, pharmaco-

logic inhibition of the Hh pathway in human and mouse leuke-

mias inhibited the expansion of imatinib-resistant CML (Dierks

et al., 2008; Zhao et al., 2009). These findings have profound

implications because they suggest that treatment of imatinib-

resistant recurrence in CML patients may be achievable via

targeting the Hh pathway. However, because Hh pathway

activity is required for maintenance of normal HSCs, it will be

crucial to determine the effects of these anticancer agents on

all aspects of normal HSC function. Pharmacologic or siRNA-
mediated inhibition of Hh signaling in CSCs in glioblastoma,

medulloblastoma, breast, pancreatic adenocarcinoma, andmul-

tiple myeloma has resulted in markedly reduced tumorigenic

potential and, in some cases, ameliorated metastasis (reviewed

inMerchant andMatsui, 2010). Hh ligandsmay play a dual role in

the maintenance of CSCs and their niche, given the high stromal

expression of these ligands. In terms of Notch signaling, CSCs in

brain cancer were rendered more sensitive to radiation by

blockade of this pathway (Wang et al., 2010a). Notably, Notch

pathway inhibition via a neutralizing antibody against the DLL4

ligand was effective in reducing CSC numbers in diverse solid

tumor xenografts (Hoey et al., 2009), whereas inhibition of

Notch-4 expressed within the CSC subset largely ablated breast

tumor growth (Harrison et al., 2010). A combination of Notch and

Hh signaling may drive the self-renewal of CSCs in certain

tumors such as undifferentiated pleomorphic sarcomas (Wang

et al., 2012). Other self-renewal programs such as those regu-

lated by Nodal and Activin, factors important for ESC mainte-

nance, are also candidate targets. Pharmacologic inhibition of
Cell Stem Cell 10, June 14, 2012 ª2012 Elsevier Inc. 723
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the Nodal/Activin pathway sensitized CSCs to gemcitabine in

a human xenograft model and significantly prolonged survival

when combined with a stroma-targeting Hh inhibitor to improve

drug delivery (Lonardo et al., 2011).

There has been considerable interest in the development of

monoclonal antibodies to target CSCs. Markers differentially

expressed between normal stem cells and LSCs have been

utilized to specifically target LSCs in human AML, including

CD44 (Jin et al., 2006), IL3R (Jin et al., 2009), and the immuno-

globulin mucin TIM-3 (Kikushige et al., 2010). In each case, treat-

ment with antibodies against these cell surface molecules

dramatically decreased leukemogenicity and eradicated LSCs

as assessed by AML reconstitution inmice. Furthermore, the tar-

geting of CD44 provides a paradigm for targeting CSC-niche

interactions. Blocking antibodies against CD47, which serves

as a ‘‘don’t eat me’’ signal to tumor macrophages, may also be

effective in eliminating LSCs in ALL that express higher levels

of this antigen than their normal counterpart (Chao et al., 2011).

Several studies have highlighted the radioresistance of CSCs

in solid tumors, particularly in brain cancer. CSCs in fresh glio-

blastoma specimens or glioma xenografts are more resistant

to ionizing irradiation (IR) in vivo than non-CSCs because of

enhanced DNA repair pathways operating in CSCs (reviewed

in Gilbertson and Rich, 2007). In medulloblastoma, targeting of

cells in the perivascular region with Akt inhibitors enhanced

responsiveness to radiation (Hambardzumyan et al., 2008), indi-

cating that the CSC niche itself may serve as a therapeutic

target. Interestingly, the DNA damage checkpoint response

and radioresistance of CSCs in glioma is regulated in part by

the adhesion molecule L1CAM through the activation of the

ATM kinase pathway (Cheng et al., 2011). Similarly, radioresist-

ance has been implicated in breast CSC-like populations that

are thought to repair DNA damage more efficiently. Inhibition

of the Akt pathway led to the selective targeting of CSCs by

blocking canonical WNT signaling and repair of DNA damage

in these cells, thus sensitizing them to ionizing radiation (Zhang

et al., 2010). In some breast tumors, lower ROS levels were found

in certain CSC subsets compared with their nontumorigenic

counterparts, perhaps conferring resistance to ionizing radiation

(Diehn et al., 2009).

Other therapeutic targets currently being pursued in the

context of CSCs include growth factor receptor signaling

networks. In pancreatic cancer, inhibition of the c-MET tyrosine

kinase receptor diminished the CSC population and prevented

metastasis, either alone or in combination with gemcitabine

(Li et al., 2011). These inhibitors may also prove efficacious in

colorectal cancer (Vermeulen et al., 2010). Recent studies on

squamous carcinoma revealed that selective inhibition of VEGF

signaling reduced CSC activity and led to tumor regression

(Beck et al., 2011), implying that it may be necessary to target

both CSCs and the stroma in which they reside. Cytokine path-

ways such as IL-8/CXCR1 are also emerging as important

modulators of CSC activity. Repertaxin-mediated inhibition of

this pathway reduced breast tumorigenesis and metastasis but

only in combination with chemotherapy (Ginestier et al., 2010).

In the search for novel drug discovery platforms, high

throughput screens using small molecule, miRNA, or siRNA

libraries have become an area of increasing focus. The applica-

tion of a high throughput screen to target breast CSCs revealed
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a class of compounds that had previously not been implicated as

cancer drugs: salinomycin-reduced tumor growth and lung

metastases, possibly via direct targeting of breast CSCs

(Gupta et al., 2009). An analogous screen to identify small

molecule inhibitors of LSCs in AML led to the recent discovery

of kinetic riboside (McDermott et al., 2012). MicroRNA-based

therapies are emerging as novel modes of therapeutic

intervention. Notably, systemic delivery of miR-34a, which is

expressed at low levels in prostate CSCs, inhibited metastasis

of prostate cancer cells and prolonged survival of mice (Liu

et al., 2011). It is relevant that miR-34a targets CD44, a cell

surface marker used to enrich prostate CSCs. Further large-

scale screens should be enabled by the development of

improved surrogate in vitro culture assays that maintain the

integrity of primary tumor-derived CSCs, rather than the use of

cell lines. Ultimately, the testing of all putative anti-CSC agents

requires preclinical mouse models containing early passage

xenografts (or leukemic cells) to obviate any changes that occur

upon prolonged passage.

Evolution of CSCs and Tumor Cell ‘‘Plasticity’’
It is important to note that the CSC and clonal evolution concepts

are not mutually exclusive. Two recent papers have highlighted

a high degree of convergence between these models in

leukemia. LSCs in acute lymphoblastic leukemia harboring the

ETV6-Runx1 translocation were shown to be genetically diverse,

exhibiting different degrees of self-renewing and leukemogenic

activity in vivo (Anderson et al., 2011). This study provides

evidence that CSCs within individual cancer patients can be

genetically heterogeneous, presumably accounting for their

variable biological properties such as self-renewal potential.

Moreover, in BCR-ABL acute lymphoblastic leukemia patients,

the leukemia-initiating population displayed profound genetic

diversity, with multiple genetically distinct tumor-initiating sub-

clones at diagnosis (Notta et al., 2011). Although it has not yet

been determined whether these tumor-initiating cells follow the

CSC model, it seems likely. In parallel with the other study,

a nonlinear, branching model of tumor evolution was identified.

Taken together, these studies illustrate the importance of com-

plementing functional assays of cellular heterogeneity with

genetic fingerprinting of the different subsets.

In addition to genetic variegation, tumor cell plasticity may

contribute to phenotypic and functional heterogeneity. Many

cell surface markers on melanoma cells are reversibly ex-

pressed, such that phenotypically diverse melanoma cells can

recapitulate tumor heterogeneity of the parent tumor, irrespec-

tive of whether they arose from marker-positive or marker-

negative cells (Quintana et al., 2010). Regulatory genes may

also be transiently or stochastically expressed. JARID1B-

mediated histone demethylationwas demonstrated to be revers-

ibly expressed in melanoma cell lines and to be essential for the

maintenance of tumorigenic activity (Roesch et al., 2010). Slow

cycling JARID1B-expressing cells could arise from a negative

population even when initiated from a single cell, suggesting

that a nontumorigenic cell may reacquire stem cell-like proper-

ties. In addition, cells within breast cancer cell lines were found

to transition stochastically between states to establish a stable

phenotypic equilibrium (Gupta et al., 2011), and CSC-like cells

could arise de novo from transformed breast epithelial cells
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(Chaffer et al., 2011). These data suggest that cellular intercon-

version might occur in a stochastic manner.

CSC function may be induced by specific microenvironmental

cues from growth factors or in stress-related contexts. For

example, HGF has been implicated in the reprogramming of

non-CSCs toward a CSC-like phenotype in colon cancer (Ver-

meulen et al., 2010). Furthermore, induction of an EMT in immor-

talized human breast epithelial cells can endow them with stem

cell-like properties and potentially promote the generation of

CSCs from tumor cells (Mani et al., 2008). HIF2a, induced as

a cellular response to a hypoxic microenvironment, has been

implicated in the maintenance of CSCs in glioblastoma and

may promote the interconversion of nonstem (CD133�) to

CSC-like cells (Heddleston et al., 2009; Li et al., 2009). The re-

versible state, in its various guises discussed above, has pro-

found implications for the treatment and management of

patients. Moreover, therapeutic resistance itself may potentially

reflect a reversible state (Sharma et al., 2010).

Finally, it should be noted that many of the studies described in

this section used cell lines or cultured primary cells, and that at

present there is no evidence for dedifferentiation occurring in

primary tumors in vivo. However, it is noteworthy that dedifferen-

tiation can occur at a low frequency in normal tissues such as the

testis (Barroca et al., 2009). Because definitive cell surface

markers are lacking for most stem cells and their descendants,

at least in solid organs, it is difficult to study cellular plasticity.

Further elucidation of differentiation hierarchies may eventually

enable ‘‘plasticity’’ and interconversion of cells between nontu-

morigenic and tumorigenic states to be formally tested by clonal

cell tracking analysis in vivo.

Conclusions
An emerging consensus in the field is that ‘‘cellular state’’ rather

than phenotype is important when defining a CSC. The unifor-

mity between LSC signatures that has emerged across diverse

samples, despite interpatient variation in CSCmarkers, confirms

that current phenotypic markers are not a reliable measure of

CSCs. One corollary of high interpatient variation is that an

extensive range of markers will need to be validated in a large

number of patient samples, perhaps even necessitating func-

tional assessment for each patient. Indeed, the purification of

CSCs using a robust set of markers, even from a given tumor

subtype, remains a major challenge for the field. If CSCs exist

in a dynamic state in certain tumors, then this will inevitably

confound their prospective isolation. The existence of multiple

CSC pools or evolving intratumoral clones in individual tumors

demands the monitoring of these populations in pre- and

posttreatment samples by multicolor flow cytometry or high-

resolution molecular imaging to identify residual cells that might

drive relapse (Figure 4). The derivation of robust signatures that

distinguish CSCs from normal stem cells may also facilitate the

evaluation of clinically relevant residual cells.

The clinical applicability of the CSC concept to predicting

patient response remains a fundamental question. Most putative

anti-CSC therapies to date have attenuated rather than eradi-

cated solid tumors in preclinical models, and efficacious

response often required concomitant chemotherapy. In order

to improve the evaluation of efficacy of anti-CSC agents in clin-

ical trials, there is a pressing need to optimize assays for CSC
targeting and measurement of tumor response. In standard

clinical trials, tumor response criteria depend on measurements

of tumor size, which largely reflects tumor response in the non-

CSC tumor bulk. Specific response criteria that provide a read-

out of response to anti-CSC agents in clinical trials remain

elusive (Figure 4). Tumor sphere-forming assays and measure-

ment of CSC marker expression are unlikely to provide robust

surrogate markers in a clinical setting. The incorporation of other

measures such as self-renewal activity into therapeutic strate-

gies will almost certainly be required. We speculate that for

most tumor types it will still prove necessary to test novel anti-

CSC therapies in combination with tumor debulking (non-CSC)

therapy, such as conventional chemotherapy.
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