Note
 Upper bounds for the k-subdomination number of graphs

Li-ying Kang ${ }^{\text {a }}$, Chuangyin Dang ${ }^{\text {b }}$, Mao-cheng Caic ${ }^{\text {c }, *, 1}$, Erfang Shan ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Shanghai University, Shanghai 200436, China
${ }^{\mathrm{b}}$ Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Hong Kong
${ }^{\mathrm{c}}$ Institute of Systems Science, Academia Sinica, Beijing 100080, China

Received 26 January 1999; revised 29 July 1999; accepted 2 April 2001

Abstract

For a positive integer k, a k-subdominating function of $G=(V, E)$ is a function $f: V \rightarrow$ $\{-1,1\}$ such that the sum of the function values, taken over closed neighborhoods of vertices, is at least one for at least k vertices of G. The sum of the function values taken over all vertices is called the aggregate of f and the minimum aggregate among all k-subdominating functions of G is the k-subdomination number $\gamma_{k s}(G)$. In this paper, we solve a conjecture proposed in (Ars. Combin 43 (1996) 235), which determines a sharp upper bound on $\gamma_{k s}(G)$ for trees if $k>|V| / 2$ and give an upper bound on $\gamma_{k s}$ for connected graphs. (c) 2002 Elsevier Science B.V. All rights reserved.

Keywords: Graph; Tree; Open and closed neighborhoods; k-Subdomination number

1. Introduction

All graphs under consideration are simple. For a graph $G=(V, E)$ and vertex $v \in V$, let $N(v)=\{u \in V: u v \in E\}$ and $N[v]=\{v\} \cup N(v)$ be the open and closed neighborhoods of v in G, respectively. For a subset A of V, we set $N_{A}(v)=N(v) \cap A$ and $d_{A}(v)=\left|N_{A}(v)\right|$. For $k \in Z^{+}$, a k-subdominating function $(k \mathrm{SF})$ of G is a function $f: V \rightarrow\{-1,1\}$ such that $f[v]=\sum_{u \in N[v]} f(u) \geqslant 1$ for at least k vertices v of G. The aggregate $\operatorname{ag}(f)$ of such a function is defined by $\operatorname{ag}(f)=\sum_{v \in V} f(v)$ and the k-subdomination number $\gamma_{k s}(G)$ by $\gamma_{k s}(G)=\min \{\operatorname{ag}(f): f$ is k SF of $G\}$. The concept of k-subdominatoin number was introduced and first studied by Cockayne and Mynhardt [2]. In the special cases where $k=|V|$ and $k=\lceil|V| / 2\rceil, \gamma_{k s}$ is respectively the signed domination number γ_{s} [3] and the majority domination number $\gamma_{\text {maj }}$ [1].

[^0]In [2], Cockayne et al. established a sharp lower bound on $\gamma_{k s}$ for trees. Moreover, they also gave a sharp upper bound on $\gamma_{k s}$ for trees if $k \leqslant|V| / 2$, and proposed the following two conjectures:

Conjecture 1. For any n-vertex tree T and any k with $n / 2<k \leqslant n, \gamma_{k s}(T) \leqslant 2 k-n$.
Conjecture 2. For any connected graph G of order n and any k with $n / 2<k \leqslant n$, $\gamma_{k s}(G) \leqslant 2 k-n$.

In this paper, we show that Conjecture 1 is true and Conjecture 2 is incorrect, and give an upper bound for the k-subdomination number of graphs.

2. An upper bound on the \boldsymbol{k}-subdomination number for trees

Alon (mentioned in [2]) established the following upper bounds on $\gamma_{k s}$ for a connected graph.

Theorem A (Cockayne and Mynhardt [2]).
For any connected graph G of order n,

$$
\gamma_{\text {maj }}(G) \leqslant \begin{cases}1 & \text { if } n \text { is odd }, \\ 2 & \text { if } n \text { is even. }\end{cases}
$$

And Henning and Hind [4] proved the following:
Theorem B (Henning and Hind [4]).
If T is a tree of order $n, k=\lceil(n+1) / 2\rceil$, then $\gamma_{k s}(T) \leqslant 2$.
In order to prove Conjecture 1, we need some definitions from [2]. A leaf of a tree is a vertex of degree one and a remote vertex of a tree is a vertex having exactly one non-leaf neighbor. We write L and R for the sets of leaves and remote vertices of T, respectively.

Theorem 1. For any n-vertex tree T and k with $n / 2<k \leqslant n, \gamma_{k s}(T) \leqslant 2 k-n$.
Proof. To prove the theorem, by the definition of $\gamma_{k s}$, it suffices to show that there exists a k-subdominating function f with $\operatorname{ag}(f) \leqslant 2 k-n$.

First we may suppose $k>\lceil(n+1) / 2\rceil$ by Theorem B and $k<n$ for $f(v)=1$ for all $v \in V$ is an n-subdominating function with $\operatorname{ag}(f)=n$.

Now we apply induction on the number of vertices of T. Note that the assertion is true for $n \leqslant 4$, so suppose that $n \geqslant 5$ and the theorem holds for smaller values of n. Suppose furthermore T is not a star since for star T with leaves $v_{1}, v_{2}, \ldots, v_{n-1}$ there
exists a k-subdominating function

$$
f(x)= \begin{cases}-1 & \text { for } x=v_{i}, i=1, \ldots, n-k \\ 1 & \text { otherwise }\end{cases}
$$

with $\operatorname{ag}(f)=2 k-n$. Thus $|R| \geqslant 2$.
Suppose that there exists a vertex $u \in R$ such that $d(u)$ is even, and that v^{\prime} is a leaf adjacent to u. Then for the subtree $T_{1}=T-v^{\prime}$ and k with $(n-1) / 2<k \leqslant n-1$, by the induction hypothesis, there exists a k-subdominating function f_{1} on T_{1} with $\operatorname{ag}\left(f_{1}\right) \leqslant 2 k-(n-1)=2 k-n+1$. We define

$$
f(x)= \begin{cases}-1 & \text { if } x=v^{\prime} \\ f_{1}(x) & \text { otherwise }\end{cases}
$$

Then f is a k-subdominating function on T. Indeed, if $f_{1}[u]<1$ in T_{1}, f is a k-subdominating function on T. And if $f_{1}[u] \geqslant 1$ in T_{1}, then $f_{1}[u] \geqslant 2$ as $d(u)$ is even, hence f is also a k-subdominating function on T. Clearly, $\operatorname{ag}(f)=\operatorname{ag}\left(f_{1}\right)-1 \leqslant 2 k-n$.

Hence we may suppose that $d(u)$ is odd for all $u \in R$, hence $d(u) \geqslant 3$ as u is not a leaf of T. Take a $u^{\prime} \in R$, write $d\left(u^{\prime}\right)=2 s+1$ and $N\left(u^{\prime}\right)=\left\{v_{1}, v_{2}, \ldots, v_{2 s}, v_{2 s+1}\right\}$, where $v_{2 s+1}$ is the unique non-leaf neighbor of u^{\prime}. We separate three cases according to the values of k.

Case 1: $n-s \leqslant k \leqslant n-1$.
Define

$$
f(x)= \begin{cases}-1 & \text { if } x=v_{i}, i=1,2, \ldots, n-k \\ 1 & \text { otherwise }\end{cases}
$$

Then it is easily seen that $f[x] \geqslant 1$ if $x \neq v_{i}, i=1,2, \ldots, n-k$, thus f is a k subdominating function on T with $\operatorname{ag}(f)=2 k-n$.

Case 2: $(n+3) / 2<k \leqslant n-s-1(\Rightarrow n \geqslant 8$ as $s \geqslant 1)$.
Put $k_{1}=k-s-2$ and $n_{1}=n-2 s-1$, then $\frac{1}{2} n_{1}<k_{1}<n_{1}$. Now consider the subtree $T_{1}=T-\left(N\left[u^{\prime}\right] \backslash\left\{v_{2 s+1}\right\}\right)$ of order $n_{1}<n$. By the induction hypothesis, there exists a k_{1}-subdominating function f_{1} on T_{1} with $\operatorname{ag}\left(f_{1}\right) \leqslant 2 k_{1}-n_{1}=2 k-n-3$. Define

$$
f(x)= \begin{cases}f(x) & \text { if } x \in V\left(T_{1}\right) \\ -1 & \text { if } x=v_{i}, i=1,2, \ldots, s-1 \\ 1 & \text { otherwise }\end{cases}
$$

Clearly, f is a k-subdominating function on T with $\operatorname{ag}(f)=\operatorname{ag}\left(f_{1}\right)+3 \leqslant 2 k-n$.
Case 3: $\lceil(n+1) / 2\rceil<k \leqslant(n+3) / 2$.
Then $n=2 k-3$. To complete the proof, it suffices to show that there exists a k-subdominating function f on T with $\operatorname{ag}(f) \leqslant 2 k-n=3$. For this purpose, among all partitions $\left\{W_{1}, W_{2}\right\}$ of V with $\| W_{1}\left|-\left|W_{2}\right| \leqslant 1\right.$, called equipartitions, choose one such that the number of edges between W_{1} and W_{2} is minimum, assume $\left|W_{2}\right|=k-1$ and $\left|W_{1}\right|=k-2$. Define a function $\delta(v)=d_{W_{i}}(v)-d_{W_{3-i}}(v)$ for every $v \in W_{i}$, let G_{i} denote the subgraph induced by W_{i}, and let L_{i} and S_{i} denote the sets of vertices $v \in W_{i}$ satisfying $d_{W_{i}}(v)=1$ and $\left|N(v) \cap L_{i}\right| \geqslant\lceil\delta(v) / 2\rceil$, respectively, $i=1,2$.

Claim 1. $\delta(v)>0$ for all $v \in V$ except at most one $v^{*} \in W_{2}$ with $\delta\left(v^{*}\right)=0$.
First $\delta(v) \geqslant 0$ for all $v \in W_{2}$. Otherwise, moving a $v \in W_{2}$ with $\delta(v)<0$ to W_{1}, we obtain a new equipartition with fewer edges between its parts. Also, $\delta(v)>0$ for all $v \in W_{1}$. Otherwise, taking $u \in W_{1}$ with $\delta(u) \leqslant 0$, we obtain a k-subdominating function of $\operatorname{ag}(f)=2 k-n$ by making u and all of W_{2} positive, all remaining vertices negative, as $f[u]=1-\delta(u) \geqslant 1$.

Furthermore, if there exist two distinct vertices $v_{1}, v_{2} \in W_{2}$ with $\delta\left(v_{1}\right)=\delta\left(v_{2}\right)=0$, then we have a k-subdominating function of $\operatorname{ag}(f)=3$ by letting the positive set of f consist of v_{1}, v_{2} and all of W_{1}.

Claim 2. (a) $d_{W_{i}}(v) \geqslant 1$ for all $v \in W_{i}, i=1,2$.
(b) $v \in L$ for all $v \in L_{i}, i=1,2$, except at most one $v^{*} \in W_{2}$ with $\delta\left(v^{*}\right)=0$ $\left(d_{W_{2}}\left(v^{*}\right)=1, d\left(v^{*}\right)=2\right)$.
(c) $\left|L_{i}\right| \geqslant 2, i=1,2$.

Indeed, $d_{W_{i}}(v) \geqslant\lceil d(v) / 2\rceil \geqslant 1$ and by Claim 1 , for all $v \in W_{i}$ with $d_{W_{i}}(v)=1$ except $v^{*}, d(v)=2 d_{W_{i}}(v)-\delta(v) \leqslant 1$, yielding (a) and (b). (c) follows from G_{i} being acyclic.

Claim 3. $S_{i} \neq \emptyset, i=1,2$.
To see this, let $P=v_{1} v_{2} \cdots v_{l+1}$ be a longest path in G_{i}. Then obviously $l \geqslant 1$ by Claim 2(a). Moreover, $v_{l} \in S_{i}$. Otherwise, there exists a path $v_{l} v^{\prime} v^{\prime \prime}$ in G_{i} with $v^{\prime} \neq v_{l-1}$, and $P^{\prime}=v_{1} v_{2} \cdots v_{l} v^{\prime} v^{\prime \prime}$ is a path longer than P.

If $\lceil\delta(u) / 2\rceil \leqslant\lfloor\delta(v) / 2\rfloor$ for some $u \in S_{1}$ and some $v \in S_{2}$, then $\lceil\delta(u) / 2\rceil \leqslant\left|N(u) \cap L_{1}\right|$ and $\lceil\delta(u) / 2\rceil \leqslant\left|N(v) \cap L_{2}\right|$ by the definition of S_{i}. Let $Q_{1} \subseteq N(u) \cap L_{1}$ and $Q_{2} \subseteq$ $N(v) \cap L_{2}$ be sets of $\lceil\delta(u) / 2\rceil$ vertices, respectively. By Claim 2(b), $w \in L$ for all vertices $w \in Q_{1} \cup\left(Q_{2}-\left\{v^{*}\right\}\right)$. Define

$$
f(x)= \begin{cases}-1 & \text { if } x \in Q_{2} \cup W_{1} \backslash\left(\{u\} \cup Q_{1}\right), \\ 1 & \text { otherwise } .\end{cases}
$$

Clearly, f is a k-subdominating function on T with $\operatorname{ag}(f)=3$ if $f[u] \geqslant 1$. And if $f[u] \leqslant 0$, then the exceptional vertex $v^{*} \in N(u) \cap Q_{2}$, implying $f\left[v^{*}\right]=f(u)+f(v)-$ $1=1$ by Claim 2(b), which guarantees that f is still a k-subdominating function with $\operatorname{ag}(f)=3$.

So, suppose $\lceil\delta(u) / 2\rceil>\lfloor\delta(v) / 2\rfloor$ for all $u \in S_{1}$ and all $v \in S_{2}$. Thus, for all $u \in S_{1}$ and all $v \in S_{2},\lceil\delta(u) / 2\rceil \geqslant\lfloor\delta(v) / 2\rfloor+1$, so that $\lceil\delta(u) / 2\rceil \geqslant\lceil\delta(v) / 2\rceil$. Let $u \in S_{1}$ and let $v \in S_{2}$. Then $\left|N(u) \cap L_{1}\right| \geqslant\lceil\delta(v) / 2\rceil>\lceil\delta(v) / 2\rceil-1$ and $\left|N(v) \cap L_{2}\right| \geqslant\lceil\delta(v) / 2\rceil$. Let $Q_{1} \subseteq N(u) \cap L_{1}$ and $Q_{2} \subseteq N(v) \cap L_{2}$ be sets of $\lceil\delta(v) / 2\rceil-1$ and $\lceil\delta(v) / 2\rceil$ vertices, respectively, and define

$$
f(x)= \begin{cases}-1 & \text { if } x \in Q_{1} \cup W_{2} \backslash\left(\{v\} \cup Q_{2}\right), \\ 1 & \text { otherwise } .\end{cases}
$$

As before, it follows that f is a k-subdominating function with $\operatorname{ag}(f)=3$. Theorem 1 is proved.

Note that $\gamma_{k s}\left(K_{1, n-1}\right)=2 k-n$ if $k>\frac{1}{2} n$. The bound established in Theorem 1 is sharp indeed.

3. An upper bound on the \boldsymbol{k}-subdomination number for graphs

Conjecture 2 is shown in [4] to be false in the special case when $k=\lceil(n+1) / 2\rceil$. The conjecture has yet to be settled when $\lceil(n+1) / 2\rceil<k \leqslant n$. In this section, we prove the conjecture in the special case when $n-k+1$ divides k. For this purpose, we shall need the following result.

Theorem 2. For any connected graph G of order n and any k with $\frac{1}{2} n<k \leqslant n$,

$$
\gamma_{k s}(G) \leqslant 2\left\lceil\frac{k}{n-k+1}\right\rceil(n-k+1)-n .
$$

Proof. Among all partitions $\left\{A_{11}^{\prime}, A_{12}^{\prime}\right\}$ of $V(G)$ with $\left|A_{11}^{\prime}\right|=k$ and $\left|A_{12}^{\prime}\right|=n-k$, let $\left\{A_{11}, A_{12}\right\}$ be one such that the number of edges between A_{11} and A_{12} is minimum. Note that for any $u \in A_{11}$ and $v \in A_{12}$, if $u v \notin E(G)$, then

$$
\begin{equation*}
d_{A_{11}}(u)+d_{A_{12}}(v) \geqslant d_{A_{12}}(u)+d_{A_{11}}(v) . \tag{1}
\end{equation*}
$$

And if $u v \in E(G)$, then

$$
\begin{equation*}
d_{A_{11}}(u)+d_{A_{12}}(v) \geqslant d_{A_{12}}(u)+d_{A_{11}}(v)-2 . \tag{2}
\end{equation*}
$$

Otherwise the exchange of u and v yields a partition with fewer edges between its parts.

If $d_{A_{11}}(u) \geqslant d_{A_{12}}(u)$ for each $u \in A_{11}$, we define

$$
f(x)= \begin{cases}1 & \text { if } x \in A_{11} \\ -1 & \text { if } x \in A_{12}\end{cases}
$$

Then clearly f is a k-subdominating function on G with $\operatorname{ag}(f) \leqslant 2 k-n$. Thus we may assume there exists a vertex $u_{1} \in A_{11}$ with $d_{A_{11}}\left(u_{1}\right)<d_{A_{12}}\left(u_{1}\right)$. Then for any $v \in A_{12}$, using (1) and (2), we have

$$
\begin{array}{ll}
d_{A_{12}}(v)>d_{A_{11}}(v) & \text { if } v \notin N\left(u_{1}\right), \\
d_{A_{12}}(v) \geqslant d_{A_{11}}(v)-1 & \text { if } v \in N\left(u_{1}\right) .
\end{array}
$$

Among all partitions $\left\{A_{21}^{\prime}, A_{22}^{\prime}\right\}$ of $A_{11}-\left\{u_{1}\right\}$ with $\left|A_{21}^{\prime}\right|=2 k-n-1$ and $\left|A_{22}^{\prime}\right|=n-k$, let $\left\{A_{21}, A_{22}\right\}$ be one such that the number of edges joining vertices in A_{21} to vertices in A_{22} is minimum. If $d_{A_{21}}(u) \geqslant d_{A_{22}}(u)$ for each $u \in A_{21}$, define

$$
f(x)= \begin{cases}1 & \text { if } x \in A_{21} \cup A_{12} \cup\left\{u_{1}\right\} \\ -1 & \text { if } x \in A_{22}\end{cases}
$$

It is easily seen that f is a k-subdominating function of $\operatorname{ag}(f) \leqslant 2 k-n$, hence $\gamma_{k s}(G) \leqslant 2 k-n$. So we may assume there exists $u_{2} \in A_{21}$ such that $d_{A_{21}}\left(u_{2}\right)<d_{A_{22}}\left(u_{2}\right)$. For any $v \in A_{22}$, by the choice of $\left\{A_{21}, A_{22}\right\}$, similarly we have

$$
\begin{array}{ll}
d_{A_{22}}(v)>d_{A_{21}}(v) & \text { if } v \notin N\left(u_{2}\right), \\
d_{A_{22}}(v) \geqslant d_{A_{21}}(v)-1 & \text { if } v \in N\left(u_{2}\right) .
\end{array}
$$

For $A_{21}-\left\{u_{2}\right\}$, a similar argument shows that either $\gamma_{k s}(G) \leqslant 2 k-n$ or there exists $u_{i} \in A_{i 1}, i=1,2, \ldots,\lceil k /(n-k+1)\rceil$, such that $d_{A_{i 1}}\left(u_{i}\right)<d_{A_{i 2}}\left(u_{i}\right)$ and

$$
\begin{array}{ll}
d_{A_{12}}(v)>d_{A_{i 1}}(v) & \text { if } v \notin N\left(u_{i}\right), \\
d_{A_{i 2}}(v) \geqslant d_{A_{i 1}}(v)-1 & \text { if } v \in N\left(u_{i}\right) .
\end{array}
$$

Define

$$
f(u)= \begin{cases}1 & \text { if } u \in A_{12} \cup A_{22} \cup \ldots \cup A_{\lceil k /(n-k+1)\rceil 2} \cup\left\{u_{1}, u_{2}, \ldots, u_{\lceil k /(n-k+1)\rceil}\right\}, \\ -1 & \text { otherwise. }\end{cases}
$$

f is a k-subdominating function on G with

$$
\operatorname{ag}(f) \leqslant 2\lceil k /(n-k+1)\rceil(n-k+1)-n .
$$

The proof of Theorem 2 is complete.
Corollary 1. Let G be a connected graph of order n and k an integer with $n / 2<k \leqslant n$. If $n-k+1 \mid k$, then $\gamma_{k s}(G) \leqslant 2 k-n$.

Thus Conjecture 2 is true if $n-k+1 \mid k$.

Acknowledgements

The authors would like to thank Professor F. Tian for his help, Professor J. Hattingh and three anonymous referees for very helpful comments.

References

[1] I. Broere, J.H. Hattingh, M.A. Henning, A.A. McRae, Majority domination in graphs, Discrete Math. 138 (1995) 125-135.
[2] E.J. Cockayne, C.M. Mynhardt, On a generalisation of signed dominating function of graphs, Ars Combin. 43 (1996) 235-245.
[3] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, P.J. Slater, Signed domination in graphs, in: Y. Alavi, A. Schwenk (Eds.), Graph Theory, Combinatorics and Applications, Wiley, New York, 1995, pp. 311-322.
[4] M.A. Henning, H.R. Hind, Strict majority functions on graphs, J. Graph Theory 28 (1998) 49-56.

[^0]: * Corresponding author.

 E-mail address: caimc@staff.iss.ac.cn (M.-c. Cai).
 ${ }^{1}$ Research partially supported by the National Natural Science Foundation of China.

