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Abstract

For a positive integer k, a k-subdominating function of G=(V; E) is a function f :V →
{−1; 1} such that the sum of the function values, taken over closed neighborhoods of vertices,
is at least one for at least k vertices of G. The sum of the function values taken over all vertices
is called the aggregate of f and the minimum aggregate among all k-subdominating functions
of G is the k-subdomination number �ks(G). In this paper, we solve a conjecture proposed in
(Ars. Combin 43 (1996) 235), which determines a sharp upper bound on �ks(G) for trees if
k ¿ |V |=2 and give an upper bound on �ks for connected graphs. c© 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

All graphs under consideration are simple. For a graph G=(V; E) and vertex v∈V ,
let N (v)= {u∈V : uv∈E} and N [v] = {v} ∪ N (v) be the open and closed neighbor-
hoods of v in G, respectively. For a subset A of V , we set NA(v)=N (v) ∩ A and
dA(v)= |NA(v)|. For k ∈Z+, a k-subdominating function (kSF) of G is a function
f :V → {−1; 1} such that f[v] =

∑
u∈N [v] f(u)¿ 1 for at least k vertices v of G.

The aggregate ag(f) of such a function is deBned by ag(f)=
∑

v∈V f(v) and the
k-subdomination number �ks(G) by �ks(G)=min{ag(f): f is kSF of G}. The concept
of k-subdominatoin number was introduced and Brst studied by Cockayne and Myn-
hardt [2]. In the special cases where k = |V | and k = 	|V |=2
, �ks is respectively the
signed domination number �s [3] and the majority domination number �maj [1].
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In [2], Cockayne et al. established a sharp lower bound on �ks for trees. Moreover,
they also gave a sharp upper bound on �ks for trees if k6 |V |=2, and proposed the
following two conjectures:

Conjecture 1. For any n-vertex tree T and any k with n=2¡k6 n; �ks(T )6 2k − n.

Conjecture 2. For any connected graph G of order n and any k with n=2¡k6 n;
�ks(G)6 2k − n.

In this paper, we show that Conjecture 1 is true and Conjecture 2 is incorrect, and
give an upper bound for the k-subdomination number of graphs.

2. An upper bound on the k-subdomination number for trees

Alon (mentioned in [2]) established the following upper bounds on �ks for a con-
nected graph.

Theorem A (Cockayne and Mynhardt [2]).
For any connected graph G of order n;

�maj(G)6

{
1 if n is odd;

2 if n is even:

And Henning and Hind [4] proved the following:

Theorem B (Henning and Hind [4]).
If T is a tree of order n; k = 	(n+ 1)=2
; then �ks(T )6 2.

In order to prove Conjecture 1, we need some deBnitions from [2]. A leaf of a tree
is a vertex of degree one and a remote vertex of a tree is a vertex having exactly one
non-leaf neighbor. We write L and R for the sets of leaves and remote vertices of T ,
respectively.

Theorem 1. For any n-vertex tree T and k with n=2¡k6 n; �ks(T )6 2k − n.

Proof. To prove the theorem, by the deBnition of �ks, it suJces to show that there
exists a k-subdominating function f with ag(f)6 2k − n.
First we may suppose k ¿ 	(n + 1)=2
 by Theorem B and k ¡n for f(v)= 1 for

all v∈V is an n-subdominating function with ag(f)= n.
Now we apply induction on the number of vertices of T . Note that the assertion is

true for n6 4, so suppose that n¿ 5 and the theorem holds for smaller values of n.
Suppose furthermore T is not a star since for star T with leaves v1; v2; : : : ; vn−1 there
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exists a k-subdominating function

f(x)=

{
−1 for x= vi; i=1; : : : ; n− k;

1 otherwise

with ag(f)= 2k − n. Thus |R|¿ 2.
Suppose that there exists a vertex u∈R such that d(u) is even, and that v′ is a leaf

adjacent to u. Then for the subtree T1 =T − v′ and k with (n − 1)=2¡k6 n − 1,
by the induction hypothesis, there exists a k-subdominating function f1 on T1 with
ag(f1)6 2k − (n− 1)=2k − n+ 1. We deBne

f(x)=

{
−1 if x= v′;

f1(x) otherwise:

Then f is a k-subdominating function on T . Indeed, if f1[u]¡ 1 in T1, f is a
k-subdominating function on T . And if f1[u]¿ 1 in T1, then f1[u]¿ 2 as d(u) is even,
hence f is also a k-subdominating function on T . Clearly, ag(f)= ag(f1)−16 2k−n.
Hence we may suppose that d(u) is odd for all u∈R, hence d(u)¿ 3 as u is not a

leaf of T . Take a u′ ∈R, write d(u′)= 2s+1 and N (u′)= {v1; v2; : : : ; v2s; v2s+1}, where
v2s+1 is the unique non-leaf neighbor of u′. We separate three cases according to the
values of k.
Case 1: n− s6 k6 n− 1.
DeBne

f(x)=

{
−1 if x= vi; i=1; 2; : : : ; n− k;

1 otherwise:

Then it is easily seen that f[x]¿ 1 if x �= vi; i=1; 2; : : : ; n − k, thus f is a k-
subdominating function on T with ag(f)= 2k − n.
Case 2: (n+ 3)=2¡k6 n− s− 1 (⇒ n¿ 8 as s¿ 1).
Put k1 = k− s−2 and n1 = n−2s−1, then 1

2n1 ¡k1 ¡n1. Now consider the subtree
T1 =T − (N [u′] \ {v2s+1}) of order n1 ¡n. By the induction hypothesis, there exists a
k1-subdominating function f1 on T1 with ag(f1)6 2k1 − n1 = 2k − n− 3. DeBne

f(x)=




f(x) if x∈V (T1);

−1 if x= vi; i=1; 2; : : : ; s− 1;

1 otherwise:

Clearly, f is a k-subdominating function on T with ag(f)= ag(f1) + 36 2k − n.
Case 3: 	(n+ 1)=2
¡k6 (n+ 3)=2.
Then n=2k − 3. To complete the proof, it suJces to show that there exists a

k-subdominating function f on T with ag(f)6 2k − n=3. For this purpose, among
all partitions {W1; W2} of V with ‖W1| − |W2‖6 1, called equipartitions, choose one
such that the number of edges between W1 and W2 is minimum, assume |W2|= k − 1
and |W1|= k − 2. DeBne a function  (v)=dWi(v) − dW3−i(v) for every v∈Wi, let Gi

denote the subgraph induced by Wi, and let Li and Si denote the sets of vertices v∈Wi

satisfying dWi(v)= 1 and |N (v) ∩ Li|¿ 	 (v)=2
, respectively, i=1; 2.
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Claim 1.  (v)¿ 0 for all v∈V except at most one v∗ ∈W2 with  (v∗)= 0.

First  (v)¿ 0 for all v∈W2. Otherwise, moving a v∈W2 with  (v)¡ 0 to W1, we
obtain a new equipartition with fewer edges between its parts. Also,  (v)¿ 0 for all
v∈W1. Otherwise, taking u∈W1 with  (u)6 0, we obtain a k-subdominating function
of ag(f)= 2k− n by making u and all of W2 positive, all remaining vertices negative,
as f[u] = 1−  (u)¿ 1.

Furthermore, if there exist two distinct vertices v1; v2 ∈W2 with  (v1)=  (v2)= 0,
then we have a k-subdominating function of ag(f)= 3 by letting the positive set of f
consist of v1; v2 and all of W1.

Claim 2. (a) dWi(v)¿ 1 for all v∈Wi; i=1; 2.
(b) v∈L for all v∈Li; i=1; 2; except at most one v∗ ∈W2 with  (v∗)= 0

(dW2 (v
∗)= 1; d(v∗)= 2).

(c) |Li|¿ 2; i=1; 2.

Indeed, dWi(v)¿ 	d(v)=2
¿ 1 and by Claim 1, for all v∈Wi with dWi(v)= 1 except
v∗, d(v)= 2dWi(v)− (v)6 1, yielding (a) and (b). (c) follows from Gi being acyclic.

Claim 3. Si �= ∅; i=1; 2.

To see this, let P= v1v2 · · · vl+1 be a longest path in Gi. Then obviously l¿ 1 by
Claim 2(a). Moreover, vl ∈ Si. Otherwise, there exists a path vlv′v′′ in Gi with v′ �= vl−1,
and P′ = v1v2 · · · vlv′v′′ is a path longer than P.
If 	 (u)=2
6 � (v)=2� for some u∈ S1 and some v∈ S2, then 	 (u)=2
6 |N (u)∩L1|

and 	 (u)=2
6 |N (v) ∩ L2| by the deBnition of Si. Let Q1 ⊆ N (u) ∩ L1 and Q2 ⊆
N (v) ∩ L2 be sets of 	 (u)=2
 vertices, respectively. By Claim 2(b), w∈L for all
vertices w∈Q1 ∪ (Q2 − {v∗}). DeBne

f(x)=

{
−1 if x∈Q2 ∪W1\({u} ∪ Q1);

1 otherwise:

Clearly, f is a k-subdominating function on T with ag(f)= 3 if f[u]¿ 1. And if
f[u]6 0, then the exceptional vertex v∗ ∈N (u)∩Q2, implying f[v∗] =f(u)+f(v)−
1=1 by Claim 2(b), which guarantees that f is still a k-subdominating function with
ag(f)= 3.
So, suppose 	 (u)=2
¿ � (v)=2� for all u∈ S1 and all v∈ S2. Thus, for all u∈ S1

and all v∈ S2, 	 (u)=2
¿ � (v)=2� + 1, so that 	 (u)=2
¿ 	 (v)=2
. Let u∈ S1 and
let v∈ S2. Then |N (u)∩L1|¿ 	 (v)=2
¿ 	 (v)=2
− 1 and |N (v)∩L2|¿ 	 (v)=2
. Let
Q1 ⊆ N (u) ∩ L1 and Q2 ⊆ N (v) ∩ L2 be sets of 	 (v)=2
 − 1 and 	 (v)=2
 vertices,
respectively, and deBne

f(x)=

{
−1 if x∈Q1 ∪W2\({v} ∪ Q2);

1 otherwise:
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As before, it follows that f is a k-subdominating function with ag(f)= 3. Theorem 1
is proved.

Note that �ks(K1; n−1)= 2k − n if k ¿ 1
2n. The bound established in Theorem 1 is

sharp indeed.

3. An upper bound on the k-subdomination number for graphs

Conjecture 2 is shown in [4] to be false in the special case when k = 	(n + 1)=2
.
The conjecture has yet to be settled when 	(n + 1)=2
¡k6 n. In this section, we
prove the conjecture in the special case when n − k + 1 divides k. For this purpose,
we shall need the following result.

Theorem 2. For any connected graph G of order n and any k with 1
2n¡k6 n;

�ks(G)6 2
⌈

k
n− k + 1

⌉
(n− k + 1)− n:

Proof. Among all partitions {A′
11; A

′
12} of V (G) with |A′

11|= k and |A′
12|= n − k, let

{A11; A12} be one such that the number of edges between A11 and A12 is minimum.
Note that for any u∈A11 and v∈A12, if uv �∈ E(G), then

dA11 (u) + dA12 (v)¿dA12 (u) + dA11 (v): (1)

And if uv∈E(G), then

dA11 (u) + dA12 (v)¿dA12 (u) + dA11 (v)− 2: (2)

Otherwise the exchange of u and v yields a partition with fewer edges between its
parts.
If dA11 (u)¿dA12 (u) for each u∈A11, we deBne

f(x)=

{
1 if x∈A11;

−1 if x∈A12:

Then clearly f is a k-subdominating function on G with ag(f)6 2k−n. Thus we may
assume there exists a vertex u1 ∈A11 with dA11 (u1)¡dA12 (u1). Then for any v∈A12,
using (1) and (2), we have

dA12 (v)¿dA11 (v) if v �∈ N (u1);

dA12 (v)¿dA11 (v)− 1 if v∈N (u1):

Among all partitions {A′
21; A

′
22} of A11−{u1} with |A′

21|=2k−n−1 and |A′
22|= n− k,

let {A21; A22} be one such that the number of edges joining vertices in A21 to vertices
in A22 is minimum. If dA21 (u)¿dA22 (u) for each u∈A21, deBne

f(x)=

{
1 if x∈A21 ∪ A12 ∪ {u1};
−1 if x∈A22:
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It is easily seen that f is a k-subdominating function of ag(f)6 2k − n, hence
�ks(G)6 2k−n. So we may assume there exists u2 ∈A21 such that dA21 (u2)¡dA22 (u2).
For any v∈A22, by the choice of {A21; A22}, similarly we have

dA22 (v)¿dA21 (v) if v �∈ N (u2);

dA22 (v)¿dA21 (v)− 1 if v∈N (u2):

For A21 − {u2}, a similar argument shows that either �ks(G)6 2k − n or there exists
ui ∈Ai1; i=1; 2; : : : ; 	k=(n− k + 1)
, such that dAi1 (ui)¡dAi2 (ui) and

dAi2 (v)¿dAi1 (v) if v �∈ N (ui);

dAi2 (v)¿dAi1 (v)− 1 if v∈N (ui):

DeBne

f(u)=

{
1 if u∈A12 ∪ A22 ∪ : : : ∪ A�k=(n−k+1)�2 ∪ {u1; u2; : : : ; u�k=(n−k+1)�};
−1 otherwise:

f is a k-subdominating function on G with

ag(f)6 2	k=(n− k + 1)
(n− k + 1)− n:

The proof of Theorem 2 is complete.

Corollary 1. Let G be a connected graph of order n and k an integer with n=2¡k6 n.
If n− k + 1|k; then �ks(G)6 2k − n.
Thus Conjecture 2 is true if n− k + 1|k.
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