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Abstract

For a positive integer k, a k-subdominating function of G=(V,E) is a function f:V —
{—1,1} such that the sum of the function values, taken over closed neighborhoods of vertices,
is at least one for at least k£ vertices of G. The sum of the function values taken over all vertices
is called the aggregate of f and the minimum aggregate among all k-subdominating functions
of G is the k-subdomination number y;(G). In this paper, we solve a conjecture proposed in
(Ars. Combin 43 (1996) 235), which determines a sharp upper bound on 7y.(G) for trees if
k > |V|/2 and give an upper bound on 7y, for connected graphs. (©) 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

All graphs under consideration are simple. For a graph G=(V,E) and vertex v€ V,
let N(v)={ueV:uveE} and N[v]={v} UN(v) be the open and closed neighbor-
hoods of v in G, respectively. For a subset 4 of V, we set Ny(v)=N(v) N4 and
d4(v)=|N4(v)|. For k€Z", a k-subdominating function (kSF) of G is a function
SV — {=1L1} such that f[v]=3 cy;,y f(u) =1 for at least k vertices v of G.
The aggregate ag(f) of such a function is defined by ag(f)=)>_,, f(v) and the
k-subdomination number 7i,(G) by 74(G)=min{ag(f): f is kSF of G}. The concept
of k-subdominatoin number was introduced and first studied by Cockayne and Myn-
hardt [2]. In the special cases where k=|V| and k= [|V|/2], yk is respectively the
signed domination number ), [3] and the majority domination number ymyq; [1].
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In [2], Cockayne et al. established a sharp lower bound on y;, for trees. Moreover,
they also gave a sharp upper bound on y for trees if k < |V|/2, and proposed the
following two conjectures:

Conjecture 1. For any n-vertex tree 7' and any k& with n/2 <k <n, y(T) <2k — n.

Conjecture 2. For any connected graph G of order n and any k with n/2 <k <n,
Mhs(G) < 2k — n.

In this paper, we show that Conjecture 1 is true and Conjecture 2 is incorrect, and
give an upper bound for the k-subdomination number of graphs.

2. An upper bound on the k-subdomination number for trees

Alon (mentioned in [2]) established the following upper bounds on y;, for a con-
nected graph.

Theorem A (Cockayne and Mynhardt [2]).
For any connected graph G of order n,

1 if nisodd,

2 if nis even.

ymaj(G) < {

And Henning and Hind [4] proved the following:

Theorem B (Henning and Hind [4]).
If T is a tree of order n, k=[(n+ 1)/2], then y(T) < 2.

In order to prove Conjecture 1, we need some definitions from [2]. A leaf of a tree
is a vertex of degree one and a remote vertex of a tree is a vertex having exactly one
non-leaf neighbor. We write L and R for the sets of leaves and remote vertices of T,
respectively.

Theorem 1. For any n-vertex tree T and k with n/2 <k <n, y(T) <2k — n.

Proof. To prove the theorem, by the definition of 7y, it suffices to show that there
exists a k-subdominating function f with ag(f) <2k —n.

First we may suppose k > [(n + 1)/2] by Theorem B and k < n for f(v)=1 for
all ve V' is an n-subdominating function with ag( ) =mn.

Now we apply induction on the number of vertices of 7. Note that the assertion is
true for n < 4, so suppose that n > 5 and the theorem holds for smaller values of n.
Suppose furthermore 7' is not a star since for star 7 with leaves vy, v,...,0,—; there
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exists a k-subdominating function

-1 forx=v;, i=1,...,n—k,
Sx)=

1 otherwise

with ag(f)=2k — n. Thus |R| > 2.

Suppose that there exists a vertex u € R such that d(u) is even, and that v is a leaf
adjacent to u. Then for the subtree 7' =T — v/ and k with (n — 1)2 <k <n — 1,
by the induction hypothesis, there exists a k-subdominating function f; on 7| with
ag(f1) <2k —(n—1)=2k —n+ 1. We define

-1 if x="1,
f(x):{

f1(x) otherwise.

Then f is a k-subdominating function on 7. Indeed, if fi[u] <1 in T}, f is a
k-subdominating function on 7. And if f[u] = 1 in Ty, then f[u] = 2 as d(u) is even,
hence f is also a k-subdominating function on 7. Clearly, ag(f)=ag(f1)—1 < 2k—n.

Hence we may suppose that d(u) is odd for all u € R, hence d(u) > 3 as u is not a
leaf of T. Take a v’ € R, write d(v')=2s+ 1 and N(v')={vy,v2,..., V25, U211}, Where
U511 is the unique non-leaf neighbor of u’. We separate three cases according to the
values of k.

Case I: n—s<k<n-—1.

Define

1) -1 ifx=v, i=12,....,n—k,
X)=
1 otherwise.

Then it is easily seen that f[x]>1 if x#v;, i=1,2,....,n — k, thus f is a k-
subdominating function on 7 with ag(f)=2k — n.

Case 2: (n+3)2<k<n—s—1(=n=8ass>=1).

Put &y =k—s—2 and ny =n—2s—1, then %nl < k1 < n;. Now consider the subtree
Ty =T — (N[u']\ {vas+1}) of order n; < n. By the induction hypothesis, there exists a
ki-subdominating function f; on 77 with ag(f) < 2k; — n; =2k — n — 3. Define

S(x) if xeV(T),
fx)=< -1 ifx=uv, i=12,...,5—1,
1 otherwise.

Clearly, f is a k-subdominating function on 7 with ag(f)=ag(f)+3 <2k —n.

Case 3: [(n+1)/2] <k <(n+3)/2.

Then n=2k — 3. To complete the proof, it suffices to show that there exists a
k-subdominating function f on 7 with ag(f) < 2k — n=3. For this purpose, among
all partitions {W,, W,} of V with ||W,| — |W]|| < 1, called equipartitions, choose one
such that the number of edges between W, and W, is minimum, assume |W,|=Fk — 1
and || =k — 2. Define a function d(v) =dw,(v) — dw,_,(v) for every ve W;, let G;
denote the subgraph induced by W;, and let L; and S; denote the sets of vertices v € W;
satisfying dy.(v) =1 and |[N(v) N L;| = [d(v)/2], respectively, i=1,2.
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Claim 1. 6(v) > 0 for all veV except at most one v* € W, with d(v*)=0.

First d(v) = 0 for all v € W,. Otherwise, moving a v € W, with d(v) <0 to W, we
obtain a new equipartition with fewer edges between its parts. Also, d(v) > 0 for all
v € W,. Otherwise, taking u € W; with d(u) < 0, we obtain a k-subdominating function
of ag( /) =2k —n by making u and all of ¥, positive, all remaining vertices negative,
as flul=1—-0(u) > 1.

Furthermore, if there exist two distinct vertices vy, v, € W, with d(v1)=0(v;)=0,
then we have a k-subdominating function of ag(f) =3 by letting the positive set of f
consist of vy,v, and all of .

Claim 2. (a) dy,(v) =1 for all veW;, i=1,2.

(b)veL for all vel,;, i=1,2, except at most one v*€ W, with 6(v*)=0
(dw,(v*)=1, d(v*)=2).

©)|Li| =2, i=1,2.

Indeed, dy.(v) = [d(v)/2] = 1 and by Claim 1, for all v € W; with dy.(v) =1 except
v*, d(v) =2dw,(v) — d(v) < 1, yielding (a) and (b). (c) follows from G; being acyclic.

Claim 3. S;#0, i=1,2.

To see this, let P=wv,v;---v;41 be a longest path in G;. Then obviously / > 1 by
Claim 2(a). Moreover, v; € S;. Otherwise, there exists a path v;v'v” in G; with v/ #£v;_4,
and P’ =wvjvy---v;v'v” is a path longer than P.

If [6(u)/2] < [6(v)/2] for some u € S) and some v € Sy, then [d(u)/2] < |[N(u)NL|
and [6(u)/2] < |N(v) N Ly| by the definition of S;. Let Oy € N(u) NL; and O, C
N(v) N L, be sets of [d(u)/2] vertices, respectively. By Claim 2(b), we L for all
vertices w € 01 U (Q; — {v*}). Define

f(x):{_l if x€ 0 UM\ ({u} UQN),

1 otherwise.

Clearly, f is a k-subdominating function on 7 with ag(f)=3 if f[u] > 1. And if
flu] <0, then the exceptional vertex v* € N(u) N Q,, implying f[v*]= f(u)+ f(v) —
1=1 by Claim 2(b), which guarantees that f is still a k-subdominating function with
ag(f)=3.

So, suppose [0(u)/2] > [0(v)/2]| for all u€ S; and all v€S,. Thus, for all u €S
and all vE€ Sy, [0(u)/2] = [d(v)/2] + 1, so that [d(u)/2] = [d(v)/2]. Let u€ S and
let v€S,. Then [N(u)NLi| = [6(v)/2] > [0(v)/2] — 1 and [N(v)NLz| = [(v)/2]. Let
01 CNw)NLy and O, € N(v) N L, be sets of [d(v)/2] — 1 and [d(v)/2] vertices,
respectively, and define

= { —1 ifxeQUm\({r}U0,),

1 otherwise.



L.-y. Kang et al. | Discrete Mathematics 247 (2002) 229-234 233

As before, it follows that f is a k-subdominating function with ag( /) =3. Theorem 1
is proved. [J

Note that yi(Kip—1)=2k —n if k > %n The bound established in Theorem 1 is
sharp indeed.

3. An upper bound on the k-subdomination number for graphs

Conjecture 2 is shown in [4] to be false in the special case when k= [(n + 1)/2].
The conjecture has yet to be settled when [(n + 1)/2] < k < n. In this section, we
prove the conjecture in the special case when n — k£ + 1 divides k. For this purpose,
we shall need the following result.

Theorem 2. For any connected graph G of order n and any k with %n <k<n,

VkS(G)SZIV “(l’lkJrl)l’l.

n—k+1
Proof. Among all partitions {4},,4},} of V(G) with |4],|=Fk and |4},|=n —F, let
{411,412} be one such that the number of edges between 4;; and A4, is minimum.
Note that for any u € 41y and v € A1y, if uv € E(G), then

dAn(u) + dAlZ(U) = dAlz(”) + dAn(U)' (1)
And if uv € E(G), then
dAn(u) + dAlZ(U) = dAIZ(u) + dAn(U) -2 (2)

Otherwise the exchange of u and v yields a partition with fewer edges between its
parts.
If dg, (u) = d4,(u) for each u€ 4,;, we define

f( ) 1 ifoA”,
X)=
—1 if x€Ap.

Then clearly f is a k-subdominating function on G with ag(f) < 2k —n. Thus we may
assume there exists a vertex u; €4y, with dy,, (u;1) < dy,(ur). Then for any v e A4,
using (1) and (2), we have

dAlz(U) > dAn(U) if v g N(”l)a

dAlz(U) = dAH(U) —1 ifveNu).
Among all partitions {45,,4%,} of A1 —{u} with |4},|=2k—n—1 and |4%,|=n—k,
let {421,422} be one such that the number of edges joining vertices in 4, to vertices
in Ay is minimum. If d4,, (1) = d 4, (u) for each u € Ay, define

1 ifx€A21UA12U{M1},
Sx)= .
—1 1fx€A22.
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It is easily seen that f is a k-subdominating function of ag(f) <2k — n, hence
Yks(G) < 2k —n. So we may assume there exists uy € Ay; such that d 4, (u2) < d4,,(u2).
For any v € 4,5, by the choice of {41,42,}, similarly we have

A4, (V) > d.gy, (V) if v ¢ N(up),
dAzz(U) = dAzl(v) -1 ifv 6]\[(7/’2)-

For A5 — {uy}, a similar argument shows that either y;(G) < 2k — n or there exists
u€An, i=1,2,..., |—k/(}’l —k+ 1)-‘, such that dA,.I(Z/l,') < dA,.Z(u,-) and

d4,(v) > dy,(v) if v € N(w;),
dy,(vV) = dy,(v)—1 if veEN).
Define
T = { 1 if u€ Ay Udyn U.. . UAdrym—is1y2 UAunua, . upym—i1)) )
—1 otherwise.

f is a k-subdominating function on G with
ag(f) <2[k/in—k+1)](n—k+1)—n.
The proof of Theorem 2 is complete. []

Corollary 1. Let G be a connected graph of order n and k an integer with n/2 < k < n.
If n—k + 1|k, then y(G) <2k —n.
Thus Conjecture 2 is true if n —k + 1]k.

Acknowledgements

The authors would like to thank Professor F. Tian for his help, Professor J. Hattingh
and three anonymous referees for very helpful comments.

References

[1] I. Broere, J.H. Hattingh, M.A. Henning, A.A. McRae, Majority domination in graphs, Discrete Math.
138 (1995) 125-135.

[2] E.J. Cockayne, C.M. Mynhardt, On a generalisation of signed dominating function of graphs, Ars Combin.
43 (1996) 235-245.

[3] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, P.J. Slater, Signed domination in graphs, in: Y. Alavi,
A. Schwenk (Eds.), Graph Theory, Combinatorics and Applications, Wiley, New York, 1995,
pp. 311-322.

[4] M.A. Henning, H.R. Hind, Strict majority functions on graphs, J. Graph Theory 28 (1998) 49-56.



