

Discrete Mathematics 247 (2002) 229-234

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note Upper bounds for the k-subdomination number of graphs

Li-ying Kang^a, Chuangyin Dang^b, Mao-cheng Cai^{c, *,1}, Erfang Shan^a

^aDepartment of Mathematics, Shanghai University, Shanghai 200436, China ^bDepartment of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Hong Kong ^cInstitute of Systems Science, Academia Sinica, Beijing 100080, China

Received 26 January 1999; revised 29 July 1999; accepted 2 April 2001

Abstract

For a positive integer k, a k-subdominating function of G = (V, E) is a function $f: V \rightarrow \{-1, 1\}$ such that the sum of the function values, taken over closed neighborhoods of vertices, is at least one for at least k vertices of G. The sum of the function values taken over all vertices is called the aggregate of f and the minimum aggregate among all k-subdominating functions of G is the k-subdomination number $\gamma_{ks}(G)$. In this paper, we solve a conjecture proposed in (Ars. Combin 43 (1996) 235), which determines a sharp upper bound on $\gamma_{ks}(G)$ for trees if k > |V|/2 and give an upper bound on γ_{ks} for connected graphs. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Graph; Tree; Open and closed neighborhoods; k-Subdomination number

1. Introduction

All graphs under consideration are simple. For a graph G = (V, E) and vertex $v \in V$, let $N(v) = \{u \in V : uv \in E\}$ and $N[v] = \{v\} \cup N(v)$ be the open and closed neighborhoods of v in G, respectively. For a subset A of V, we set $N_A(v) = N(v) \cap A$ and $d_A(v) = |N_A(v)|$. For $k \in Z^+$, a k-subdominating function (kSF) of G is a function $f : V \to \{-1, 1\}$ such that $f[v] = \sum_{u \in N[v]} f(u) \ge 1$ for at least k vertices v of G. The aggregate ag(f) of such a function is defined by $ag(f) = \sum_{v \in V} f(v)$ and the k-subdomination number $\gamma_{ks}(G)$ by $\gamma_{ks}(G) = \min\{ag(f): f \text{ is } k\text{SF of } G\}$. The concept of k-subdomination number was introduced and first studied by Cockayne and Mynhardt [2]. In the special cases where k = |V| and $k = \lceil |V|/2 \rceil$, γ_{ks} is respectively the signed domination number γ_s [3] and the majority domination number γ_{maj} [1].

^{*} Corresponding author.

E-mail address: caimc@staff.iss.ac.cn (M.-c. Cai).

¹ Research partially supported by the National Natural Science Foundation of China.

⁰⁰¹²⁻³⁶⁵X/02/\$ - see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0012-365X(01)00311-9

In [2], Cockayne et al. established a sharp lower bound on γ_{ks} for trees. Moreover, they also gave a sharp upper bound on γ_{ks} for trees if $k \leq |V|/2$, and proposed the following two conjectures:

Conjecture 1. For any *n*-vertex tree T and any k with $n/2 < k \le n$, $\gamma_{ks}(T) \le 2k - n$.

Conjecture 2. For any connected graph G of order n and any k with $n/2 < k \le n$, $\gamma_{ks}(G) \le 2k - n$.

In this paper, we show that Conjecture 1 is true and Conjecture 2 is incorrect, and give an upper bound for the *k*-subdomination number of graphs.

2. An upper bound on the k-subdomination number for trees

Alon (mentioned in [2]) established the following upper bounds on γ_{ks} for a connected graph.

Theorem A (Cockayne and Mynhardt [2]).

For any connected graph G of order n,

 $\gamma_{\text{maj}}(G) \leqslant \begin{cases} 1 & \text{if } n \text{ is odd,} \\ 2 & \text{if } n \text{ is even.} \end{cases}$

And Henning and Hind [4] proved the following:

Theorem B (Henning and Hind [4]). If T is a tree of order n, $k = \lfloor (n+1)/2 \rfloor$, then $\gamma_{ks}(T) \leq 2$.

In order to prove Conjecture 1, we need some definitions from [2]. A *leaf* of a tree is a vertex of degree one and a *remote vertex* of a tree is a vertex having exactly one non-leaf neighbor. We write L and R for the sets of leaves and remote vertices of T, respectively.

Theorem 1. For any n-vertex tree T and k with $n/2 < k \le n$, $\gamma_{ks}(T) \le 2k - n$.

Proof. To prove the theorem, by the definition of γ_{ks} , it suffices to show that there exists a k-subdominating function f with $ag(f) \leq 2k - n$.

First we may suppose $k > \lceil (n+1)/2 \rceil$ by Theorem B and k < n for f(v) = 1 for all $v \in V$ is an *n*-subdominating function with ag(f) = n.

Now we apply induction on the number of vertices of *T*. Note that the assertion is true for $n \leq 4$, so suppose that $n \geq 5$ and the theorem holds for smaller values of *n*. Suppose furthermore *T* is not a star since for star *T* with leaves $v_1, v_2, \ldots, v_{n-1}$ there

exists a k-subdominating function

$$f(x) = \begin{cases} -1 & \text{for } x = v_i, \ i = 1, \dots, n - k, \\ 1 & \text{otherwise} \end{cases}$$

with ag(f) = 2k - n. Thus $|R| \ge 2$.

Suppose that there exists a vertex $u \in R$ such that d(u) is even, and that v' is a leaf adjacent to u. Then for the subtree $T_1 = T - v'$ and k with $(n - 1)/2 < k \le n - 1$, by the induction hypothesis, there exists a k-subdominating function f_1 on T_1 with $ag(f_1) \le 2k - (n - 1) = 2k - n + 1$. We define

$$f(x) = \begin{cases} -1 & \text{if } x = v', \\ f_1(x) & \text{otherwise.} \end{cases}$$

Then f is a k-subdominating function on T. Indeed, if $f_1[u] < 1$ in T_1 , f is a k-subdominating function on T. And if $f_1[u] \ge 1$ in T_1 , then $f_1[u] \ge 2$ as d(u) is even, hence f is also a k-subdominating function on T. Clearly, $ag(f) = ag(f_1) - 1 \le 2k - n$.

Hence we may suppose that d(u) is odd for all $u \in R$, hence $d(u) \ge 3$ as u is not a leaf of T. Take a $u' \in R$, write d(u') = 2s + 1 and $N(u') = \{v_1, v_2, \dots, v_{2s}, v_{2s+1}\}$, where v_{2s+1} is the unique non-leaf neighbor of u'. We separate three cases according to the values of k.

Case 1: $n - s \le k \le n - 1$. Define

$$f(x) = \begin{cases} -1 & \text{if } x = v_i, \ i = 1, 2, \dots, n - k, \\ 1 & \text{otherwise.} \end{cases}$$

Then it is easily seen that $f[x] \ge 1$ if $x \ne v_i$, i = 1, 2, ..., n - k, thus f is a k-subdominating function on T with ag(f) = 2k - n.

Case 2: $(n+3)/2 < k \le n-s-1 \ (\Rightarrow n \ge 8 \text{ as } s \ge 1).$

Put $k_1 = k - s - 2$ and $n_1 = n - 2s - 1$, then $\frac{1}{2}n_1 < k_1 < n_1$. Now consider the subtree $T_1 = T - (N[u'] \setminus \{v_{2s+1}\})$ of order $n_1 < n$. By the induction hypothesis, there exists a k_1 -subdominating function f_1 on T_1 with $ag(f_1) \leq 2k_1 - n_1 = 2k - n - 3$. Define

$$f(x) = \begin{cases} f(x) & \text{if } x \in V(T_1), \\ -1 & \text{if } x = v_i, \ i = 1, 2, \dots, s - 1, \\ 1 & \text{otherwise.} \end{cases}$$

Clearly, f is a k-subdominating function on T with $ag(f) = ag(f_1) + 3 \le 2k - n$.

Case 3: $\lceil (n+1)/2 \rceil < k \le (n+3)/2$.

Then n = 2k - 3. To complete the proof, it suffices to show that there exists a k-subdominating function f on T with $ag(f) \le 2k - n = 3$. For this purpose, among all partitions $\{W_1, W_2\}$ of V with $||W_1| - |W_2|| \le 1$, called equipartitions, choose one such that the number of edges between W_1 and W_2 is minimum, assume $|W_2| = k - 1$ and $|W_1| = k - 2$. Define a function $\delta(v) = d_{W_i}(v) - d_{W_{3-i}}(v)$ for every $v \in W_i$, let G_i denote the subgraph induced by W_i , and let L_i and S_i denote the sets of vertices $v \in W_i$ satisfying $d_{W_i}(v) = 1$ and $|N(v) \cap L_i| \ge \lceil \delta(v)/2 \rceil$, respectively, i = 1, 2.

Claim 1. $\delta(v) > 0$ for all $v \in V$ except at most one $v^* \in W_2$ with $\delta(v^*) = 0$.

First $\delta(v) \ge 0$ for all $v \in W_2$. Otherwise, moving a $v \in W_2$ with $\delta(v) < 0$ to W_1 , we obtain a new equipartition with fewer edges between its parts. Also, $\delta(v) > 0$ for all $v \in W_1$. Otherwise, taking $u \in W_1$ with $\delta(u) \le 0$, we obtain a k-subdominating function of ag(f) = 2k - n by making u and all of W_2 positive, all remaining vertices negative, as $f[u] = 1 - \delta(u) \ge 1$.

Furthermore, if there exist two distinct vertices $v_1, v_2 \in W_2$ with $\delta(v_1) = \delta(v_2) = 0$, then we have a k-subdominating function of ag(f) = 3 by letting the positive set of f consist of v_1, v_2 and all of W_1 .

Claim 2. (a) $d_{W_i}(v) \ge 1$ for all $v \in W_i$, i = 1, 2.

(b) $v \in L$ for all $v \in L_i$, i = 1, 2, except at most one $v^* \in W_2$ with $\delta(v^*) = 0$ $(d_{W_2}(v^*) = 1, d(v^*) = 2)$. (c) $|L_i| \ge 2, i = 1, 2$.

Indeed, $d_{W_i}(v) \ge \lceil d(v)/2 \rceil \ge 1$ and by Claim 1, for all $v \in W_i$ with $d_{W_i}(v) = 1$ except v^* , $d(v) = 2d_{W_i}(v) - \delta(v) \le 1$, yielding (a) and (b). (c) follows from G_i being acyclic.

Claim 3. $S_i \neq \emptyset$, i = 1, 2.

To see this, let $P = v_1 v_2 \cdots v_{l+1}$ be a longest path in G_i . Then obviously $l \ge 1$ by Claim 2(a). Moreover, $v_l \in S_i$. Otherwise, there exists a path $v_l v' v''$ in G_i with $v' \ne v_{l-1}$, and $P' = v_1 v_2 \cdots v_l v' v''$ is a path longer than P.

If $\lceil \delta(u)/2 \rceil \leq \lfloor \delta(v)/2 \rfloor$ for some $u \in S_1$ and some $v \in S_2$, then $\lceil \delta(u)/2 \rceil \leq |N(u) \cap L_1|$ and $\lceil \delta(u)/2 \rceil \leq |N(v) \cap L_2|$ by the definition of S_i . Let $Q_1 \subseteq N(u) \cap L_1$ and $Q_2 \subseteq N(v) \cap L_2$ be sets of $\lceil \delta(u)/2 \rceil$ vertices, respectively. By Claim 2(b), $w \in L$ for all vertices $w \in Q_1 \cup (Q_2 - \{v^*\})$. Define

$$f(x) = \begin{cases} -1 & \text{if } x \in Q_2 \cup W_1 \setminus (\{u\} \cup Q_1), \\ 1 & \text{otherwise.} \end{cases}$$

Clearly, f is a k-subdominating function on T with ag(f) = 3 if $f[u] \ge 1$. And if $f[u] \le 0$, then the exceptional vertex $v^* \in N(u) \cap Q_2$, implying $f[v^*] = f(u) + f(v) - 1 = 1$ by Claim 2(b), which guarantees that f is still a k-subdominating function with ag(f) = 3.

So, suppose $\lceil \delta(u)/2 \rceil > \lfloor \delta(v)/2 \rfloor$ for all $u \in S_1$ and all $v \in S_2$. Thus, for all $u \in S_1$ and all $v \in S_2$, $\lceil \delta(u)/2 \rceil \ge \lfloor \delta(v)/2 \rfloor + 1$, so that $\lceil \delta(u)/2 \rceil \ge \lceil \delta(v)/2 \rceil$. Let $u \in S_1$ and let $v \in S_2$. Then $|N(u) \cap L_1| \ge \lceil \delta(v)/2 \rceil > \lceil \delta(v)/2 \rceil - 1$ and $|N(v) \cap L_2| \ge \lceil \delta(v)/2 \rceil$. Let $Q_1 \subseteq N(u) \cap L_1$ and $Q_2 \subseteq N(v) \cap L_2$ be sets of $\lceil \delta(v)/2 \rceil - 1$ and $\lceil \delta(v)/2 \rceil$ vertices, respectively, and define

$$f(x) = \begin{cases} -1 & \text{if } x \in Q_1 \cup W_2 \setminus (\{v\} \cup Q_2), \\ 1 & \text{otherwise.} \end{cases}$$

As before, it follows that f is a k-subdominating function with ag(f) = 3. Theorem 1 is proved. \Box

Note that $\gamma_{ks}(K_{1,n-1}) = 2k - n$ if $k > \frac{1}{2}n$. The bound established in Theorem 1 is sharp indeed.

3. An upper bound on the k-subdomination number for graphs

Conjecture 2 is shown in [4] to be false in the special case when $k = \lceil (n+1)/2 \rceil$. The conjecture has yet to be settled when $\lceil (n+1)/2 \rceil < k \le n$. In this section, we prove the conjecture in the special case when n - k + 1 divides k. For this purpose, we shall need the following result.

Theorem 2. For any connected graph G of order n and any k with $\frac{1}{2}n < k \le n$, $\gamma_{ks}(G) \le 2 \left[\frac{k}{n-k+1}\right](n-k+1)-n.$

Proof. Among all partitions $\{A'_{11}, A'_{12}\}$ of V(G) with $|A'_{11}| = k$ and $|A'_{12}| = n - k$, let $\{A_{11}, A_{12}\}$ be one such that the number of edges between A_{11} and A_{12} is minimum. Note that for any $u \in A_{11}$ and $v \in A_{12}$, if $uv \notin E(G)$, then

$$d_{A_{11}}(u) + d_{A_{12}}(v) \ge d_{A_{12}}(u) + d_{A_{11}}(v).$$
(1)

And if $uv \in E(G)$, then

$$d_{A_{11}}(u) + d_{A_{12}}(v) \ge d_{A_{12}}(u) + d_{A_{11}}(v) - 2.$$

$$\tag{2}$$

Otherwise the exchange of u and v yields a partition with fewer edges between its parts.

If $d_{A_{11}}(u) \ge d_{A_{12}}(u)$ for each $u \in A_{11}$, we define

$$f(x) = \begin{cases} 1 & \text{if } x \in A_{11}, \\ -1 & \text{if } x \in A_{12}. \end{cases}$$

Then clearly f is a k-subdominating function on G with $ag(f) \leq 2k - n$. Thus we may assume there exists a vertex $u_1 \in A_{11}$ with $d_{A_{11}}(u_1) < d_{A_{12}}(u_1)$. Then for any $v \in A_{12}$, using (1) and (2), we have

$$d_{A_{12}}(v) > d_{A_{11}}(v) \quad \text{if } v \notin N(u_1),$$

$$d_{A_{12}}(v) \ge d_{A_{11}}(v) - 1 \quad \text{if } v \in N(u_1).$$

Among all partitions $\{A'_{21}, A'_{22}\}$ of $A_{11} - \{u_1\}$ with $|A'_{21}| = 2k - n - 1$ and $|A'_{22}| = n - k$, let $\{A_{21}, A_{22}\}$ be one such that the number of edges joining vertices in A_{21} to vertices in A_{22} is minimum. If $d_{A_{21}}(u) \ge d_{A_{22}}(u)$ for each $u \in A_{21}$, define

$$f(x) = \begin{cases} 1 & \text{if } x \in A_{21} \cup A_{12} \cup \{u_1\} \\ -1 & \text{if } x \in A_{22}. \end{cases}$$

It is easily seen that f is a k-subdominating function of $ag(f) \leq 2k - n$, hence $\gamma_{ks}(G) \leq 2k - n$. So we may assume there exists $u_2 \in A_{21}$ such that $d_{A_{21}}(u_2) < d_{A_{22}}(u_2)$. For any $v \in A_{22}$, by the choice of $\{A_{21}, A_{22}\}$, similarly we have

$$d_{A_{22}}(v) > d_{A_{21}}(v) \quad \text{if } v \notin N(u_2),$$

$$d_{A_{22}}(v) \ge d_{A_{21}}(v) - 1 \quad \text{if } v \in N(u_2).$$

For $A_{21} - \{u_2\}$, a similar argument shows that either $\gamma_{ks}(G) \leq 2k - n$ or there exists $u_i \in A_{i1}, i = 1, 2, \dots, \lceil k/(n-k+1) \rceil$, such that $d_{A_{i1}}(u_i) < d_{A_{i2}}(u_i)$ and

$$d_{A_{i2}}(v) > d_{A_{i1}}(v) \quad \text{if } v \notin N(u_i),$$

$$d_{A_{i2}}(v) \ge d_{A_{i1}}(v) - 1 \quad \text{if } v \in N(u_i).$$

Define

$$f(u) = \begin{cases} 1 & \text{if } u \in A_{12} \cup A_{22} \cup \ldots \cup A_{\lceil k/(n-k+1) \rceil 2} \cup \{u_1, u_2, \ldots, u_{\lceil k/(n-k+1) \rceil}\}, \\ -1 & \text{otherwise.} \end{cases}$$

f is a k-subdominating function on G with

$$\operatorname{ag}(f) \leq 2\lceil k/(n-k+1)\rceil(n-k+1) - n$$

The proof of Theorem 2 is complete. \Box

Corollary 1. Let G be a connected graph of order n and k an integer with $n/2 < k \leq n$. If n - k + 1 | k, then $\gamma_{ks}(G) \leq 2k - n$.

Thus Conjecture 2 is true if n - k + 1|k.

Acknowledgements

The authors would like to thank Professor F. Tian for his help, Professor J. Hattingh and three anonymous referees for very helpful comments.

References

- [1] I. Broere, J.H. Hattingh, M.A. Henning, A.A. McRae, Majority domination in graphs, Discrete Math. 138 (1995) 125-135.
- [2] E.J. Cockayne, C.M. Mynhardt, On a generalisation of signed dominating function of graphs, Ars Combin. 43 (1996) 235-245.
- [3] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, P.J. Slater, Signed domination in graphs, in: Y. Alavi, A. Schwenk (Eds.), Graph Theory, Combinatorics and Applications, Wiley, New York, 1995, pp. 311-322.
- [4] M.A. Henning, H.R. Hind, Strict majority functions on graphs, J. Graph Theory 28 (1998) 49-56.

234