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a b s t r a c t

We are given n base elements and a finite collection of subsets of them. The size of any
subset varies between p to k (p < k). In addition, we assume that the input contains all
possible subsets of size p. Our objective is to find a subcollection of minimum-cardinality
which covers all the elements. This problem is known to be NP-hard. We provide two
approximation algorithms for it, one for the generic case, and an improved one for the
special case of (p, k) = (2, 4).

The algorithm for the generic case is a greedy one, based on packing phases: at each
phase we pick a collection of disjoint subsets covering i new elements, starting from i = k
down to i = p + 1. At a final step we cover the remaining base elements by the subsets of
size p. We derive the exact performance guarantee of this algorithm for all values of k and
p, which is less than Hk, where Hk is the k’th harmonic number. However, the algorithm
exhibits the known improvement methods over the greedy one for the unweighted k-set
cover problem (inwhich subset sizes are only restricted not to exceed k), andhence it serves
as a benchmark for our improved algorithm.

The improved algorithm for the special case of (p, k) = (2, 4) is based on non-oblivious
local search: it starts with a feasible cover, and then repeatedly tries to replace sets of size
3 and 4 so as to maximize an objective function which prefers big sets over small ones. For
this case, our generic algorithm achieves an asymptotic approximation ratio of 1.5+ϵ, and
the local search algorithm achieves a better ratio, which is bounded by 1.458333 . . . + ϵ.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the unweighted set cover problem, we are given n base elements and a finite collection of subsets of them. Our objective
is to find a cover, i.e., a subcollection of subsets which covers all the elements, of minimum-cardinality. This problem has
applications in diverse contexts such as efficient testing, statistical design of experiments, crew scheduling for airlines, and
it also arises as a subproblem of many integer programming problems. For more information, see, e.g., [12], Chapter 3.

When we consider instances of unweighted set cover such that each subset has at most k elements, we obtain the
unweighted k-set cover problem. This problem is known to beNP-complete [16], and it isMAXSNP-hard for all k ≥ 3 [20,5,17].

It is well known (see [4]) that a greedy algorithm is an Hk-approximation algorithm for unweighted k-set cover, where
Hk =

∑k
i=1

1
i is the k’th harmonic number and that this bound is tight [15,19]. For unbounded values of k, Slavík [22] showed

that the approximation ratio of the greedy algorithm for unweighted set cover is ln n− ln ln n+Θ(1). Feige [7] proved that
unless NP ⊆ DTIME(npolylog n), unweighted set cover cannot be approximated within a factor (1 − ϵ) ln n for any ϵ > 0.
Raz and Safra [21] proved that if P ≠ NP , then for some constant c , unweighted set cover cannot be approximated within a
factor c log n. This result shows that the greedy algorithm is an asymptotically best possible approximation algorithm for this
problem (unless NP ⊆ DTIME(npolylog n)). Goldschmidt et al. [8] modified the greedy algorithm for unweighted k-set cover
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and showed that the resulting algorithm has a performance guarantee of Hk −
1
6 . Halldórsson [9] presented an algorithm

based on a local search that has an approximation ratio of Hk −
1
3 for unweighted k-set cover and a (1.4+ ϵ)-approximation

algorithm for unweighted 3-set cover. Duh and Fürer [6] later improved this result and presented an (Hk−
1
2 )-approximation

algorithm for unweighted k-set cover. Levin [18] improved their result and obtained an (Hk − 0.5026)-approximation
algorithm for k ≥ 4, and Athanassopoulos et al. [3] presented a further improved algorithm for k ≥ 6 with approximation
ratio approaching Hk − 0.5902 for large values of k.

All of these improvements [8,9,6,18,3] are essentially the greedy algorithm, with modifications on the way it handles
small subsets. That is, they are all based on running the greedy algorithm until each new subset covers at most t new
elements (the specific value of t depends on the exact algorithm), and then use a different method to cover the remaining
base elements.

In [13], Hochbaum and Levin consider the problem of covering the edges of a bipartite graph G using aminimum number
of Kp,p bicliques (which need not be subgraphs of G). This problem arises in the context of optical networks design (see [13]),
where p is typically 2 or 3. In addition, it can be viewed as an instance of unweighted p2-set cover, where the base elements
are G’s edges, and the input collection consists of all Kp,p graphs over G’s vertices. In that paper, they analyze the greedy
algorithm applied for this special case, and show that it returns a solution whose cost is at most (Hp2 − Hp + 1)OPT + 1
(where OPT is the optimal cost). They also present an improved algorithm for the case p = 2 based on the property of the
bipartite graph G, achieving an approximation ratio of 1.3 + ϵ.

If, in addition, the input collection contains some graphs that have up to k edges, k > p, then the resulting problem is
an instance of the (p, k)-uniform unweighted set cover problem (see [13]), which we denote by (p, k)-UUSC. That is, it is the
variant of unweighted set cover where the size of every subset varies between p to k (p < k), and the input contains all
possible subsets of size p. In fact, their analysis of the greedy algorithm is for this generalization. Thus, the algorithms for
unweighted k-set cover serve as a benchmark for our algorithms for this problem.

Recall that the dual problem of unweighted k-set cover is the (maximum) unweighted k-set packing problem:We are given
n base elements and a collection of subsets of them. Our objective is to find a packing, i.e., a subcollection of disjoint subsets, of
maximum-cardinality. The fractional version of unweighted set packing is the dual linear programof the fractional version of
unweighted set cover. The greedy algorithm for this problem, which returns anymaximal subcollection of subsets, achieves
an approximation ratio of 1

k . Hurkens and Schrijver [14] proved that for unweighted k-set packing, a local search algorithm is
a 2−ϵ

k -approximation algorithm. Athanassopoulos et al. [3] use this local search algorithm in each of their ‘‘packing phases’’,
and then use the method of Duh and Fürer [6] in a final phase.

The weighted k-set cover problem and the weighted k-set packing problem are defined analogously. However, this time
each set has a cost (in the set cover variant) or a profit (in the set packing variant) and the goal is to minimize the total cost
or to maximize the total profit, respectively. The greedy algorithm for the unweighted versions and the weighted versions
have the same approximation guarantee (for each of the two problems). Hassin and Levin [11] improved the resulting
approximation ratio for the weighted k-set cover problem for constant values of k, and Arkin and Hassin [2] improved the
greedy algorithm for the weighted k-set packing problem.

The method of local search has been widely used in many hard combinatorial optimization problems. The idea is simple:
start with an arbitrary (feasible) solution. At each step, search a (relatively small) neighborhood for an improved solution. If
such a solution is found, replace the current solution with it. Repeat this procedure until the neighborhood (of the current
solution) contains no improving solutions. At this point, return the current solution, which is locally optimal, and terminate.
Observe that in order for this method to run in polynomial time, each local change should be computable in polynomial
time, and the number of iterations should be polynomially bounded.

Local search algorithms are mainly used in the framework of metaheuristics, such as simulated annealing, taboo search,
genetic algorithms, etc. From a practical point of view, they are usually very efficient and achieve excellent results — the
generated solutions are near optimal. However, from a theoretical point of view, there is usually no guarantee on the their
worst-case performance. In the thorough survey [1], Angel reviews the main results on local search algorithms that have
a worst-case performance guarantee. See also Halldórsson [10] for applications of this method to k-dimensional matching,
k-set packing, and some variants on independent set, vertex cover, set cover and graph coloring problems.

In [17], Khanna et al. present the paradigm of non-oblivious local search. The idea, as they comment, has been implicitly
used in some known algorithms such as interior-point methods. In that paper, they define the formal general algorithm
in the context of MAX SNP. Then, they develop non-oblivious local search algorithms for MAX k-SAT, and for the problem
MAX k-CSP which they define, which is a generalization of all the problems in MAX SNP. The idea in the context of set
cover is as follows. Any standard (i.e., oblivious) local search algorithmmust explicitly have the same objective: minimizing
the number of picked sets. (Different such algorithms may look at different neighborhoods). However, a non-oblivious local
search algorithm may have a different objective function to direct the search.

Paper overview. In Section 2, we present an algorithm for (p, k)-UUSC (for any values of p, k). This algorithm is based
on applying the best known approximation algorithm for set packing (described in [14]) in each of the packing phases. For
(p, k)-UUSC where p ≥ 2, this algorithm exhibits all previously known methods to improve upon the greedy algorithm for
unweighted k-set cover. Hence, this algorithm serves as a benchmark for our improved algorithm. For the special case of
(p, k) = (2, 4) it achieves an asymptotic approximation ratio of 1.5 + ϵ. In Section 3, we present an improved algorithm
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ALGORITHM A1

Packing phases:
for i = k downto p + 1 do:

find a maximal collection of disjoint i-sets using
a 2−ϵ

i -approximation algorithm.

Phase p:
cover the remaining base elements with disjoint p-sets.

Fig. 1. Algorithm A1.

for the case of (p, k) = (2, 4), which is based on non-oblivious local search, and we show that its (absolute) approximation
ratio is at most 35

24 + ϵ = 1.458333... + ϵ. In Section 4, we discuss some open questions.

2. A first approximation algorithm for (p, k)-UUSC

Our algorithm is described in Fig. 1.
We analyze this algorithm using a factor revealing linear program. We assume that p ≥ 1, k ≥ 2, k > p. We also assume

that the input satisfies the subset closure property and, consequently, that the cover consists of disjoint subsets. Note that
in explicit representation, this causes the input size to increase by a factor of 2k

− 1 at the most, since for each subset, all its
non-trivial subsets are added to the collection. However, such an explicit representation is not necessary for our algorithm,
and we use it only for the analysis. Another simplifying assumption for the analysis is:

Assumption 2.1. The input consists exclusively of the sets in APX and OPT . In addition, APX ∩ OPT = ∅.

The justification of this assumption is fairly simple. Regarding its first part, observe that if the sets selected by A1 in phase
i cannot be improved, then this collection of i-sets cannot be improved by replacing some of them by subsets of OPT (or
subsets of them). Hence, subsets outside APX ∪ OPT can be removed.

For the second part, observe that if there is a subset S in both APX and OPT , removing S and its elements from the input
results in an instance for which APX \ {S} is a feasible solution and OPT \ {S} is an optimal solution. But the approximation
ratio for this new instance is ρ ′

≡
|APX |−1
|OPT |−1 ≥

|APX |

|OPT |
≡ ρ.

At any point in the execution of the algorithm, we define an i-set to be a subset of size i, such that all of its elements
are uncovered. We define ai,j to be the ratio of the number of j-sets in OPT in the beginning of packing phase i, to |OPT |,
i = p + 1, . . . , k, j = 1, . . . , i, and for phase p we define ap,p to be the ratio of the number of uncovered elements in the
beginning of phase p, to p|OPT |.

Our analysis of Algorithm A1 is similar to that of [3]. In each packing phase i (p+ 1 ≤ i ≤ k) we find a collection of i-sets
which is maximal. Therefore, in all of the next phases j (p ≤ j < i) there are no i-sets available. Similarly, in phase p there
are no i-sets available, i > p. Thus:

i−
j=1

ai,j ≤ 1, i = p + 1, . . . , k, (1)

ap,p ≤ 1. (2)

Denote by Vi the remaining uncovered elements in the beginning of phase i, i = p, . . . , k. By definition of ai,j, their
number is |Vi| =

∑i
j=1 jai,j|OPT |. In packing phase i, we pick i-sets that cover the elements in Vi \ Vi−1. Since Vi−1 ⊆ Vi their

number is:

|Vi \ Vi−1| = |Vi| − |Vi−1| =


i−

j=1

jai,j −
i−1−
j=1

jai−1,j


|OPT |, i = p + 1, . . . , k. (3)

At the beginning of packing phase i, there are at least ai,i|OPT | available i-sets. Therefore, the 2−ϵ
i -approximation algorithm

picks at least ( 2−ϵ
i )ai,i|OPT | i-sets, thus covering at least (2− ϵ)ai,i|OPT | new elements. Hence, |Vi \Vi−1| ≥ (2− ϵ)ai,i|OPT |.

Using (3) and omitting the ϵ term, this yields:
i−1−
j=1

jai−1,j −

i−1−
j=1

jai,j − (i − 2)ai,i ≤ 0, i = p + 1, . . . , k. (4)

Define ti to be the number of i-sets that are picked in packing phase i, i = p + 1, . . . , k. Then (3) yields:

ti =
1
i
|Vi \ Vi−1| =


1
i

i−
j=1

jai,j −
1
i

i−1−
j=1

jai−1,j


|OPT |, i = p + 1, . . . , k, (5)
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and for phase p define tp as:

tp = ap,p|OPT |. (6)

Note that ⌈ap,p|OPT |⌉ is the number of p-sets that are picked and possibly an additional set of size less than p, covering the

remaining elements. Due to this last set, we obtain an asymptotic approximation ratio. Specifically, it is
∑k

j=p ti+1
|OPT |

. Using (5),
(6), we obtain:

k∑
j=p

ti + 1

|OPT |
= ap,p +

k−
i=p+1


1
i

i−
j=1

jai,j −
1
i

i−1−
j=1

jai−1,j


+

1
|OPT |

=
1
k

k−
j=1

jak,j +
k−1−

i=p+1


1

i(i + 1)

i−
j=1

jai,j


+

1
p + 1

ap,p +
1

|OPT |
. (7)

Thus, maximizing the right-hand side of (7) subject to the constraints (1), (2) and (4) and ai,j ≥ 0, yields an upper-bound
on the approximation ratio of Algorithm A1. Observe that asymptotically, the term 1

|OPT |
is arbitrarily small. For convenience,

since it is a constant in the objective function, we omit it. The resulting LP is:

Program (P)

max 1
k

k−
j=1

jak,j +
k−1−

i=p+1


1

i(i + 1)

i−
j=1

jai,j


+

1
p + 1

ap,p

s.t.
i−

j=1

ai,j ≤ 1 i = p + 1, . . . , k (8)

ap,p ≤ 1 (9)
i−1−
j=1

jai−1,j −

i−1−
j=1

jai,j − (i − 2)ai,i ≤ 0 i = p + 1, . . . , k (10)

ai,j ≥ 0 i = p, . . . , k, j = 1, . . . , i.

It is possible to derive a closed-form solution for this LP.

Theorem 2.1. The solution of program (P) is given by:

• Case 1: k − p even: ap+2j+1,p+2j = ap+2j,p+2j = 1 for all j = 0, . . . , k−p−2
2 , ak,k = 1, and all other ai,j’s are zeros.

• Case 2: k − p odd: ap+2j+1,p+2j = ap+2j,p+2j = 1 for all j = 0, . . . , k−p−3
2 , ak,k = ak−1,k−2 = 1, and all other ai,j’s are zeros.

A1 is an asymptotic (ρ + ϵ)-approximation algorithm for (p, k)-UUSC, where ρ is (P)’s objective function value, and is given by:

ρ =


H k

2
− H p

2
+ 1 p even, k even

H k−1
2

− H p
2

+ 1 +
1
k −

1
k(k−1) p even, k odd

2(Hk − Hp+1) − H k
2

+ H p+1
2

+ 1 +
1
k −

1
k(k−1) p odd, k even

2(Hk+1 − Hp+1) − H k+1
2

+ H p+1
2

+ 1 p odd, k odd.

The proof is technical, and can be found in the Appendix. This is an asymptotic approximation ratio due to the 1
|OPT |

term
which we neglected.

Corollary 2.1. A1 is an asymptotic (1.5 + ϵ)-approximation algorithm for (2, 4)-UUSC.

3. An improved algorithm for (2, 4)-UUSC

In this section, we describe an improved algorithm for the case (p, k) = (2, 4). That is, subsets’ sizes are between 2–4,
and all possible 2-sets are available. Our algorithm is based on a non-oblivious local search. Specifically, denote by X2, X3, X4,
the number of 2, 3, 4-sets in APX , respectively. Then the number of base elements is n = 2X2 + 3X3 + 4X4 and the set cover
objective is to minimize X2 +X3 +X4. However, the objective of our algorithm is tomaximize 4X4 +X3. This is equivalent to
minimizing X2 + X3. Intuitively, the large sets are given higher priority because a cover which consists of many large sets is
good (due to the disjointness assumption). Observe that this objective function is related to that of packing problems, which
are the dual of the covering problems. Our local search algorithm is described in Fig. 2. It is parameterized by ϵ, which we
assume to be small enough, say ϵ ≤

1
100 , and in addition, without loss of generality we assume that 1

ϵ
is an integer.
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ALGORITHM A2

1. Start with an arbitrary feasible cover.
2. Perform a local search improvement step:

remove up to 1
ϵ
3- and 4-sets,

insert any number of 3- and 4-sets, so as to maximize 4X4 + X3.
3. Goto step 2, until no local search improvement step exists.
4. Cover the remaining base elements with 2-sets.

Fig. 2. Algorithm A2.

APX , the cover returned by the algorithm, is a local optimum. The following observation is trivial:

Observation 3.1. Every feasible solution SOL is of size n
4 ≤ |SOL| ≤

n
2 . Consequently, |APX | = Θ(|OPT |), |OPT | = Θ(|APX |).

Note that this observation implies that if |OPT | ≤
1
2ϵ , then APX is also an optimal solution.We use the following definition

for convenience:

Definition 3.1. The i-sets in OPT are called i-columns; the i-sets in APX are called i-rows. We simply use columns and rows
in places where their size is irrelevant or clear from the context.

3.1. Restricting the input type

In order to analyze the performance of Algorithm A2, we assume, as in the previous section, that the input collection
satisfies the subset closure property, and that feasible solutions consist of disjoint subsets. We also continue to assume
Assumption 2.1, i.e., that the input is APX ∪ OPT , where APX ∩ OPT = ∅. The next assumption, which is less trivial, restricts
the type of instance in the bad examples for the algorithm:

Assumption 3.1. The instance belongs to one of the following two types:

• Type A: OPT consists exclusively of 4-columns, APX consists of 2-, 3- and 4-rows,
• Type B: OPT consists exclusively of 3- and 4-columns, APX consists exclusively of 2- and 4-rows.

In order to justify this assumption, we prove the following result:

Lemma 3.1. Let I be a given instance. Let APX be a local optimum in I, let SOL be an arbitrary (feasible) solution in I with
|SOL| ≤ |APX |, and let ρ ≡

|APX |

|SOL| . Then there exists an instance I ′ having solutions denoted by SOL′ and APX ′, satisfying:

(i) APX ′ is a local optimum in I ′ achieving the same approximation ratio, i.e., ρ ′
≡

|APX ′
|

|SOL′| = ρ , (ii) SOL′ contains no 2-columns,
(iii) SOL′ contains no 3-columns or APX ′ contains no 3-rows.

Proof. Recall that APX ∩ SOL = ∅ by assumption. We refer to SOL’s sets as columns. Given I , we construct the new instance
I ′ in two phases. In Phase 1 we eliminate the 2-columns in SOL (if any); in Phase 2 we try to eliminate the 3-columns
in it. We begin by describing Phase 1. Denote by nAPX

{2,3} the number of 2- and 3-rows in APX , and by nSOL
2 the number of

2-columns in SOL. We may assume that nAPX
{2,3} ≥ 1, otherwise both APX and SOL are optimal solutions (consisting entirely of

4-sets). We show how to eliminatemin{nAPX
{2,3}, n

SOL
2 } 2-columns from SOL. Thus, if nSOL

2 > nAPX
{2,3} wemay recursively apply this

transformation to the resulting new instance, until (the new) SOL contains no 2-columns. In addition, the approximation
ratio, ρ, remains the same.

LetC be a collection ofmin{nAPX
{2,3}, n

SOL
2 } 2-columns in SOL (if nSOL

2 ≤ nAPX
{2,3} then it is unique). Then for each 2-column c ∈ C,

there exists a distinct 2- or 3-row in APX which we denote by rc . Let I ′ be the instance in which each c ∈ C is extended to a
3-column c ′

≡ c ∪ {xc} and rc ∈ APX is extended to r ′
c ≡ rc ∪ {xc}, where xc is a distinct new base element corresponding

to c. These extended sets will be referred to as new. Sets from which new sets were obtained will be called source sets.
Construct from APX a feasible solution for I ′ by replacing each source row by the new row extending it. Denote the

resulting collection by APX ′. Similarly, construct SOL′ from SOL by replacing each source column in SOL by the new column
extending it. That is, SOL′ contains new3-columns obtained from source 2-columns in SOL ; APX ′ contains new3- and 4-rows
obtained from source 2- and 3-rows in APX .

We show that APX ′ is a local optimum in I ′. Suppose to the contrary that this is not so. Then there exists a row collection
T ′

⊆ APX ′, and a subset collection S ′ consisting of columns and (possibly, by the subset-closure assumption) of sub-rows of
T ′ satisfying: (i) |T ′

| ≤
1
ϵ
, and (ii) replacing T ′ by S ′ improves the objective function value. More specifically, for j ∈ {2, 3, 4},

denote by t ′j and s′j the number of j-sets in T ′ and S ′, respectively. Then by assumption:

4t ′4 + t ′3 < 4s′4 + s′3. (11)

Let T ⊆ APX consist of the source (2- and 3-)rows from which the new (3- and 4-)rows in T ′ were obtained, and of all the
remaining non-new rows in T ′. Similarly, let S consist of the source (2-)columns fromwhich the new (3-)columns in S ′ were
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obtained, and of all the remaining non-new columns in S ′. Let m3,m4 be the number of new 3-, 4-rows in T ′, respectively
(i.e., S hasm3 + m4 source (2-)columns which were extended to new (3-)columns in S ′). Thus,

t ′4 = t4 + m4, t ′3 = t3 + m3 − m4, s′4 = s4, s′3 = s3 + m3 + m4. (12)

Using (11) and (12), we obtain:

4t4 + t3 = 4(t ′4 − m4) + t ′3 − m3 + m4 = 4t ′4 + t ′3 − m3 − 3m4
< 4s′4 + s′3 − m3 − 3m4 = 4s4 + s3 − 2m4 ≤ 4s4 + s3,

that is, 4t4 + t3 < 4s4 + s3. But this implies that the algorithm can replace T by S in I and improve the objective function.
This is a contradiction to APX being a local optimum in I . Finally, since |APX ′

| = |APX | and |SOL′
| = |SOL|, it follows that

ρ ′
= ρ. Thus, at the end of Phase 1, properties (i), (ii) stated in the lemma hold.
We now proceed to describe Phase 2. The idea is similar to that of Phase 1, but with two differences: first, the new rows

which are used to cover the new base elements in the new (4-)columns are only 4-rows (extending 3-rows in APX). (This
is so because extending a 2-row in APX to a 3-row may result in a non-local optimum); second, let nAPX

3 (nSOL
3 ) denote the

number of 3-rows (columns) in APX (SOL). Then this time, as opposed to what we did in Phase 1, if nAPX
3 < nSOL

3 , we cannot
repeatedly perform the transformation on the new instance, since it is possible for a local optimum to contain no 3-rows.
Thus, SOL′ — the new solution constructed from SOL, is only guaranteed to have min{nAPX

3 , nSOL
3 } less 3-columns than SOL.

With a slight abuse of notation, we let I denote the instance resulted from Phase 1, with APX and SOL its corresponding
solutions, and let I ′ denote the new instancewhichwe construct in this phase,withAPX ′ and SOL′ its corresponding solutions.

Let C be a collection of min{nAPX
3 , nSOL

3 } 3-columns in SOL. Thus, for each c ∈ C, there exists a distinct 3-row in APX ,
denoted rc . Define I ′ to be the instance in which each c ∈ C is extended to the new 4-column c ′

≡ c ∪ {xc} and rc ∈ APX is
extended to the new 4-row r ′

c ≡ rc ∪ {xc}, for a new distinct element xc .
As was done in Phase 1, construct APX ′ (SOL′) from APX (SOL) by replacing source sets by the new sets extending them.

That is, SOL′ contains new 4-columns extending source 3-columns in SOL; APX ′ contains new 4-rows extending source
3-rows in APX .

We show that APX ′ is a local optimum in I ′. If this is not the case, there exists T ′
⊆ APX ′, with |T ′

| ≤
1
ϵ
that can be

replaced by a collection S ′ consisting of columns and subsets of rows, improving the objective function value. That is, using
the notation t ′j and s′j from before, the inequality (11) holds.

Let T ⊆ APX (S) consist of the source 3-sets in APX (SOL) from which the new sets in T ′ (S ′) were obtained from, and all
the other non-new sets in T ′ (S ′). Let m be the number of new columns in S ′, which is equal to that of the new rows in T ′.
Thus,

t ′4 = t4 + m, t ′3 = t3 − m, s′4 = s4 + m, s′3 = s3 − m. (13)

Using (11) and (13), we obtain:

4t4 + t3 = 4(t ′4 − m) + t ′3 + m = 4t ′4 + t ′3 − 3m < 4s′4 + s′3 − 3m = 4s4 + s3,

that is, 4t4 + t3 < 4s4 + s3 — contradicting the fact the APX is a local optimum in I . Finally, we have |APX ′
| = |APX |,

|SOL′
| = |SOL|, implying that ρ ′

= ρ.
At the end of Phase 2, the constructed instance I ′ with its corresponding solutions APX ′ and SOL′ satisfy properties (i),

(ii), (iii). �

Note that 4X4 + X3, the objective function of Algorithm A2, does not take into account the number of 2-rows (as the
algorithm only uses them to cover the remaining elements that were failed to be covered by 3- or 4-rows). This observation
motivates the following terminology, which we make solely for convenience: We will refer to the base elements which are
covered by 2-rows as uncovered.

Once again,we use a factor revealing LP to bound the approximation ratio of the algorithm. That is, our goal is to formulate
an LP whose objective function value is an upper bound on the worst case approximation ratio of A2 (denoted by ρ). We
treat each of the two instance types separately.

3.2. Bounding ρ in Type A-instances

In this subsection we assume that the instance is of Type A, that is, OPT consists exclusively of 4-columns, while there is
no restriction on APX . We use the following notation:
Definition 3.2. For givenOPT andAPX , letOi,j be the set of columns inwhich i elements are covered by 4-rows and j elements
are covered by 3-rows, 0 ≤ i + j ≤ 4, and let Xi,j ≡

|Oi,j|

|OPT |
be the proportion of Oi,j-columns in OPT .

Observe that all Xi,j’s are non-negative and that they sum up to 1. We would like to express the objective function of set
cover in terms of these new variables. We do so using a simple pricing method: as each row of APX costs 1 and as the rows
are disjoint, an element covered by an i-row costs 1

i , i = 2, 3, 4. Thus, an Oi,j-column costs

ci,j ≡
1
4
i +

1
3
j +

1
2
(4 − i − j), 0 ≤ i + j ≤ 4. (14)
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Therefore:

|APX | = X2 + X3 + X4 =

−
0≤i+j≤4

ci,j|Oi,j| =

−
0≤i+j≤4

ci,jXi,j|OPT |.

Dividing by |OPT | gives the approximation ratio of the given instance, which is
∑

i,j ci,jXi,j. Thus, ρ = max I
∑

i,j ci,jXi,j (the
maximum taken over all legal instances), so our LP’s objective is:

max
−

0≤i+j≤4

ci,jXi,j. (15)

In order to bound this function, we derive additional linear constraints. Our goal is to bound the Xi,j’s with the highest ci,j
coefficients. In the light of our pricing scheme, this is interpreted as not buying too many expensive columns. Starting by
considering the most expensive ones, the following constraints are easy to establish:

Lemma 3.2. For any Type A-instance, O0,0,O0,1,O0,2,O0,3,O1,0 = ∅. Equivalently, X0,0, X0,1, X0,2, X0,3, X1,0 = 0.

Proof. Consider O0,i, i = 0, . . . , 3. If, by contradiction, O0,i ≠ ∅ for some i, then there exists a column S with i of its elements
covered by 3-rows, and the other elements are uncovered. Removing these 3-rows from APX and inserting S would increase
A2’s objective function. Thus, O0,i = ∅. If O1,0 ≠ ∅ then there exists a column S having one element covered by a 4-row,
which we denote by R, and the other elements are uncovered. Removing R from APX , inserting S and the 3-row subset of R:
R \ (R ∩ S) (recall the subset closure assumption), would again, increase A2’s objective function. In either case we obtained
a contradiction to APX being a local optimum. �

Among the remaining variables, the two Xi,j’s which have the largest coefficients in the objective function of the LP are,
according to (14), X1,1, with c1,1 =

19
12 , and X2,0, with c2,0 =

3
2 . We would like to obtain an upper-bound on them, using a

linear inequality. For this purpose, we use an intersection graph.

The intersection graph G
With a little abuse of terminology we will refer to APX , OPT , and to subsets of them, as both the sets of indices representing
the subsets of base elements, and the sets of vertices representing them in the following graph.

For a given instance, let G = (V , E) be a bipartite graph, in which one partite is the set of all 3- and 4-row members of
APX , and the second partite is OPT . For u a 3- or 4-row in APX and v ∈ OPT there are l (parallel) edges connecting u and v
if the intersection of (the subsets represented by) u and v consists of l base elements. Thus, for v ∈ Oi,j, degG(v) = i + j.
G is the intersection graph corresponding to APX and OPT , or, the intersection graph of the given instance, where APX is a local
optimum and OPT is an optimal solution of that instance.

Let G be an intersection graph of a given instance, and let F = (V (F), E(F)) be any induced subgraph of G. Denote by
OF
i,j the columns in F which are in Oi,j, and denote by nF

r and nF
c the number of rows and columns in F , respectively (i.e.,

nF
r ≡ |V (F) ∩ APX |, nF

c ≡ |V (F) ∩ OPT |). Also let nc ≡ nG
c , nr ≡ nG

r . Note that nc = |OPT |, and that nr ≤ |APX | (due to the
uncovered elements, i.e., those covered by 2-rows). Finally, F is called small if nF

r ≤
1
ϵ

− 2, otherwise it is called big. (The
reason for defining small subgraphs as those of size at most 1

ϵ
− 2 rather than 1

ϵ
will be clear in the sequel).

Throughout the rest of the paper, we use ‘CC’ as an abbreviation for ‘connected component’. We analyze the performance
of AlgorithmA2 by consideringG’s CC’s. Recall thatwhenwe stated the algorithm,we observed that it is optimal for instances
in which an optimal solution consists of 1

2ϵ sets at the most. In terms of G, this is generalized to small CC’s:

Lemma 3.3. Let G be an intersection graph of a given instance, and let F be a small CC of G. Then the base elements covered by
F ’s columns are covered optimally by Algorithm A2, and |OF

4,0| = nF
c , implying that |OF

i,j| = 0 for all (i, j) ≠ (4, 0).

Proof. The algorithm, which has no access to G, performs local improvement steps on collections of 3- and 4-rows of size
at most 1

ϵ
. Thus, it can remove all the nF

r ≤
1
ϵ
rows of F and replace them with F ’s columns, which optimally cover the base

elements in this CC. The rest of the claim follows from the fact that the instance is of Type A. �

Our goal is to upper-bound A2’s approximation ratio. Since the following analysis can be performed componentwise
on each of G’s CC’s, Lemma 3.3 implies that small CC’s in G can only improve the algorithm’s performance, decreasing its
approximation ratio. Thus, we may assume, without loss of generality:

Assumption 3.2. The intersection graph G is connected and big.

We now turn to deal with X2,0 and X1,1. We derive a linear inequality in the Xi,j variables which will be an additional
constraint in the LP that we construct. It is derived using a special graph, which we construct in two stages.

The H subgraph
We define the following subgraph of G, which we refer to as the H subgraph: it is the subgraph of G induced by the set of O1,1
and O2,0 columns and the set of 4-rows which intersect at least one O1,1 or O2,0 column. See an example in Fig. 3.

Observe thatH need not be connected (as opposed toG, by Assumption 3.2). Also observe that since the only rows inH are
4-rows, each O1,1 vertex has a single neighbor in H (i.e., the 4-row intersecting it). We record this fact for future reference:
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(a) An instance. (b) The corresponding H .

Fig. 3. An example of an instance and the corresponding H subgraph. In (a), the given instance is shown, where only the 4-rows intersecting O2,0 ∪ O1,1
are included. A ‘-’ stands for an uncovered base element, and a ‘*’ stands for an element covered by a 3-row. Thus, o1, o3 ∈ O1,1 , o2, o4, o5, o6 ∈ O2,0 , and
q1, . . . , q9 /∈ O1,1 ∪ O2,0 . Also observe that r1, r5 ∈ RH

{2} , r3, r4, r6 ∈ RH
{1} , and r2 ∈ RH

{3} .

Lemma 3.4. Each O1,1 vertex is a leaf in H.

For any subgraph F of H , let ∆(F) denote the maximum degree of a vertex in F . In addition, for A ⊆ {0, . . . , 4}, let RF
A denote

the set of row vertices in F of degree i in F for some i ∈ A.
We start by investigating the number of O1,1 vertices in H . The following result implies that there cannot be too many of

them:

Lemma 3.5. Let c, d be two distinct column vertices in O1,1 which belong to the same CC of H. Then every c − d path P in H has
nP
r ≥

1
ϵ

− 1 row vertices.

Proof. Wemay assume that c and d are connected by a (simple) path P ofminimum length among the paths inH connecting
a pair of O1,1 vertices. Let P ≡ (c, r1, c1, . . . , rl−1, cl−1, rl, d). By Lemma 3.4, the O1,1 vertices are leaves in H . Therefore, the
vertices c1, . . . , cl−1 are O2,0 columns, and r1, . . . , rl are 4-rows. Denote by r and s the 3-row neighbors in G of c and d,
respectively, and define P ′

≡ (r, c, r1, c1, . . . , rl−1, cl−1, rl, d, s). Observe that P ′ cannot be a cycle: if r = s, then removing
(the 3-row) r from APX , and inserting the two 3-column subsets c\r1 (i.e., c ’s two uncovered base elements and the singleton
c ∩ r) and d \ rl increases the objective function by 1, which is a contradiction to APX being a local optimum. Thus, P ′ is the
path from r to s. If nP ′

r ≤
1
ϵ
, the algorithm can replace the rows r, r1, . . . , rl, s with the columns c, c1, . . . , cl−1, d, again

increasing its objective function, which is a contradiction. Thus, nP ′

r ≥
1
ϵ

+ 1, implying nP
r = nP ′

r − 2 ≥
1
ϵ

− 1. �

Corollary 3.1. Every small CC of H has at most one O1,1 vertex.

As for big CCs, we have:

Lemma 3.6. Let F be a big CC of H. Then |OF
1,1| = O(ϵ)nF

r .

Proof. Assume that |OF
1,1| > 1, otherwise the claim is trivial. Construct a Voronoi diagram on the set of F ’s vertices, with

centers being its O1,1 columns. By Lemma 3.5, any path connecting two distinct such centers has at least 1
ϵ
− 1 row vertices.

Therefore, each Voronoi cell contains at least ⌊ 1
2 (

1
ϵ
−1)⌋ vertices. Thus, nF

r ≥ |OF
1,1|⌊

1
2 (

1
ϵ
−1)⌋, implying |OF

1,1| = O(ϵ)nF
r . �

Thus, the O1,1 vertices are ‘‘negligible’’ in H , both in small and big components. We proceed to investigate the number of
O2,0 vertices. We specify two useful properties of H: the first states that small CCs are either double edges (i.e., two parallel
edges between a pair of vertices), cycles, or trees, and the second is a characterization of a local optimum.

Lemma 3.7. Every small CC of H is either a double edge, a cycle, or a tree.

Proof. We prove the claim by showing that a small CC of H cannot include a double edge or a cycle as a proper subset. Thus,
any small CC which is not a double edge or a cycle must be a tree.

We start by showing that two vertices that are connected by a double edge have no other neighbors in H , implying that
a CC of H cannot include a double edge as a proper subset. Suppose that a column c and a row r are connected by a double
edge. Since, by Lemma 3.4, the O1,1 vertices are leaves, it follows that c ∈ O2,0. Thus, |r ∩ c| = 2 (i.e., r covers two base
elements of c), and c has no neighbors other than r . So suppose to the contrary that r has an additional neighbor d ≠ c. If r
covers two elements of d, then replacing r with c, d produces a better solution, which is a contraction. Otherwise, |r∩d| = 1
and d has an additional neighbor, which we denote by s. Then removing r and inserting c and d \ (d ∩ s) (i.e., the 3-row
subset of d consisting of d’s two uncovered elements and the singleton r ∩ d) again produces a better solution, which is a
contradiction.

In order to complete the proof, we show that a small cycle has no neighbors outside it, again, implying that a CC of H
cannot include it as a proper subset. Let C be a small cycle in H . We show that for each vertex in C , its neighbors in H are
precisely its two neighbors in C . Again, since O1,1 vertices are leaves (by Lemma 3.4), it follows that C ’s vertices alternate
between rows and O2,0-columns. By definition, each O2,0 column has exactly two (4-)row neighbors, hence, they are in C .
As for the rows of C , suppose to the contrary that there exists a (4-)row vertex r ∈ C that has a neighbor c ∈ H \ C . First
observe that r cannot be connected to c by a double edge since in that case, as we just proved, that a double edge is by itself
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a CC, which is a contradiction. Thus r covers a single base element of c. Let c ′ be the 3-column subset of c consisting of c ’s
two uncovered base elements and (the singleton) r ∩ c. As nC

r ≤
1
ϵ
, the following local step can be applied: remove C ’s rows

from the current solution and insert C ’s columns and c ′. The number of 4-sets in the new solution is the same, while the
number of 3-sets increases by one. Thus, this step is a local improvement one, which is a contradiction. �

Lemma 3.8. Let T be a small subtree of H. (i) If all the leaves in T are (4-)row vertices, then their number, |RT
{1}|, is at most 4.

(ii) If T has exactly |RT
{1}| = 4 leaves, then T contains no O1,1 vertices.

Proof. Assume ∆(T ) > 2, otherwise the claim is trivial (note that for part (ii), if ∆(T ) ≤ 2 then T cannot have 4 leaves).
Hence RT

{3,4} ≠ ∅.
(i) Since T ’s vertices alternate between rows and columns, it follows that

nT
r = nT

c + 1. (16)

To see this, partition T into edge-disjoint paths by the following iterative procedure: start with any path P connecting two
arbitrary leaves, andmark its vertices. Clearly, nP

r = nP
c +1. As long as there exist unmarked vertices, choose aminimal (with

respect to inclusion) path Q connecting an unmarked leaf to a marked vertex u. Note that u ∈ RT
{3,4}, i.e., n

Q
r = nQ

c + 1, and
since Q is minimal, all of Q ’s vertices except for u are unmarked. Marking Q ’s vertices, the number of row vertices which are
marked for the first time is equal to the number of such column vertices. Summing over all paths, we obtain nT

r = nT
c + 1.

Observe that for each row leaf r ∈ RT
{1}, r ’s neighbor is a column in O2,0, since the O1,1 are leaves (by Lemma 3.4) and

∆(T ) > 2 by assumption. As nT
r ≤

1
ϵ
, the following local step can be applied:

• remove the nT
r rows of T from the current solution,

• insert the nT
c columns of T ,

• for each (4-row) leaf r ∈ RT
{1}, insert its 3-row subset consisting of the three elements which are not covered by r ’s (O2,0)

neighbor in T .

Thus, we traded one 4-row for |RT
{1}| 3-sets. Due to our objective function, we must have |RT

{1}| ≤ 4, otherwise this step
would be a local improvement one, which is a contradiction.
(ii) Suppose to the contrary that there exists a subtree T ⊆ H with |RT

{1}| = 4 row leaves such that OF
1,1 ≠ ∅. Denote these

row leaves by r1, . . . , r4, and let c1, . . . , c4 be their corresponding neighbors. Observe that c1, . . . , c4 /∈ O1,1, since if ci ∈ O1,1
for some i, then by Lemma 3.4 it is a leaf, implying that (ri, ci) is an isolated edge, contradicting the assumption that T is a
tree with four leaves. By Corollary 3.1, there is exactly one OF

1,1 vertex, which we denote by c. Let r be c ’s 3-row neighbor,
and let T ′

≡ (V (T ) ∪ {r}, E(T ) ∪ {(c, r)}). Thus, all the leaves in T ′ are row vertices. It then follows, by exactly the same
argument in part (i), that nT ′

r = nT ′

c + 1. Therefore, in T we have: nT
r = nT

c . As n
T ′

r ≤
1
ϵ
, we can remove the nT

r 4-rows and
(the 3-row) r , and insert the nT

c columns and the four 3-row subsets of the leaves: ri \ ci, i = 1, . . . , 4. The number of 4-sets
remain the same, while the number of 3-sets increases by 3, which is a contradiction. �

We emphasize that T need not be a CC of H . It may be a proper subset of a CC. If T is a CC, the following result holds:

Corollary 3.2. Let T be a small CC of H which is a tree. Then |RT
{1}| ≤ 4, |RT

{3,4}| ≤ 2. Consequently, |RT
{2}| ≥ nT

r − 6.

Proof. The leaves of T are either RT
{1} or O1,1 vertices. If all of them are RT

{1} vertices, then by Lemma 3.8 (i): |RT
{1}| ≤ 4.

Otherwise, Corollary 3.1 implies that T contains exactly one O1,1 vertex. Deleting it from T , we obtain a subtree T ′ whose all
leaves are the RT ′

{1} vertices. By Lemma 3.8(i): |RT
{1}| = |RT ′

{1}| ≤ 4.
For the second part, recall fromGraph Theory that the number of leaves in a nontrivial connected graph Gwith ni vertices

of degree i, i = 1, . . . , ∆(G), is bounded by:

n1 ≤ 2 +

∆(G)−
i=3

(i − 2)ni. (17)

(This follows from
∑∆(G)

i=1 ini = 2|E(G)| ≥ 2(|V (G)| − 1) = 2(
∑∆(G)

i=1 ni − 1)). If G is a tree, then (17) holds as an equality,
which we apply to T and obtain:

|RT
{1}| = 2 + |RT

{3}| + 2|RT
{4}|. (18)

We then conclude that:

|RT
{3,4}| = |RT

{3}| + |RT
{4}| ≤ |RT

{3}| + 2|RT
{4}| = |RT

{1}| − 2 ≤ 2.

(The last inequality follows from the first part). Thus |RT
{3,4}| ≤ 2. �

Corollary 3.2 implies that most of the rows in a small tree T have degree 2, i.e., they are the RT
{2} vertices. This is intuitive,

as we can view these rows as ‘‘links’’ connecting two columns in a ‘‘chain’’, while very few rows are ‘‘end-rows’’ (namely,
the RT

{1} ones), and even fewer rows are ‘‘links’’ to other ‘‘chains’’ (the RT
{3,4} ones). Observe that for F a cycle or a double edge,

it is trivial that all the rows have degree 2, i.e. |RF
{1}| = |RF

{3,4}| = 0, |RF
{2}| = nF

r .
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For the big CCs of H , the dominance of the R{2} rows still holds, but in a weaker sense. In order to establish it, we look at
small neighborhoods around the vertices of a big CC F , bound the number of vertices of degrees 3 or 4, and by summation
obtain a bound on |RF

{3,4}|. A bound on |RF
{1}| then follows naturally.

Definition 3.3. For ϵ > 0 and v ∈ H , let Bϵ(v) be the neighborhood of radius 1
5ϵ centered at v in H , i.e., the set of all vertices

u in H such there exists a u − v path in H of length at most 1
5ϵ .

Observe that |Bϵ(v)| may be greater than 1
ϵ
. In addition, it is possible for a ‘‘boundary’’ vertex u ∈ Bϵ(v) that degBϵ (v)(u) <

degH(u), i.e., if its distance from v is exactly 1
5ϵ .

Lemma 3.9. For any v ∈ H, Bϵ(v) contains at most two vertices of degree 3 or 4 in H, i.e., |Bϵ(v) ∩ RH
{3,4}| ≤ 2.

Proof. Suppose to the contrary that there exists v ∈ H such that Bϵ(v) contains at least 3 vertices in RH
{3,4}. Pick any three of

these vertices and denote them by v1, v2, v3. Let B′ be a spanning tree of Bϵ(v), and let Pi be the v − vi path in B′, i = 1, 2, 3.
Let T be the subtree of B′ defined by T ≡

3
i=1 Pi. We first show how to augment T to obtain a subtree T ′

⊆ Bϵ(v) with at
least 5 leaves which are column vertices:

• Case 1: T has at least two leaves in {v1, v2, v3}, say v1 and v2. Then each of v1, v2 has at least two neighbors which are
not in T , and in addition, either v is a leaf or v3 has at least one neighbor which is not in T . These neighbors are distinct
and are different from v, otherwise H contains a small cycle as a proper subset, contradicting Lemma 3.7. Let T ′ be the
tree obtained by adding the edges connecting these neighbors to T . Then T ′ has at least 5 leaves, which are columns.

• Case 2: T is a simple path from v to (say) v1: then v1 has at least two neighbors which are not in T , and each of v2, v3
has at least one neighbor which is not in T . These neighbors are distinct by an argument similar to that in Case 1. Let T ′

be the tree obtained by adding the edges connecting these neighbors to T . Then again, T ′ has at least 5 column leaves (v
being one of them).

In both cases, we obtained a tree T ′ of size at most 3
5ϵ + 5, which we clearly may assume to be less than 1

ϵ
, with at least

5 leaves which are column vertices. Now, since T ′ is small, it follows by Corollary 3.1 that among these 5 column leaves,
at most one is an O1,1 column vertex. Thus, at least 4 leaves are O2,0 columns. Each such O2,0 leaf has an additional row
neighbor outside T ′. Again, these neighbors are distinct, otherwise there is a contradiction to Lemma 3.7. Adding the edges
connecting these row neighbors to T ′, we obtain a tree of size at most 3

5ϵ + 10 ≤
1
ϵ
. It either has 5 or more row leaves, or

exactly 4 row leaves and one O1,1 leaf. In both cases we obtain a contradiction to Lemma 3.8. �

We are now ready to upper-bound the number of vertices of degree 1, 3, and 4 in the big CCs of H . In particular, this
establishes the dominance (in terms of a lower bound) of rows of degree 2 which we previously stated. Since, as we
mentioned, we look at each CC separately, all bounds are in terms of the total number of rows in the specific CC.

Lemma 3.10. Let F be a big CC of H. (i) |RF
{3,4}| = O(ϵ)nF

r , (ii) |RF
{1}| = O(ϵ)nF

r , (iii) |RF
{2}| ≥ (1 − O(ϵ))nF

r .

Proof. For part (i), observe that:

|RF
{3,4}| =

−
v∈RF

{3,4}

1 ≤

−
v∈RF

{3,4}

5ϵ|Bϵ(v)|,

where the inequality follows from the fact that for v in a big CC, |Bϵ(v)| ≥
1
5ϵ .

Now, consider the multi-set of vertices which belong to the (possibly overlapping) neighborhoods around all of RF
{3,4}

vertices, that is, we look at S ≡ ∪v∈RF
{3,4}

Bϵ(v) where we allow repetitions of elements in S. Every vertex appears at most
twice in S. To see this, suppose to the contrary that there is a vertex u which appears at least three times in S. Then any
three centers of neighborhoods which cover u are three RF

{3,4} vertices in Bϵ(u). F is a CC of H , therefore RF
{3,4} ⊆ RH

{3,4},
implying |Bϵ(u)∩RH

{3,4}| ≥ |Bϵ(u)∩RF
{3,4}| ≥ 3, which is a contradiction to Lemma 3.9. Hence,

∑
v∈RF

{3,4}
|Bϵ(v)| = |S| ≤ 2nF .

Combining this with the previous inequality, we obtain:

|RF
{3,4}| ≤ 10ϵnF . (19)

We would like to obtain the bound in terms of nF
r , the number of rows in F . Observe that each column intersects at most 4

rows. Thus, nF
c ≤ 4nF

r , implying that nF = nF
r + nF

c ≤ 5nF
r . Substituting this in (19), we obtain:

|RF
{3,4}| ≤ 50ϵnF

r . (20)

This proves part (i).
For part (ii), applying (17) to F , we obtain:

|RF
{1}| ≤ 2 + |RF

{3}| + 2|RF
{4}| ≤ 2 + 2|RF

{3,4}| ≤ 2 + 100ϵnF
r ≤ 102ϵnF

r ,

where the third inequality follows from (20), and the last one from the assumption that F is big. This proves part (ii).
Part (iii) follows from parts (i) and (ii) (as nF

r = |RF
{1}| + |RF

{2}| + |RF
{3,4}|). This completes the proof. �
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Now consider the OF
2,0 columns for some big CC F of H . We show that their number is about the same as that of RF

{2}

vertices. Intuitively, this is true since, as we proved, most of F ’s columns are in OF
2,0, most of its rows are in RF

{2}, and in every
path the vertices alternate between rows and columns. Formally:

Lemma 3.11. For a big CC F of H: |RF
{2}| − O(ϵ)nF

r ≤ |OF
2,0| ≤ |RF

{2}| + O(ϵ)nF
r .

Proof. Let F be a big CC of H . We bound
∑4

i=1 i|R
F
{i}| from below and from above to obtain:

2|RF
{2}| ≤

4−
i=1

i|RF
{i}| ≤ |RF

{1}| + 2|RF
{2}| + 4|RF

{3,4}| ≤ 2|RF
{2}| + O(ϵ)nF

r ,

where the last inequality follows from Lemma 3.10(i),(ii). Counting F ’s edges using each of its two partite sets, we obtain:

4−
i=1

i|RF
{i}| = |OF

1,1| + 2|OF
2,0| = 2|OF

2,0| + O(ϵ)nF
r ,

where the last equality is by Lemma 3.6. Thus:

2|RF
{2}| ≤ 2|OF

2,0| + O(ϵ)nF
r ≤ 2|RF

{2}| + O(ϵ)nF
r .

Subtracting O(ϵ)nF
r from all sides and dividing by 2 yields the claim. �

We note that for small CC’s, the last result holds in a stronger sense:

Remark 3.1. Let F be a CC of H . (i) If F is a small tree then |RF
{2}| − 1 ≤ |OF

2,0| ≤ |RF
{2}| + 5. (ii) If F is a small cycle or a double

edge then |OF
2,0| = |RF

{2}|.

Proof. (i) Let F be a small CC of H which is a tree. First suppose that F contains no O1,1 vertices, i.e., all of its leaves the RF
{1}

vertices. Then equality (16) holds for F , i.e., nF
r = nF

c + 1 (this is true by the argument used in the proof of Lemma 3.8(i)).
Thus, |OF

2,0| = nF
c = nF

r − 1. We now bound |OF
2,0| from above and from below:

|OF
2,0| = nF

r − 1 ≤ |RF
{2}| + 5,

where the inequality follows from Corollary 3.2, and trivially:

|OF
2,0| = nF

r − 1 ≥ |RF
{2}| − 1.

Thus, |RF
{2}| − 1 ≤ |OF

2,0| ≤ |RF
{2}| + 5, as required.

If OF
1,1 ≠ ∅ then by Corollary 3.1, F contains exactly one O1,1 vertex. We delete it from F to obtain a tree, denoted F ′,

with all its leaves being R{1} vertices. Thus, the last result holds for F ′, i.e., |RF ′

{2}| − 1 ≤ |OF ′

2,0| ≤ |RF ′

{2}| + 5. By observing that
OF
2,0 = OF ′

2,0 and RF
{2} = RF ′

{2}, we establish the result for F as well.
(ii) This is trivial. �

Recall that our goal is to bound X1,1 and X2,0 — the proportions of O1,1 and O2,0 in G. So far we obtained a good estimation
of their proportions in H: Corollary 3.1 and Lemma 3.6 imply that the O1,1 vertices are negligible in small and big CCs of H ,
respectively ; Lemma 3.11 and Remark 3.1 imply that intuitively, the proportion of O2,0 in H is about one half (the other
half consists mainly of rows of degree 2). However, in order to bound the proportions in G, we need to take into account the
columns which are not in O1,1 or O2,0 but intersect some row in that CC. This motivates the following construction:
TheH graph
Denote those columns which intersect some row in H and are not in O1,1 ∪O2,0 byO. We construct theH graph, which need
not be a subgraph of G, in two steps. First, letH be the graph obtained from H by connecting each row in H to distinct new
vertices representing theO-columns intersecting it. We emphasize that anO-columnmay appear in a few CCs ofH: Suppose
o ∈O and C1, . . . , Cl, 2 ≤ l ≤ 4 are CCs ofH such that each one contains a row intersecting o. Then each corresponding CC inH will have its own (distinct) vertex representing o. Thus, in terms of vertex labels (where each vertex has a label of the set
represented by it), the CCs ofH are notO-column-disjoint. But they are O1,1 ∪ O2,0-column-disjoint as well as row-disjoint,
and hence in particular are edge-disjoint. Fig. 4 shows theH graph corresponding to the instance given in Fig. 3 up to this
step.

At a final step in the construction, we add toH the subgraph of G induced by the set of remaining vertices (if any), that
is, all vertices which do not belong to any CC from the previous step. Denote this subgraph byH0. Note thatH0 need not be
connected. Let C denote the collection ofH ’s CCs. The disjointness of the rows implies:

nr = nHr =

−
F∈C∪H0

nF
r . (21)
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Fig. 4. TheH graph corresponding to the instance given in Fig. 3 prior to the addition of theH0 subgraph.

We use the following notation. Let F ∈ C ∪ H0. Denote by OF the O-columns in F . Denote by EF
2,0 the set of edges

incident to the OF
2,0 columns, by EF

1,1 the set of edges incident to the OF
1,1 columns, and byEF the set of remaining edges,

i.e.EF
≡ E(F) \ (EF

2,0 ∪ EF
1,1). Note that for F ∈ C (F ≠ H0), all the edges inEF are incident to columns in OF . Define

E2,0 ≡


F∈C
EF
2,0, E1,1 ≡


F∈C

EF
1,1, andE ≡


F∈C

EF . Finally, denote by rFi the number of rows in V (F)∩ RH
{i}. The following

observations are trivial (the first two hold in H as well):

Lemma 3.12. (i) For each F ∈ C ∪H0, |EF
1,1| = |OF

1,1| and |EF
2,0| = 2|OF

2,0|, (ii) For each F ∈ C, each vertex o ∈ OF
1,1 is a leaf in

F , (iii) For each F ∈ C, a row in F which belongs to RH
{i} contributes i edges to EF

1,1 ∪ EF
2,0 and 4 − i edges toEF , i = 1, . . . , 4, that

is:

|EF
2,0| + |EF

1,1| = rF1 + 2rF2 + 3rF3 + 4rF4 , (22)

|EF
| = 3rF1 + 2rF2 + rF3 . (23)

Lemma 3.13. For any Type A-instance,

|E| ≤ |O1,2| + |O1,3| + 2|O2,1| + 2|O2,2| + 3|O3,0| + 3|O3,1| + 4|O4,0|. (24)

Proof. Consider a vertex o ∈ Oi,j, i ≥ 1, (i, j) /∈ {(1, 1), (2, 0)}. o ∈O if there exist an O2,0-column q and a 4-row r such that
r ∩ q ≠ ∅ and r ∩ o ≠ ∅. In this case, o contributes at most i edges (possibly in different CCs) toE. (Otherwise it contributes
zero). �

We now derive a linear inequality, which provides an upper-bound on the number of edges in E2,0 and E1,1.

Lemma 3.14. For any Type A-instance, |E2,0| + 3|E1,1| ≤ |E| + O(ϵ)nr .

Proof. We show that for every F ∈ C ∪H0, we have:

|EF
2,0| + 3|EF

1,1| ≤ |EF
| + O(ϵ)nF

r . (25)

By definitions of E2,0, E1,1 andE, and using (21), the claim then follows by summing over all F ∈ C ∪H0. We distinguish four
cases, according to the type of F .

• Case 1: F = H0

SinceH0 contains no O1,1 and O2,0 vertices, it follows that E
H0
1,1 = E

H0
2,0 = ∅. Hence (25) trivially holds.

• Case 2: F is a CC ofH obtained from a double edge or a small cycle in H
Denote by C the double edge or the cycle inH fromwhich F is obtained. Then C is a CC ofH , and its rows are precisely the
rows of F (becauseH was obtained from H by adding columns). C has even length, with its vertices alternating between
O2,0 columns and RH

{2} (4-)rows. Thus, each such row has two O2,0 column neighbors (in C and therefore in F ) and twoO
column neighbors (in F \ C). Therefore, it contributes two edges to EF

2,0 and two toEF , i.e.:

|EF
2,0| = |EF

| = 2nF
r . (26)

Finally, observe that OF
1,1 = ∅: this is true because as we just noted, C ’s columns are only in O2,0, and F was obtained

from C by addingO columns (which, by definition, are not in O1,1). Thus, |OF
1,1| = 0, implying that |E1,1| = 0. This fact

and (26) establish (25).
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• Case 3: F is a CC ofH obtained from a small tree in H
The rows of F are precisely the rows of the tree inH which F is obtained from. Thus, subtracting (22) from (23), we obtain:

|EF
| − |EF

2,0| − |EF
1,1| = 2(rF1 − rF3 − 2rF4 ) = 4,

where the last equality follows from rF1 = 2 + rF3 + 2rF4 , which holds due to (18). This implies:

|EF
2,0| ≤ |EF

| − 4. (27)

Now, by Corollary 3.1, F can have at most one O1,1 vertex. By Lemma 3.12(ii), such a vertex is a leaf in F , implying that
|EF

1,1| = |OF
1,1| ≤ 1. Combining this with (27), we obtain:

|EF
2,0| + 3|EF

1,1| ≤ |EF
2,0| + 3 ≤ |EF

| − 1,

establishing (25).
• Case 4: F is a CC ofH obtained from a big CC of H

We have:

|EF
| ≥ 2rF2 ≥ 2|OF

2,0| − O(ϵ)nF
r = |EF

2,0| − O(ϵ)nF
r ,

where the first inequality follows from (23), the second inequality follows from Lemma 3.11, and the equality follows
from Lemma 3.12(i). In order to complete the proof, it suffices to show that |EF

1,1| = O(ϵ)nF
r . Denote by F ′ the (big) CC

of H from which F is obtained. By Lemma 3.6, we have |OF ′

1,1| = O(ϵ)nF ′

r . Since OF ′

1,1 = OF
1,1 and similarly, the rows of F ′

are precisely the rows of F , we also have: |OF
1,1| = O(ϵ)nF

r . By Lemma 3.12(i): |EF
1,1| = |OF

1,1|. Hence |EF
1,1| = O(ϵ)nF

r , as
required. �

We are now ready to bound a linear combination of X2,0 and X1,1:
Lemma 3.15. For any Type A-instance:

2X2,0 + 3X1,1 ≤ X1,2 + X1,3 + 2X2,1 + 2X2,2 + 3X3,0 + 3X3,1 + 4X4,0 + O(ϵ). (28)

Proof. From Lemma 3.14 we have: |E2,0| + 3|E1,1| ≤ |E| + O(ϵ)nr . From Observation 3.1 we obtain nr = Θ(nc), so we also
have: |E2,0| + 3|E1,1| ≤ |E| + O(ϵ)nc . We would like to write this inequality in terms of the column sets. By summation,
Lemma 3.12(i) implies that |E1,1| = |O1,1| and |E2,0| = 2|O2,0|. Thus, we obtain:

2|O2,0| + 3|O1,1| ≤ |E| + O(ϵ)nc . (29)
Using Lemma 3.13, we obtain:

2|O2,0| + 3|O1,1| ≤ |O1,2| + |O1,3| + 2|O2,1| + 2|O2,2| + 3|O3,0| + 3|O3,1| + 4|O4,0| + O(ϵ)nc .

Dividing both sides by nc = |OPT |, we obtain the required inequality. �

By providing the last constraint, Lemma 3.15 concludes our construction of the LP, which upper-bounds ρ—the
approximation ratio of the algorithm (for Type A-instances). Recall that the other constraints are that the variables are non-
negative and that their sum is 1. In addition, the variables X0,0, X0,1, X0,2, X0,3, X1,0 are zero, by Lemma 3.2. The objective
function was stated in (15). Thus, the complete program is:

max
−

0≤i+j≤4

ci,jXi,j

s.t. 3X1,1 − X1,2 − X1,3 + 2X2,0 − 2X2,1 − 2X2,2 − 3X3,0 − 3X3,1 − 4X4,0 ≤ O(ϵ) (30)−
0≤i+j≤4

Xi,j = 1

Xi,j ≥ 0 0 ≤ i + j ≤ 4
X0,0, X0,1, X0,2, X0,3, X1,0 = 0

(inequality (30) is obtained from (28) by rearranging terms). Specifically, given ϵ > 0, the ratio ρ is upper-bounded
by the objective function value of the LP. We now turn to solve this program. We simplify it, first by omitting the zero
variables X0,0, X0,1, X0,2, X0,3, X1,0. Denote the set of (remaining) relevant indices by I ≡ {(1, 1), (1, 2), (1, 3), (2, 0), (2, 1),
(2, 2), (3, 0), (3, 1), (4, 0)}. Next, since our goal is to solve the LP for arbitrarily small values of ϵ, we replace O(ϵ) in the
constraint (30) by zero. Using (14) to obtain the explicit values of ci,j’s, the modified LP is:

max 19
12X1,1 +

17
12X1,2 +

5
4X1,3 +

3
2X2,0 +

4
3X2,1 +

7
6X2,2 +

5
4X3,0 +

13
12X3,1 + X4,0

s.t. 3X1,1 − X1,2 − X1,3 + 2X2,0 − 2X2,1 − 2X2,2 − 3X3,0 − 3X3,1 − 4X4,0 ≤ 0 (31)−
(i,j)∈I

Xi,j = 1 (32)

Xi,j ≥ 0 (i, j) ∈ I.
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In order to solve this LP, we use the dual program. Let y, z be the dual variables corresponding to constraints (31), (32),
respectively. The dual program is then:

min z
s.t. 3y + z ≥

19
12

−y + z ≥
17
12

−y + z ≥
5
4

2y + z ≥
3
2

−2y + z ≥
4
3

−2y + z ≥
7
6

−3y + z ≥
5
4

−3y + z ≥
13
12

−4y + z ≥ 1
y ≥ 0.

Let X∗ be the vector consisting of X1,1 =
1
4 , X1,2 =

3
4 , and Xi,j = 0 for all (i, j) ∈ I \ {(1, 1), (1, 2)}. It is clear that X∗ is

a feasible primal solution. The corresponding objective function value is c1,1X∗

1,1 + c1,2X∗

1,2 =
19
12 ·

1
4 +

17
12 ·

3
4 =

35
24 . Let

(y∗, z∗) ≡ ( 1
24 ,

35
24 ). It is straightforward to verify that it is a feasible dual solution. The corresponding objective function

value is z∗
=

35
24 , which is equal to that of the primal. Thus, from the duality theorem, we conclude that X∗ and (y∗, z∗) are

optimal solutions to the primal and dual programs, respectively. By the construction of the (primal) LP, we conclude the
following result:
Theorem 3.1. For Type A-instances, A2 is a (ρ + ϵ)-approximation algorithm for (2, 4)-UUSC, where ρ ≤

35
24 = 1.458333...

3.3. Bounding ρ in Type B-instances

In this subsection we assume that the instance is of Type B, that is, OPT consists of 3- and 4-columns, and APX consists
of 2- and 4-rows. We use the analogous notation to that of the previous section.
Definition 3.4. For given OPT and APX , let O4

i be the set of 4-columns in which i elements are covered (by 4-rows),

i = 0, . . . , 4, and let X4
i ≡

|O4
i |

|OPT |
be the proportion of these columns in OPT . Similarly, let O3

i be the set of 3-columns in

which i elements are covered (by 4-rows), i = 0, . . . , 3, and let X3
i ≡

|O3
i |

|OPT |
. For any graph F , let Os,F

i ≡ Os
i ∩ V (F), s = 3, 4,

i = 0, . . . , s.
The objective function of set cover in terms of these new variables is:

|APX | = X2 + X3 + X4 =

4−
i=0

c4i |O
4
i | +

3−
i=0

c3i |O
3
i | (33)

where

c4i ≡
i
4

+
4 − i
2

= 2 −
i
4
, i = 0, . . . , 4,

and

c3i ≡
i
4

+
3 − i
2

=
3
2

−
i
4
, i = 0, . . . , 3.

Explicitly, the column costs are:
(c40 , . . . , c

4
4 ) = (2, 1.75, 1.5, 1.25, 1), (c30 , . . . , c

3
3 ) = (1.5, 1.25, 1, 0.75). (34)

Observe that c4i = ci,0 from the previous section (i = 0, . . . , 4). The objective function of our LP, which bounds ρ from
above, is:

max
4−

i=0

c4i X
4
i +

3−
i=0

c3i X
3
i . (35)

Considering the highest c ji ’s (i.e., the costs of the most expensive columns), the following result is analogous to Lemma 3.2
and therefore its proof is omitted:
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Lemma 3.16. For any Type B-instance, O3
0,O

4
0,O

4
1 = ∅. Equivalently, X3

0 , X4
0 , X4

1 = 0.

The next highest coefficient is c42 = 1.5, so we derive a bound on X4
2 . The intersection graph G is defined exactly the same,

and we assume that it is connected and big (i.e., Assumption 3.2 holds for this instance type as well). Formally, it consists of
3- and 4-columns in the OPT partite, and 4-rows in the APX one. As for H andH:
The H subgraph
H is the subgraph ofG induced by theO4

2-columns and the (4-)rows intersecting them.Note that these columns are analogous
to the O2,0 columns of Type A-instance, while there is no analog to O1,1 columns. Thus, H ’s structure is the same, that is, H
obtained fromaTypeB-instance is a special case ofH obtained fromaTypeA-instance,withnoO1,1 columns. Thus, the results
from the previous section hold trivially. Specifically, regarding the H subgraph, Lemmas 3.4–3.6 are irrelevant, Lemma 3.7
holds, Lemma 3.8(i) holds (part (ii) is irrelevant), Lemma 3.9 holds, and Lemma 3.10 holds. The analog of Lemma 3.11 is:

Lemma 3.17. For any Type B-instance, for each big CC F: |RF
{2}| − O(ϵ)nF

r ≤ |O4,F
2 | ≤ |RF

{2}| + O(ϵ)nF
r .

TheH graphH is, again, similar to H from the previous section, but with no columns analogous to O1,1. Specifically, letO be the set of
columns which intersect some row in H (i.e., a 4-row intersecting some O4

2 column). For each CC F of H , connect each row
in F to distinct vertices representing theO-columns intersecting it. Denote these vertices byOF . LetE be the set new edges
used to connect those vertices. Also, letH0 denote the subgraph of G induced by the remaining vertices (which include all
the 3-rows), and add it toH . Finally, let E4,F

2 ,EF , E4
2 denote the set of edges incident to O4,F

2 ,OF , O4
2 vertices, respectively. The

analog of Lemma 3.12 is (only parts (i) and (iii) are relevant):

Lemma 3.18. (i) For each F ∈ C ∪H0,

|E4,F
2 | = 2|O4,F

2 |, (36)

(ii) For each F ∈ C, a row in F which belongs to RH
{i} contributes i edges to E4,F

2 and 4 − i edges toEF , i = 1, . . . , 4.

The analogs of Lemmas 3.13 and 3.14 are, respectively:

Lemma 3.19. For any Type B-instance,

|E| ≤ |O3
1| + 2|O3

2| + 3|O4
3| + 3|O3

3| + 4|O4
4|. (37)

Lemma 3.20. For any Type B-instance,

|E4
2 | ≤ |E| + O(ϵ)nr . (38)

(The proof of Lemma 3.20 is identical to that of Lemma 3.14 with substituting E4,F
2 for EF

2,0 and ∅ for EF
1,1).

Using (36) and summing over all F ∈ C ∪H0, we obtain:

|E4
2 | =

−
F∈C∪H0

|E4,F
2 | =

−
F∈C∪H0

2|O4,F
2 | = 2|O4

2|. (39)

Now, substituting (39) in the left-hand side of (38), and (37) in its right-hand side, and using nr = Θ(nc) (from
Observation 3.1), we obtain:

2|O4
2| ≤ |O3

1| + 2|O3
2| + 3|O4

3| + 3|O3
3| + 4|O4

4| + O(ϵ)nc .

Dividing by nc = |OPT |, we obtain the analog of Lemma 3.15:

Lemma 3.21. For any Type B-instance:

2X4
2 ≤ X3

1 + 2X3
2 + 3X4

3 + 3X3
3 + 4X4

4 + O(ϵ)nc .

Using (34), the inequality from Lemma 3.21, and substituting X3
0 , X4

0 , X4
1 = 0 (by Lemma 3.16), we obtain the following LP,

which upper-bounds ρ for Type B-instances:

max 1.5X4
2 + 1.25X4

3 + X4
4 + 1.25X3

1 + X3
2 + 0.75X3

3

s.t. 2X4
2 − 3X4

3 − 4X4
4 − X3

1 − 2X3
2 − 3X3

3 ≤ 0

X4
2 + X4

3 + X4
4 + X3

1 + X3
2 + X3

3 = 1

X4
2 , X4

3 , X4
4 , X3

1 , X3
2 , X3

3 ≥ 0.
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The dual program is:

min z
s.t. 2y + z ≥ 1.5

−3y + z ≥ 1.25
−4y + z ≥ 1
−y + z ≥ 1.25
−2y + z ≥ 1
−3y + z ≥ 0.75
y ≥ 0.

It is straightforward to verify that:

X∗
≡ (X4

2 , X4
3 , X4

4 , X3
1 , X3

2 , X3
3 ) =


3
5
,
2
5
, 0, 0, 0, 0


and

(y∗, z∗) =


1
20

,
7
5


are primal and dual feasible solutions, respectively, achieving the same objective function value of 7

5 . Thus, they are optimal
solutions, which implies:
Theorem 3.2. For Type B-instances, A2 is a (ρ + ϵ)-approximation algorithm for (2, 4)-UUSC, where ρ ≤

7
5 = 1.4.

Combining Theorems 3.1 and 3.2, and using Assumption 3.1, altogether we obtain:
Theorem 3.3. A2 is a (ρ + ϵ)-approximation algorithm for (2, 4)-UUSC, where ρ ≤

35
24 = 1.458333... .

In the following,we provide an example forwhichρ =
25
18 = 1.3888... . The instance is of TypeA. Let |OPT | = 36m for any

fixedm, that is, OPT consists of 36m 4-columns, denoted O1, . . . ,O36m, covering n = 144m base elements. The construction
of a local optimum APX is as follows. The 4-rows in APX consist of two sets: In the first one, for each i = 1, . . . , 12m − 1,
there is a 4-row which intersects (i.e., covers a single element of) the four columns O3i−2, . . . ,O3i+1, and there is one
additional 4-row intersecting O1,O36m−2,O36m−1,O36m. Thus, the first set contains 12m rows. In the second set, for each
i = 1, . . . , 3m, there are two 4-rows: one intersecting O3i−1,O9m+3i−1,O18m+3i−1,O27m+3i−1, and another one intersecting
O3i,O9m+3i,O18m+3i,O27m+3i. Thus, the second set contains 6m rows, so the total number of 4-rows in APX is X4 = 18m.

As for the 3-rows in APX , for each i = 1, . . . , 4m, there is one 3-row intersectingO3i−1,O12m+3i−1,O24m+3i−1, and another
one intersecting O3i,O12m+3i,O24m+3i. Thus, the total number of 3-rows is X3 = 8m.

For a given ϵ > 0, takingm large enough ensures thatAPX is a local optimum.Using the pricing scheme, it is easily verified
that the 12m columns: O3i−2, i = 1, . . . , 12m, are in O2,0, and the remaining 24m columns are in O2,1. Hence X2,0 =

1
3 ,

X2,1 =
2
3 . The corresponding costs are, by (14), c2,0 =

3
2 , c2,1 =

4
3 . The obtained approximation ratio is therefore:

ρ = c2,0X2,0 + c2,1X2,1 =
3
2

·
1
3

+
4
3

·
2
3

=
25
18

.

4. Concluding remarks

In this paper we focused on a special case of the unweighted k-set cover problem. We proposed a new paradigm to
approach instances of this problem, and we showed that it gives better results than the previous known algorithms for
unweighted k-set cover. Our proof is for a restricted case in which the instance contains all the pairs of elements. The
technical reason to consider this special case is that all previous known improvements over the greedy algorithm have a
special treatment of singletons, which makes the algorithms and their analysis much more complicated. By neglecting this
technical problem, we can concentrate on the way to handle the selection of large sets.

In this paper we showed that the non-oblivious local search methodology can outperform the other methods to
approximate unweighted k-set cover, and we conjecture that this is the case for the generalized case and not only for
(2, 4)-uniform instances. We leave as major open problems the tuning of the parameters for the non-oblivious local search
algorithm (i.e., theweights used in the objective function of the local search), aswell as the analysis of the resulting algorithm
for unweighted k-set cover.

Appendix. Proof of Theorem 2.1

We prove that the solution for (P) stated in the theorem is optimal, and then compute its objective function value. In
order to show optimality, we construct the dual program of (P), denoted (D), provide a feasible solution to it, and then use
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a complementary slackness argument. By the complementary slackness, we conclude that both solutions are optimal. Then,
we compute the objective function value of the primal solution. We start by constructing (D). The dual decision variables
are:

• βp+1, . . . , βk—correspond to the set of constraints (8),
• βp—corresponds to constraint (9),
• γp+1, . . . , γk—correspond to the set of constraints (10).

The dual program is:

Program (D)

min
k−

i=p

βi

s.t. βk − jγk ≥
j
k j = 1, . . . , k − 1 (40)

βk − (k − 2)γk ≥ 1 (41)

βi − jγi + jγi+1 ≥
j

i(i+1) i = p + 1, . . . , k − 1, j = 1, . . . , i − 1 (42)

βi − (i − 2)γi + iγi+1 ≥
1

i+1 i = p + 1, . . . , k − 1 (43)

βp + pγp+1 ≥
1

p+1 (44)

βi, γj ≥ 0 i = p, . . . , k, j = p + 1, . . . , k.

For this LP, the primal variables ak,1, . . . , ak,k−1 correspond to the set of constraints (40). ak,k corresponds to (41). ai,j,
i = p+ 1, . . . , k− 1, j = 1, . . . , i− 1 correspond to (42). ai,i, i = p+ 1, . . . , k− 1 correspond to (43), and ap,p corresponds
to (44).

The dual solution is the following (it is the same for the two cases distinguished in (P), depending on the parity of k− p):

γk =
1

k(k−1)
γk−1 = 0
γi = γi+2 +

2
i(i+1)(i+2) , for all i = p + 1, . . . , k − 2

βk = 1 + (k − 2)γk

βi =
1

i+1 − iγi+1 + (i − 2)γi, for all i = p + 2, . . . , k − 1
βp+1 =

p
(p+1)(p+2) + pγp+1 − pγp+2

βp =
1

p+1 − pγp+1.

(45)

We proceed to verify that the primal and dual solutionswhichwe constructed are indeed feasible. In addition, we identify
the set of tight constraints.

Lemma A.1 (Primal Feasibility). The primal solution stated in Theorem 2.1 is feasible for (P). Moreover, the set of constraints
(8), (9) and (10) are tight, except for (10) for the value of i = k − 1 when k − p is odd.

Proof. First, it is trivial that the non-negativity constraints are satisfied since our solution is 0/1. The set of constraints (8)
are satisfied, and tight, since for each i = p + 1, . . . , k, there exists exactly one j index such that ai,j = 1 and for all other j
values ai,j = 0. Similarly, the constraint (9) is tight, as ap,p = 1. As for the set of constraints (10), which for convenience we
rewrite as:

p+l−
j=1

jap+l,j −

p+l−
j=1

jap+l+1,j − (p + l − 1)ap+l+1,p+l+1 ≤ 0, l = 0, . . . , k − p − 1,

we distinguish:

• Case 1: k − p even:
– For even values of l, 0 ≤ l ≤ k−p−2, the first sum is p+ l since ap+l,p+l = 1 (and all other terms are zero), the second

sum is also p + l because ap+l+1,p+l = 1, and the last term is zero. Thus, the left-hand side is zero and the constraint
is tight.

– For odd values of l, 1 ≤ l ≤ k − p − 1, the first sum is p + l − 1 since ap+l,p+l−1 = 1, the second sum is zero, and the
last term is p + l − 1 since ap+l+1,p+l+1 = 1. The constraint is tight.

• Case 2: k − p odd:
– For even values of l, 0 ≤ l ≤ k − p − 3, the first sum is p + l since ap+l,p+l = 1, the second sum is p + l because

ap+l+1,p+l = 1, and the last term is zero. The constraint is tight.
– For odd values of l, 1 ≤ l ≤ k − p − 4 the first sum is p + l − 1 since ap+l,p+l−1 = 1, the second sum is zero, and the

last term is p + l − 1 since ap+l+1,p+l+1 = 1. The constraint is tight.
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– For l = k − p − 1, the first sum is k − 2 since ak−1,k−2 = 1, the second sum is zero, and the last term is k − 2 since
ak,k = 1. The constraint is tight.

– For l = k − p − 2, the first sum is k − 3 since ak−2,k−3 = 1, the second sum is k − 2 because ak−1,k−2 = 1 and
the last term is zero. Thus, the left-hand side is −1, so the constraint is satisfied but not tight. Observe that this case
corresponds to the value i = k − 1 in the original formulation (10).

We next consider the feasibility of the dual solution given by (45). First of all, it is trivial that γi ≥ 0, i = p+1, . . . , k. Next,
by straightforward substitution, it is easily verified that the dual constraints (41) and (44) are tight. For the other constraints,
we use the following auxiliary calculations:

Lemma A.2. For i = p + 1, . . . , k − 1:

γi + γi+1 =
1

i(i + 1)
, (46)

γi+1 − γi ≤
1

i(i + 1)
. (47)

Proof. The first part is proved by induction: The case i = k − 1 is immediate since γk−1 = 0 and γk =
1

k(k−1) . Assume that
(46) holds for i, p + 2 ≤ i ≤ k − 1. Then for i − 1, we have:

γi−1 + γi −
1

(i − 1)i
= γi+1 +

2
(i − 1)i(i + 1)

+ γi −
1

(i − 1)i

= γi + γi+1 −
1

i(i + 1)
= 0,

where the last equality holds by the induction hypothesis. For the second part, observe that

1
i(i + 1)

− γi+1 + γi ≥
1

i(i + 1)
− γi+1 − γi = 0,

where the inequality holds since γi ≥ 0 and the equality is by (46). The result follows. �

Lemma A.3 (Dual Feasibility). The dual solution defined by (45) is feasible for (D). Moreover, the tight constraints are (41), (43),
(44), and (42) for i and j values such that j = i − 1.

Proof. We first identify the tight constraints in (D). Consider the set of constraints (43). For i values i = p+ 2, . . . , k− 1, it
is easily seen that they are tight, by the definition of βi. For i = p + 1, substituting the definition of βp+1, we obtain

p
(p + 1)(p + 2)

+ γp+1 + γp+2 ≥
1

p + 2
.

By (46), the inequality is tight.
Consider the set of constraints (42), for j values j = i − 1. From βp+1’s definition, it follows immediately that the case

i = p + 1 (hence j = p) is tight. For i ≥ p + 2, substituting βi’s definition yields:

1
i + 1

− γi − γi+1 ≥
i − 1

i(i + 1)
.

Again, (46) yields that it is tight.
We are done identifying the tight dual constraints. We now turn to verify feasibility for the rest of the constraints.

Consider the set of constraints (40). Substituting the definitions of βk and γk, we obtain:

1 +
k − j − 2
k(k − 1)

≥
j
k
, j = 1, . . . , k − 1.

The inequality clearly holds for j ≤ k − 2. For j = k − 1 it evaluates to 1 −
1

k(k−1) ≥
k−1
k , which holds, as k ≥ 2.

Consider the set of constraints (42), for i = p + 1, . . . , k − 1 and j = 1, . . . , i − 2 (we have shown that cases for the values
j = i − 1 are tight). For i = p + 2, . . . , k − 1, we evaluate βi’s definition to obtain:

βi =
1

i + 1
− iγi+1 + (i − 2)γi

=
1

i + 1
−

1
i(i + 1)

− (i − 1)γi+1 + (i − 1)γi

=
i − 1

i(i + 1)
− (i − 1)γi+1 + (i − 1)γi ≥ 0,



A. Levin, U. Yovel / Theoretical Computer Science 412 (2011) 1033–1053 1051

where the third equality follows from (46) and the inequality follows from (47). This proves that for i = p + 2, . . . , k − 1,
the constraints (42) hold, and also that βi ≥ 0. For i = p + 1 (and j = 1, . . . , p − 1), we evaluate βp+1’s definition:

βp+1 =
p

(p + 1)(p + 2)
+ pγp+1 − pγp+2 ≥ 0,

where again, the inequality follows from (47). This establishes that (42) holds for p+1 (j = 1, . . . , p−1) and that βp+1 ≥ 0.
It remains to show that βp and βk are nonnegative. As γk ≥ 0 and k ≥ 2, it immediately follows from the definition that

βk ≥ 0. For βp, we use (46) to obtain:

βp =
1

p + 1
− pγp+1 ≥

1
p + 1

− p(γp+1 + γp+2)

=
1

p + 1
−

p
(p + 1)(p + 2)

=
2

(p + 1)(p + 2)
≥ 0. �

We now show that the solutions (ap,p, ap+1,1, . . . , ap+1,p+1, ap+2,1, . . . , ap+2,p+2, ak,1, . . . , ak,k) and (βp, . . . , βk,
γp+1, . . . , γk) satisfy the complementary slackness conditions with respect to programs (P) and (D). Thus, they are both
optimal.

Lemma A.4 (Primal and Dual Optimality). The primal solution (ap,p, ap+1,1, . . . , ap+1,p+1, ap+2,1, . . . , ap+2,p+2, ak,1, . . . , ak,k)
stated in Theorem 2.1 is optimal for (P). The dual solution (βp, . . . , βk, γp+1, . . . , γk) defined by (45) is optimal for (D).

Proof. Consider (P). By Lemma A.1, all of (P)’s constraints are tight except for (10) for the value of i = k − 1 (and when
k−p is odd). But the dual variable corresponding to this constraint, γk−1, is zero. Hence, all primal complementary slackness
conditions are satisfied.

Consider (D). From Lemma A.3, it follows that the constraints which are not tight are (40), and (42) for the case
j = 1, . . . , i − 2. The primal variables corresponding to (40) are ak,1, . . . , ak,k−1, and are all zeros. Hence the conditions
are satisfied. The variables corresponding to (42) for j = 1, . . . , i − 2 are ai,j, i = p + 1, . . . , k − 1, j = 1, . . . i − 2. All of
them are zeros, so again, the conditions are satisfied. Therefore, all dual complementary slackness conditions are satisfied.
Since the complementary slackness conditions hold, the primal (as well as the dual) solution is optimal. �

We now compute the primal objective function, denoted POF . This time we distinguish four cases, depending on the
parity of both k and p. In each case, we substitute the primal solution in the objective function.

• Case 1: p even, k even (the term 1 is for ak,k):

POF = 1 +

k
2 −1−
j= p

2


2j

2j(2j + 1)
+

2j
(2j + 1)(2j + 2)



= 1 +

k
2 −1−
j= p

2


1

2j + 1
+

j
(2j + 1)(j + 1)



= 1 +

k
2 −1−
j= p

2

1
j + 1

= H k
2

− H p
2

+ 1.

• Case 2: p even, k odd (the first two terms are for ak,k, ak−1,k−2 respectively):

POF = 1 +
k − 2

k(k − 1)
+

k−3
2−

j= p
2


2j

2j(2j + 1)
+

2j
(2j + 1)(2j + 2)



= 1 +
1
k

−
1

k(k − 1)
+

k−3
2−

j= p
2


1

2j + 1
+

j
(2j + 1)(j + 1)



= 1 +
1
k

−
1

k(k − 1)
+

k−3
2−

j= p
2

1
j + 1

= H k−1
2

− H p
2

+ 1 +
1
k

−
1

k(k − 1)
.
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• Case 3: p odd, k even (the first two terms are for ak,k, ak−1,k−2 respectively):

POF = 1 +
k − 2

k(k − 1)
+

k
2 −2−

j= p−1
2


2j + 1

(2j + 1)(2j + 2)
+

2j + 1
(2j + 2)(2j + 3)



= 1 +
1
k

−
1

k(k − 1)
+

k
2 −2−

j= p−1
2

2
2j + 3

= 1 +
1
k

−
1

k(k − 1)
+ 2

k
2 −1−

j= p+1
2

1
2j + 1

= 2(Hk − Hp+1) − H k
2

+ H p+1
2

+ 1 +
1
k

−
1

k(k − 1)

where the last equality follows from the straightforward identity:

r−
j=l

1
2j + 1

= H2r+2 − H2l −
1
2
(Hr+1 − Hl), for all l ≤ r. (48)

• Case 4: p odd, k odd (the term 1 is for ak,k):

POF = 1 +

k−3
2−

j= p−1
2


2j + 1

(2j + 1)(2j + 2)
+

2j + 1
(2j + 2)(2j + 3)



= 1 +

k−3
2−

j= p−1
2

2
2j + 3

= 1 + 2

k−1
2−

j= p+1
2

1
2j + 1

= 2(Hk+1 − Hp+1) − H k+1
2

+ H p+1
2

+ 1.

where again, we used (48).

This completes the proof of Theorem 2.1. �
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