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We present a multi-scale solution scheme for hyperbolic evolution equations with
curvelets. We assume, essentially, that the second-order derivatives of the symbol of the
evolution operator are uniformly Lipschitz. The scheme is based on a solution construction
introduced by Smith (1998) [1] and is composed of generating an approximate solution
following a paradifferential decomposition of the mentioned symbol, here, with a second-
order correction reminiscent of geometrical asymptotics involving a Hamilton–Jacobi
system of equations and, subsequently, solving a particular Volterra equation. We analyze
the regularity of the associated Volterra kernel, and then determine the optimal quadrature
in the evolution parameter. Moreover, we provide an estimate for the spreading of (finite)
sets of curvelets, enabling the multi-scale numerical computation with controlled error.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

We study the regularity in the construction of solutions of a general class of evolution equations with limited smooth-
ness. We have applications to wave propagation in non-smooth media in mind. The construction makes use of a frame of
curvelets [2–4], generates the weak solution on the one hand but reveals the geometrical properties reminiscent of the
propagation of singularities in the case of smooth media on the other hand.

Let p(z, x, ξ) be a real-valued function defined on [0, Z ] ×Rn
x × (Rn

ξ \ {0}) that is smooth and positively homogeneous of
degree 1 with respect to ξ . If z0 ∈ [0, Z ], we then consider the initial value problem

(
∂z − ip(z, x, Dx)

)
u(z, x) = 0 and u(z0, x) = u0(x). (1)

Here p(z, x, Dx) is a pseudodifferential operator (Ψ DO) whose symbol, p, may be rough in the z and x variables. We will
require here that p ∈ Cm,1 S1

cl with m = 1 or 2. This means that the mth derivatives of p with respect to z and x exist
everywhere, are uniformly Lipschitz, and for every multi-index α there is a constant Cα such that for all ξ sufficiently large

∥∥∂α
ξ p(·, ξ)

∥∥
Cm,1 � Cα

(
1 + |ξ |)1−|α|

.

The notation of the left-hand side above indicates the Cm,1 norm in (z, x).
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Fig. 1. Diagram describing a numeric solution including a single Volterra iteration. The parametrix is based on the second-order (geometric) approximation
and depicted in blue. Some “scattered” curvelets produced by the Volterra iteration are depicted in red. The decay of curvelet frame coefficients for one of
the wave packets propagated by the parametrix is illustrated by grayscale. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

The technique used here for construction of solutions to (1) was introduced by Smith [1]. More recently, properties
of these solutions were studied from the point of view of concentration of curvelets motivated by the propagation of
singularities for the case of smooth symbols [5]. The solution construction is initiated by the construction of an approximate
solution following the smoothing, that is, paradifferential decomposition of the symbol p, and is completed by solving
a Volterra equation of the second kind which corrects for the symbol smoothing and essentially accounts for scattering
between curvelets. The approximate solution is constructed using geometrical asymptotics and involves solving the Hamilton
and Hamilton–Jacobi systems generated by the smoothed symbols. The Volterra equation can be solved by a Neumann series
— as in the computation of certain multiple scattering series — revealing a curvelet–curvelet interaction (see Fig. 1). The
main goal of this work is to develop regularity estimates in the evolution coordinate z for the Volterra kernel and solution.
These estimates govern the choice of quadrature used when solving the Volterra equation, and subsequently the initial value
problem, numerically.

Our main result uses an adapted underlying approximate solution operator (parametrix) for (1) with second-order cor-
rection. With this parametrix we provide scale-independent regularity estimates of the associated Volterra kernel in Hs ,
and likewise estimates for the regularity of the solution g(z, x) of the Volterra equation in the z variable as a map into H s ,
when m = 2 (or larger) and −1 � s � 2. Specifically, we obtain a Hölder estimate of order 1/2. Thus a natural choice of
quadrature when considering the numerical solution of the Volterra equation becomes the trapezoidal rule [6]. The approx-
imate solution construction to second order is obtained from results pertaining to expansions of Fourier integral operators
generated by canonical transformations [7,8]. This second-order parametrix improves on first-order parametrices in at least
two ways. First, the Hölder regularity mentioned above is required to prove that a discretization of the Volterra equation in
the evolution parameter z converges as the discretization step size goes to zero. Second, the Volterra kernel associated with
the second-order parametrix is actually compact acting on Hs (in fact it maps into Hs+1/2) and so exhibits better behavior
when iterated.

The results obtained here can be extended directly to apply to solving the second-order wave equation and associated
Cauchy initial value problem.

A key aspect of developing an efficient computational algorithm will rely on available sparse decompositions of u0 (that
is, the initial data at z0), and of the Volterra operator applied to the current solution by the Neumann series expansion
(that is, the residual force at values of z dictated by the chosen quadrature). We have developed first steps towards an
approach based on nonlinear approximation [9,10], motivated by the work of Beylkin and Monzón [11,12]. Here, we pro-
vide an estimate of the spreading of the set of curvelet coefficients under propagation as a function of scale. Following the
decomposition of u0 into wave packets, a natural solution strategy — tracing the convergence of the Neumann series ex-
pansion — starts at the finest available scale and progresses to the coarser scales. The Volterra equation can be solved with
a step-by-step method reminiscent of the semi-group property. The numerical analysis of curvelet-like transforms can be
found in [13,14]; this analysis plays a role in developing a fast algorithm for the above mentioned approximate solution. We
note that the regularity and spreading estimates obtained here imply error estimates of corresponding numerical schemes.
One possible such result is given in Corollary 12.

The results obtained in this paper have direct applications, for example, in seismic imaging. Indeed most imaging proce-
dures can be expressed in terms of evolution equations [15]. We mention “reverse-time migration” based imaging [16] and
“downward continuation (reverse depth)” based imaging [17,18]. Furthermore, curvelet based data regularization dovetails
perfectly with these imaging techniques.
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2. Solution of the evolution equation

We find solutions for (1) in two steps. We first construct an approximate solution operator, which we will refer to as a
parametrix, and then we use this parametrix to transform (1) into an equivalent Volterra equation of the second kind for
a function with values in a Sobolev space. To be more precise, we first construct a family of operators T(z, z′) : Hs(Rn) →
Hs(Rn) for some s ∈ R parametrized by (z, z′) ∈ [0, Z ] × [0, Z ] which satisfy the following two properties

T
(
z′, z′) = Id for all z′ ∈ [0, Z ], and (2)(

∂z − ip(z, x, Dx)
)
T
(
z, z′) : Hs → Hs uniformly for

(
z, z′) ∈ [0, Z ] × [0, Z ]. (3)

Because (∂z − ip(z, x, Dx)) is a (possibly rough) Ψ DO of order 1, the mapping property (3) is better than would be expected
and so it is this property that makes T(z, z′) an approximate solution operator. Here “uniformly” means that there is a single
modulus of continuity that holds for all (z, z′). We think of T(z, z0)u0 as giving the approximate solution of (1). Any family
of operators satisfying these properties will be called a parametrix.

Once we have a parametrix we look for an exact solution for (1) in the form

u(z, x) = [
T(z, z0)u0

]
(x) +

z∫
z0

[
T
(
z, z′)g

(
z′, ·)](x)dz′. (4)

Intuitively, we are setting u(z, x) to be the approximate solution plus an error term that we expect can be found or at least
estimated. Now the function to be determined is g(z, x) which we refer to as the residual. A calculation making use of (2)
shows that u(z, x) is a solution of (1) if and only if

g(z, x) = −[(
∂z − ip(z, x, Dx)

)
T(z, z0)u0

]
(x) −

z∫
z0

[(
∂z − ip(z, x, Dx)

)
T
(
z, z′)g

(
z′, ·)](x)dz′.

Motivated by this fact we introduce the Volterra kernel

K
(
z, z′) = −(

∂z − ip(z, x, Dx)
)
T
(
z, z′) (5)

so that the equation for g(z, x) becomes

g(z, x) = [
K(z, z0)u0

]
(x) +

z∫
z0

[
K
(
z, z′)g

(
z′, ·)](x)dz′. (6)

This is a linear Volterra equation of the second kind where the function to be determined (g(z, ·)) takes values in the
Sobolev space Hs . For a review of the classical theory of this type of equation see [6]. Although the theory there only
explicitly deals with real and complex valued functions many of the results still hold in the case of functions valued in
general Banach spaces with the same proofs.

The solution of (6) may be obtained via a Neumann series. Indeed, let us define

K1(z) = K(z, z0), and for n > 1 Kn(z) =
z∫

z0

K
(
z, z′)Kn−1(z′)dz′.

Note that by (3) K(z, z′) : Hs → Hs uniformly, and thus the composition used in the iterative definition of Kn(z) is still an
operator on Hs . Furthermore, if ‖K(z, z′)‖(Hs,Hs) � C(Z) for all z and z′ , then for all n and z it follows from the definition
that

∥∥Kn(z)
∥∥

(Hs,Hs)
� Zn−1

(n − 1)! C(Z)n. (7)

The solution of (6) is then

g(z, x) =
∞∑

n=1

[
Kn(z)u0

]
(x) =: [R(z)u0

]
(x).

By (7) this sum converges absolutely in Hs for every z ∈ [0, Z ], and in fact∥∥R(z)
∥∥

(Hs,Hs)
� C(Z)e Z C(Z). (8)

We refer to R(z) as the resolvent corresponding to the parametrix T.
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This method of solution was first introduced for the half wave equation in [1], and has been used previously to analyze
equation (1) in [5]. In both of these works the parametrix T is constructed by decomposing u0 in the curvelet frame,
and then applying a rigid motion to each individual curvelet. We refer to this “rigid motion” parametrix as T1. In the
current work we will introduce a new parametrix, T2, which still uses a curvelet decomposition of u0, but also incorporates
spreading into the evolution of each individual curvelet. As we will see, when T2 is used as the parametrix the corresponding
Volterra kernel K2(z, z′) will have additional regularity properties in the z variables.

3. Construction of the parametrices

In this section we describe two possible ways to construct a parametrix satisfying the requirements (2) and (3). Both
methods are based upon a curvelet decomposition. The first uses only a rigid motion of the curvelets, while the second also
incorporates spreading. The treatment of caustics in the second method needs special attention, which we do not elaborate
on here. The first method does not provide strong enough estimates to guarantee that numerical solutions of the Volterra
equation will converge. The proofs in this section and Section 4 make use of the results in both of the appendices, and in
particular the rules for manipulating families of curvelet like functions (FCLFs) developed in Appendix A. When dealing with
an FCLF F we sometimes use the notation fγ ∈ πS (F) for a function in the family corresponding to the curvelet index γ .

The first step for both parametrices is to smooth the rough symbol p of (1) in the x variable according to scale. In this
way we obtain a sequence of smooth (in x) symbols pk which approximate p. Indeed, let ψ ∈ C∞

c (Rn) be an even function
such that ψ(ξ) = 1 for |ξ |� 1 and ψ(ξ) = 0 for |ξ | � 2. We also assume 0 � ψ � 1 everywhere. Then define

pk(z, x, ξ) = [
ψ

(
2−k/2 Dx

)
p(z, ·x, ξ)

]
(x) (9)

for all k ∈ N. Thus for each k we low pass filter p in the x variable around the frequency 2k/2 to obtain pk ∈ C∞ . This
sequence of approximations to p satisfies the following estimates. For j + |β| � m + 1 (when j + |β| = m + 1 estimate (10)
holds everywhere the left-hand side is defined)∣∣∂ j

z ∂
β
x ∂α

ξ (p − pk)(z, x, ξ)
∣∣ � 2−k(m−|β|− j+1)/2

∥∥∂α
ξ p(·, ξ)

∥∥
Cm,1 (10)

and ∣∣∂ j
z ∂

β
x ∂α

ξ pk(z, x, ξ)
∣∣ � ∥∥∂α

ξ p(·, ξ)
∥∥

Cm,1 . (11)

Also, if j � m and |β| �m + 1 − j then∣∣∂ j
z ∂

β
x ∂α

ξ pk(z, x, ξ)
∣∣ � 2k(|β|+ j−m−1)/2

∥∥∂α
ξ p(·, ξ)

∥∥
Cm,1 . (12)

Here and in the remainder of this work the notation Ak � Bk means that there exists a constant C > 0 independent of the
scale k, or more generally the index γ = (x, ν,k), such that Ak � C Bk . In the following parametrix constructions pk(z, x, Dx)

will be used to approximate the action of p(z, x, Dx) on the curvelets at scale k.

3.1. Rigid motion parametrix

We first review the construction from [5] of a parametrix, referred to here as T1(z, z′), based only on the rigid motion of
curvelets. The purpose of this review is twofold. First, some of the techniques involved will be used again in the construction
of the new parametrix in Section 3.2, and second we eventually wish to compare some results for this parametrix and
associated Volterra kernel to those for the new parametrix. In this interest we will also prove regularity estimates for
T1(z, z′) in the z and z′ variables. We will always assume that m = 1 when we are considering T1.

We begin by considering the system

dyk

dz

(
z, z′) = −∂ξ pk(z, yk, νk),

dνk

dz

(
z, z′) = ∂x pk(z, yk, νk) − 〈

νk, ∂x pk(z, yk, νk)
〉
νk, (13)

and

dΘk

dz

(
z, z′) = Θk

[
νk ⊗ ∂x pk(z, yk, νk) − ∂x pk(z, yk, νk) ⊗ νk

]
, (14)

which gives the co-sphere projected Hamiltonian flow associated to pk . We write

yk
(
z, z′, x, ν

)
, νk

(
z, z′, x, ν

)
, and Θk

(
z, z′, x, ν

)
for the solution of (13) and (14) with initial data

yk
(
z′, z′, x, ν

) = x, νk
(
z′, z′, x, ν

) = ν, and Θk
(
z′, z′, x, ν

) = Id,
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and refer to the map (x, ν) 	→ (yk(z, z′, x, ν), νk(z, z′, x, ν)) as Ψ k
z,z′ . We also consider the system (13) and (14) with pk

replaced by p, and introduce a corresponding map Ψz,z′ defined in the analogous manner (note that since p ∈ C1,1 the
problem is well-posed). In [1] it is shown that

d
(
Ψz,z′(x, ν),Ψ k

z,z′ (x, ν)
)
� 2−k, (15)

where d is the pseudodistance defined in Appendix A.
If γ = (x, ν,k) is a curvelet index, then the flow out of the individual curvelet ϕγ is given by

ϕ1,γ

(
z, z′, y

) = ϕγ

(
Θk

(
z, z′, x, ν

)(
y − yk

(
z, z′, x, ν

)) + x
)
.

If u ∈ L2(Rn), then the parametrix T1(z, z′) is defined by[
T1

(
z, z′)u

]
(y) =

∑
γ

uγ ϕ1,γ

(
z, z′, y

)
, (16)

where the uγ are the coefficients of u given by the curvelet co-frame. Since it will be useful below, we also define operators

Tk′
1 (z, z′) which only give the contributions of curvelets at scale k′:[

Tk′
1

(
z, z′)u

]
(y) =

∑
{γ =(x,ν,k): k=k′}

uγ ϕ1,γ

(
z, z′, y

)
. (17)

It is proven in [5] that T1(z, z′) is a parametrix as defined in Section 2 for −1 � s � 2.

Remark 1. We comment here that it should be possible in (16) to use elements of an FCLFs that also form a frame to
define an operator similar to T1, but with respect to this alternate frame. The same comment applies later to the operator
T2 introduced in the next section. Furthermore, essentially the same analysis should apply to that case. We remark that the
frame of wave atoms, which also can be used to sparsely represent wave propagators, is not an FCLF, due to its finer fre-
quency localization in the radial direction. The analogue of the parametrix T2 in the wave atom frame is the Gaussian beam
approximation. (For information on wave atoms and their application to represent wave propagators see [19] and [20].)

To finish this section we prove the following regularity result for T1(z, z′).

Lemma 2. The operator T1(z, z′) is uniformly Lipschitz in both of its arguments as a map from H s to Hs−1 for any s and on any fixed
domain [0, Z ] × [0, Z ]. That is∥∥T1

(
z, z′) − T1

(
z̄, z′)∥∥

(Hs,Hs−1)
� C1(Z)|z − z̄| (18)

for all z, z̄, and z′ ∈ [0, Z ], and the same estimate holds when z′ is varied rather than z. Furthermore,∥∥Tk′
1

(
z, z′) − Tk′

1

(
z̄, z′)∥∥

(L2,L2)
� C1(Z)2k′ |z − z̄| (19)

and the same holds when z′ is varied instead of z.

Proof. For γ = (x0, ν
0,k) the index of a curvelet, we define the change of variables

y 	→ Φ1,γ

(
z, z′, y

) := Θk
(
z, z′, x0, ν

0)(y − yk
(
z, z′, x0, ν

0)) + x0.

This family of maps satisfies the hypotheses of Lemma 19 relative to the FCLF given by the curvelet frame. Therefore{
2−k∂zϕ1,γ

(
z, z′, y

)
,Φ∗

1,γ (γ )
}

is an FCLF, and by Lemma 14 we have for every δ > 0 a constant Cδ such that∣∣〈ϕγ̃ , ∂zϕ1,γ

(
z, z′, y

)〉∣∣� Cδ2kμδ

(
γ̃ ,Φ∗

1,γ (γ )
)
, (20)

where μδ is the weight function introduced in Appendix A. This is equivalent to∣∣∂zc1,γ̃ γ

(
z, z′)∣∣ � Cδ2kμδ

(
γ̃ ,Ψ k

z,z′(γ )
)
, (21)

where c1,γ̃ ,γ (z, z′) is the matrix for T1 with respect to the curvelet frame given by

c1,γ̃ γ

(
z, z′) = 〈

ϕγ̃ (y),ϕ1,γ

(
z, z′, y

)〉
. (22)
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Using (15) we may replace Ψ k
z,z′ by Ψz,z′ in (21) and so results in [1] imply that ∂zT1(z, z′) : Hs → Hs−1 is uniformly

bounded for all z and z′ ∈ [0, Z ]. Therefore

∥∥T1
(
z, z′) − T1

(
z̄, z′)∥∥

(Hs,Hs−1)
�

z̄∫
z

∥∥∂tT1
(
t, z′)∥∥

(Hs,Hs−1)
dt � C1(Z)|z − z̄|,

where C1(Z) = supz,z′∈[0,Z ] ‖∂zT1(z, z′)‖(Hs,Hs−1) . This proves (18). If we note that (21) implies∣∣∂zck′
1,γ̃ γ

(
z, z′)∣∣ � Cδ2k′

μδ

(
γ̃ ,Ψ k′

z,z′(γ )
)
,

then (19) follows in the same way.
Finally, the result for the z′ variable follows by the same proof if we begin by obtaining (20) where the differentiation is

with respect to z′ instead of z. �
Remark 3. We observe that both Tk

1(z, z′) and Tk
1(z, z′)−Tk

1(z̄, z′) are families of operators satisfying the hypotheses required
for Fk in Lemma 21 with, respectively, r = 0 and r = 1 and in the latter case with C = C1(Z)|z − z̄|.

At this point we note that Lemma 2 together with the fact that T1 is a parametrix allow us to prove a (already known,
see e.g. [21]) regularity result for the solution of (1). Indeed, from (4) we see that if m = 1, then for −1 � s � 2 and initial
data u0 ∈ Hs the solution u(z, x) of (1) is in C0,1([0, Z ]; Hs−1).

3.2. Parametrix with second-order correction

In this section we will construct a parametrix, T2(z, z′), that takes into account the spreading of curvelets. The action of
this parametrix will be specified in the same way as in Section 3.1 by defining an action on each curvelet individually. The
underlying motivation for the parametrix construction comes from an approximation to a Fourier integral operator, via a
phase expansion as discussed in [7], with phase function defining the propagation of singularities for (1). In contrast to the
parametrix T1 introduced in the previous section, T2 accounts for the full ray geometry, rather than just the rigid motion
along a single ray, the natural spreading of the curvelets which occurs as they propagate, and a small phase shift. These are
the effects that are necessary to obtain the next level of accuracy in an asymptotic solution for (1).

We should note that this parametrix construction only works in the absence of caustics (this restriction will be made
more precise below). However, if there is a global minimum time before any caustics develop, then it is possible to repeat-
edly apply the construction stepping forward in sufficiently small time steps. Thus, though we do not formulate the precise
statements here, these results can also apply past caustics. When we consider T2(z, z′) we will always assume that m = 2.

We begin the construction by introducing the Hamiltonian system that gives the propagation of singularities for (1). In
contrast to (13) and (14) the integral curves here are not projected onto the unit co-sphere. For every (x, η) ∈Rn

x × (Rn
η \{0})

we consider the flow given by

dyk

dz

(
z, z′, x, η

) = −∂ξ pk(z, yk, νk) and
dνk

dz

(
z, z′, x, η

) = ∂x pk(z, yk, νk) (23)

with initial data yk(z′, z′, x, η) = x and νk(z′, z′, x, η) = η. The curves(
yk

(
z, z′, x, η

)
, νk

(
z, z′, x, η

))
are the integral curves of the z-dependent Hamiltonian vector field given by pk with initial data (x, η). We consider the
following system of equations

(y, ν) = (
yk

(
z, z′, x, η

)
, νk

(
z, z′, x, η

))
. (24)

For every k these define a mapping from (z, z′, x, η) to (y, ν) which is the canonical relation of the solution operator for (1)
if p is replaced by pk . Using them to define implicit relations amongst the various variables amounts to parametrizing this
canonical relation by different subsets of the variables.

Now we supplement the flow (23) with another system that gives the dependence of (y, ν) on perturbations of (x, η).
This system, the linearized Hamilton–Jacobi system associated to pk , is

d

dz k W
(
z, z′, x, η

) =
(−∂2

ξx pk(z, yk, νk) −∂2
ξξ pk(z, yk, νk)

∂2
xx pk(z, yk, νk) ∂2

xξ pk(z, yk, νk)

)
k W

(
z, z′, x, η

)
, (25)

where k W (z, z′, x, η) is a 2n × 2n matrix with initial data k W (z′, z′, x, η) = Id2n . We split k W (z, z′, x, η) up into four n × n
matrices

k W
(
z, z′, x, η

) =
(

k W1(z, z′, x, η) k W2(z, z′, x, η)

′ ′

)
,

k W3(z, z , x, η) k W4(z, z , x, η)
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and then we have

∂ yk

∂x

(
z, z′, x, η

) = k W1
(
z, z′, x, η

)
.

We will assume that k W1(z, z′, x, η) is always invertible, and so by the implicit function theorem Eq. (24) can be solved for
x and ν as a function of (z, z′, y, η) at least locally. Since these functions depend on k we will label them as x̃k and ν̃k . We
can then introduce a defining function Sk(z, z′, y, η) for the canonical relation defined by (24) given by

Sk
(
z, z′, y, η

) = 〈
x̃k

(
z, z′, y, η

)
, η

〉
.

We will always assume that this map x̃k exists globally for z and z′ ∈ [0, Z ]. This is the assumption that there are no
caustics. We can also find formulas for the derivatives of x̃k(z, z′, y, η) and ν̃k(z, z′, y, η). In the following the matrices k W i
are understood to be evaluated at the point (z, z′, x̃k(z, z′, y, η),η).

∂ x̃k

∂ y

(
z, z′, y, η

) = k W −1
1 , (26)

∂ x̃k

∂η

(
z, z′, y, η

) = − k W −1
1 k W2, (27)

∂ν̃k

∂ y

(
z, z′, y, η

) = k W3 k W −1
1 , (28)

and

∂ν̃k

∂η

(
z, z′, y, η

) = k W4 − k W3 k W −1
1 k W2. (29)

Using the homogeneity of pk we can also prove the two following properties

η = k W T
1 ν̃k

(
z, z′, y, η

)
(30)

and

k W T
2 k W −T

1 η = 0. (31)

Here k W −T
1 refers to the inverse of the transpose of k W1. Finally, since Sk(z, z′, y, η) is a smooth function, using the above

properties and the equality of the mixed partials of Sk we have

k W −T
1 =

(
∂xk

∂ y

)T

=
(

∂2 Sk

∂ y∂η

)T

= ∂2 Sk

∂η∂ y
= ∂νk

∂η
= k W4 − k W3 k W −1

1 k W2. (32)

Thus (29) becomes

∂ν̃k

∂η

(
z, z′, y, η

) = k W −T
1 . (29′)

Finally, we can check using some of the above identities that k W3 k W −1
1 and k W −1

1 k W2 are always symmetric matrices.
Next we will introduce the phase function used to construct the action of our parametrix on curvelets at scale k. Let

γ = (x0, ν
0,k) be the index of a curvelet. Then, for z, z′ ∈ [0, Z ], y ∈ Rn , and η ∈ Rn , define (motivated in part by an

expansion of Sk(z, z′, y, η))

S̃γ

(
z, z′, y, η

) = 〈
x̃k

(
z, z′, y, ν0), η〉 − 1

2〈ν0, η〉
〈

k W −1
1 k W2η,η

〉

− 1

2

z∫
z′

tr
(

k W3 k W −1
1 ∂2

ξξ pk(t, yk, νk)
)

dt, (33)

where the k W i , yk , and νk are the functions defined above all evaluated at the point (t, z′, x0, ν
0) within the integrand

and (z, z′, x0, ν
0) outside the integral. This will be the convention for the remainder of this work when k W i , yk , or νk are

written without any argument. Note that the last term in the definition only depends on z, z′ and the curvelet index γ .
Because of this we introduce the notation

Uγ

(
z, z′) = 1

2

z∫
′

tr
(

k W3 k W −1
1 ∂2

ξξ pk(t, yk, νk)
)

dt.
z
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Now we define the action of an operator on the curvelet ϕγ as

ϕ2,γ

(
z, z′, y

) = 1

(2π)n

∫
Rn

ei S̃γ (z,z′,y,η)ϕ̂γ (η)dη.

Note that ϕ1,γ could be written using the same formula if S̃γ were replaced by a linear phase function. To gain more
intuition about the action of T2 we may consider the individual effects of each of the terms in the definition (33) of S̃γ .
The first term alone produces simply a change of variables that is done in accordance with the ray geometry. Thus T2 takes
into account the full ray geometry rather than just rigid translations along individual rays as in the case of T1. The second
term in (33) produces the spreading of the curvelets which naturally occurs as they propagate. Finally the third term in (33)
produces a phase change along the rays which either advances of retards the phase in the direction of propagation.

Now T2(z, z′) and Tk′
2 (z, z′) are defined respectively by (16) and (17) with ϕ1,γ replaced by ϕ2,γ . In Theorem 7 we will

prove that T2 is a parametrix for (1), but for now we prove only the following analog of Lemma 2.

Lemma 4. The results of Lemma 2 hold with T1 replaced by T2 assuming that no caustics develop in the interval [0, Z ].

Proof. As one might suspect, the proof is similar to that of Lemma 2. We first note that

∂zϕ2,γ

(
z, z′, y

) = i

(2π)n

∫
ei S̃γ (z,z′,y,η)∂z S̃γ

(
z, z′, y, η

)
ϕ̂γ (η)dη. (34)

Now if we define new functions by

f̂γ
(
z, z′, η

) = e
−i

2〈ν0,η〉 〈 k W −1
1 k W2η,η〉

ϕ̂γ (η), (35)

then using (31) we see that { fγ (z, z′, ·), γ }γ ∈Γ0 , where Γ0 is the grid of indices corresponding to the curvelet frame, is an
FCLF. Further, if we write

Φ2,γ

(
z, z′, y

) = x̃k
(
z, z′, y, ν0),

then from (34) we have

∂zϕ2,γ

(
z, z′, y

) = ie−iUγ (z,z′)(∂z S̃γ

(
z, z′, y, D

)
fγ

(
z, z′, ·))∣∣

Φ2,γ (z,z′,y)
. (36)

To simplify notation in the following we will write y = Φ−1
2,γ (z, z′, x) where Φ−1

2,γ (z, z′, ·) is the inverse of y 	→ Φ2,γ (z, z′, y),

and ν = νk(z, z′, x, ν0). From the definition of S̃γ as well as identities (26) and (32), we may calculate

∂z S̃γ

(
z, z′, y, η

) = 〈
∂ξ pk(z, y, ν), k W −T

1

(
z, z′, x, ν0)η〉 + 1

2〈ν0, η〉
〈
∂2
ξξ pk(z, yk, νk) k W −T

1 η, k W −T
1 η

〉
− 1

2
tr

(
k W3 k W −1

1 ∂2
ξξ pk(z, yk, νk)

)
. (37)

From this formula and using (12) we see that ∂z S̃γ (z, z′,Φ−1
2,γ (z, z′, x), η) satisfies the hypotheses of Lemma 18, where z

and z′ are considered as parameters. By that lemma and Lemma 19,{
2−k∂zϕ2,γ

(
z, z′, y

)
,Φ∗

2,γ

(
z, z′, ·)(γ )

}
γ ∈Γ0

(38)

is an FCLF.
Now let us introduce the matrix coefficients c2,γ̃ γ (z, z′) defined by (22) with ϕ1,γ replaced by ϕ2,γ . Just as in the proof

of Lemma 2 from (38) it follows that∣∣∂zc2,γ̃ γ

(
z, z′)∣∣ � Cδ2kμδ

(
γ̃ ,Φ∗

2,γ

(
z, z′, ·)(γ )

)
for any δ > 0. Now we can calculate using (26) and (30)

Φ∗
2,γ

(
z, z′, ·)(γ ) =

(
yk

(
z, z′, x0, ν

0), νk(z, z′, x0, ν
0)

|νk(z, z′, x0, ν0)| ,k + log2
(∣∣νk

(
z, z′, x0, ν

0)∣∣)).

The only difference between this and Φ∗
1,γ (z, z′, ·)(γ ) is the potential shift in the scale k by log2(|νk(z, z′, x0, ν

0)|). However
the size of this shift can be bounded uniformly by a constant times Z supω∈Sn−1 ‖p(·,ω)‖Cm,1 , and so as before we may
replace Φ∗

2,γ (z, z′, ·)(γ ) by Ψz,z′ (γ ). The results now follow as in the proof of Lemma 2. �
Remark 5. From the proof of Lemma 4, using Lemma 17, we may conclude that Tk

2(z, z′) and Tk
2(z, z′) − Tk

2(z̄, z′) satisfy the
hypotheses for Fk in Lemma 21 with respectively r = 0 and r = 1, and in the latter case C = C2(Z)|z − z̄|. The constant A is
related to the change in scale log2(|νk(z, z′, x0, ν

0)|), giving the frequency localization.
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4. Properties of the Volterra kernels and solutions

In this section we will prove a number of properties of the Volterra kernels K1 and K2 associated, by (5), respectively to
the parametrices T1 and T2 introduced in the previous section.

4.1. Regularity estimates for the Volterra kernels

We will prove two theorems which give respectively Lipschitz and Hölder regularity estimates for K1 and K2. The key
distinction is that K2 has Hölder regularity as a map from Hs to Hs for certain values of s, while K1 only has this type of
regularity as a map from Hs to Hs−ε for some positive epsilon. Actually we will just prove a Lipschitz estimate for K1 as a
map from Hs to Hs−1, but using interpolation such Hölder estimates could be found.

The first result concerns K1.

Theorem 6. For −1/2 � s � 1∥∥K1
(
z, z′) − K1

(
z̄, z′)∥∥

(Hs+1,Hs)
� C H

1 (Z)|z − z̄|, (39)

uniformly in z′ ∈ [0, Z ]. An equivalent estimate holds when z′ is varied instead of z.

Proof. To begin we make a decomposition of (∂z − ip(z, y, D y))T1(z, z′)− (∂z̄ − ip(z̄, y, D y))T1(z̄, z′) into the following three
pieces∑

k

(
∂z − ipk(z, y, D y)

)
Tk

1

(
z, z′) − (

∂z̄ − ipk(z̄, y, D y)
)
Tk

1

(
z̄, z′), (40)

i
∑

k

(
pk(z, y, D y) − p(z, y, D y)

)(
Tk

1

(
z, z′) − Tk

1

(
z̄, z′)), (41)

and

i
∑

k

((
pk(z, y, D y) − pk(z̄, y, D y)

) − (
p(z, y, D y) − p(z̄, y, D y)

))
Tk

1

(
z̄, z′). (42)

The proof that the kernel is Lipschitz in the z variable will be complete if we can estimate the norm of each of the
previous three operators by |z̄ − z|. To estimate (41) we note, referring to Remark 3, that Tk

1(z, z′) − Tk
1(z̄, z′) satisfies the

requirements of Fk in Lemma 21 with r = 1 and C = C1(Z)|z − z̄|. Also p(z, y, ξ) takes the place of a(y, ξ) with m = 1 for
fixed z, and so Lemma 21 implies the required estimate for (41). Similarly, Lemma 21 implies the result for (42) taking this
time Fk = Tk

1(z̄, z′), r = 0, m = 0, and a(y, ξ) = p(z, y, ξ) − p(z̄, y, ξ). We now continue to analyze (40).
We will use the same notation as in the proof of Lemma 2. First define

ϕ̃1,γ

(
z, z′, y

) = (
∂z − ipk(z, y, D y)

)
ϕ1,γ

(
z, z′, y

)
(43)

and consider

∂zϕ̃1,γ

(
z, z′, y

) = (
∂z − ipk(z, y, D y)

)
∂zϕ1,γ

(
z, z′, y

) − i∂z pk(z, y, D y)ϕ1,γ

(
z, z′, y

)
. (44)

Applying several of the lemmas from Appendix A to this formula we see that{
2−k∂zϕ̃1,γ

(
z, z′, y

)
,Φ∗

1,γ

(
z, z′, ·)(γ )

}
γ ∈Γ0

is an FCLF. Here we have omitted some calculations that show the cancellation of certain terms, but these calculations are
essentially the same as some which can be found in [5], and a more sophisticated version is given in the proof of Theorem 7.
The result for (40) now follows as in the proof of Lemma 2.

To prove the final statement about regularity in z′ we write

K1
(
z, z′) − K1(z, z̄) =

∑
k

(
∂z − ipk(z, y, D y)

)(
Tk

1

(
z, z′) − Tk

1(z, z̄)
)

− i
∑

k

(
pk(z, y, D y) − p(z, y, D y)

)(
Tk

1

(
z, z′) − Tk

1(z, z̄)
)
.

The required estimate for the first term in the sum above follows just as the estimate for (40), while the second term is
estimated in the same way as (41). �

The following theorem regarding regularity of K2 is the main technical result of this paper.
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Theorem 7. For −3/2 � s � 3, K2(z, z′) : Hs−1/2 → Hs continuously. If −1 � s � 2 then∥∥K2
(
z, z′) − K2

(
z̄, z′)∥∥

(Hs,Hs)
� C H

2 (Z)|z − z̄|1/2, (45)

uniformly in z′ ∈ [0, Z ]. An equivalent estimate holds if we vary z′ instead of z.

Remark 8. Note that the first statement of the theorem shows that T2 is a parametrix for −3/2 � s � 3.

Proof. First assume that −3/2 � s � 3. We begin as before by splitting K2 into smooth and rough parts:∑
k

(
∂z − ipk(z, y, D y)

)
Tk

2 + i
∑

k

(
pk(z, y, D y) − p(z, y, D y)

)
Tk

2.

For the rough part (the second summand above) we use the fact that Tk
2 satisfies the requirements of Lemma 21 with r = 0,

and so the required estimates follow by applying the lemma with m = 2. Now we continue to analyze the smooth part
given by the first summand.

We use the same notation as in the proof of Lemma 4, and begin with formulas (36) and (37). Indeed, by (37) we have

∂z S̃γ

(
z, z′, y, D

)
fγ = −i

〈
∂ξ pk(z, y, ν), k W −T

1

(
z, z′, x, ν0)∂x fγ

〉 − 1

2
tr

(
k W −1

1 ∂2
ξξ pk(z, yk, νk) k W −T

1
∂2

xx

〈ν0, D〉
)

fγ

− 1

2
tr

(
k W3 k W −1

1 ∂2
ξξ pk(z, yk, νk)

)
fγ .

Combined with (36) this gives a formula for ∂zϕ2,γ (z, z′, y).
Next let us analyze ipk(z, y, D y)ϕ2,γ (z, z′, y). Since

ϕ2,γ

(
z, z′, y

) = e−iUγ (z,z′)[Φ∗
2,γ

(
z, z′, ·) fγ

(
z, z′, ·)](y),

we may begin by applying the calculus of Ψ DOs (see in particular [22, Theorem 18.1.17]) as well a generalization of [7,
Lemma 3.1] to obtain the formula

pk(z, y, D y)ϕ2,γ

(
z, z′, y

) = e−iUγ (z,z′)Φ∗
2,γ

(
z, z′, ·)[gγ

(
z, z′, ·)](y),

where

gγ

(
z, z′, x

) =
(

pk
(
z, y,dΦT

2,γ

(
z, z′, y

)
D

) − 1

2
tr

(
k W3 k W −1

1 ∂2
ξξ pk(z, yk, νk)

) + ak
(
z, z′, x, D

))
fγ

and the ak(z, z′, x, η) result from the remainder terms of the Ψ DO calculus and the application of the lemma. The symbols
ak are such that both{

2k/2ak
(
z, z′, x, D

)
fγ

(
z, z′, ·), γ }

γ ∈Γ0

and {
2−k/2∂zak

(
z, z′, x, D

)
fγ

(
z, z′, ·), γ }

γ ∈Γ0

are families of curvelet like functions. This follows from analysis of these remainders and size estimates of k W1 and its
derivatives. By Lemmas 20 and 16 if

g̃γ = i2k/2e−iUγ (z,z′)(∂z S̃γ

(
z, z′, y, D

)
fγ − gγ

) = i2k/2e−iUγ (z,z′)ak
(
z, z′, x, D

)
fγ (46)

then {
Φ∗

2,γ

(
z, z′, ·)g̃γ

(
z, z′, ·),Φ∗

2,γ

(
z, z′, ·)(γ )

}
γ ∈Γ0

(47)

is an FCLF. Combining all the previous calculations we see that

2k/2(∂z − ipk(z, y, D y)
)
ϕ2,γ

(
z, z′, y

) = [
Φ∗

2,γ

(
z, z′, ·)g̃γ

(
z, z′, ·)](y)

and we finally conclude that{
2k/2(∂z − ipk(z, y, D y)

)
ϕ2,γ

(
z, z′, y

)
,Φ∗

2,γ

(
z, z′, ·)(γ )

}
γ ∈Γ0

(48)

is an FCLF. The first statement of the theorem now follows as in previous proofs.
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To prove (45) we combine the result already obtained for the continuity of K2(z, z′) with the following estimate which
we will show holds for −3/2 � s � 2.

∥∥K2
(
z, z′) − K2

(
z̄, z′)∥∥

(Hs+1/2,Hs)
�

(C H
2 (Z))2

2
|z − z̄| (49)

for a constant C H
2 (Z) > 0. Indeed, if we establish (49) then (45) follows by interpolation and the triangle inequality. The

proof of (49) is the same as the proof of Theorem 6. First we split K2(z, z′) − K2(z̄, z′) into (40)–(42) with Tk
1 replaced by

Tk
2 wherever it appears. The estimates for the two rough parts, (41) and (42), follow just as before except that now m = 2

and 1 in the respective applications of Lemma 21. Finally, we analyze the part corresponding to (40).
The object is to show that{

2−k/2∂z
(
∂z − ipk(z, y, D)

)
ϕ2,γ

(
z, z′, y

)
,Φ∗

2,γ

(
z, z′, ·)(γ )

}
γ ∈Γ0

(50)

is an FCLF from which (49) follows as in the previous proofs. To do this, we calculate using the results from above

2−k/2∂z
(
∂z − ipk(z, y, D)

)
ϕ2,γ

(
z, z′, y

) = 2−k[(∂z̃Φ
∗
2,γ

(
z̃, z′, ·))g̃γ

(
z, z′, ·)∣∣z̃=z + Φ∗

2,γ

(
z, z′, ·)(∂z g̃γ

(
z, z′, ·))](y).

The first term on the right-hand side gives an FCLF by Lemma 19, and we can see that the second term also gives an FCLF
by analyzing the derivative of the second line of (46). This completes the proof of (50) and also the proof of the Hölder
regularity in z. To prove regularity in z′ we begin with the same expression as (50) with the first ∂z replaced by ∂z′ and
apply a similar analysis. �
4.2. Estimates of the iterated Volterra kernel and solution

Now that we have established our central technical results in the previous two sections, we apply them to the solution
of the Volterra equation, and by extension the full solution of (1). Assume that we have a Volterra kernel K(z, z′) with the
following properties. There exist r, s, α, C(Z), C H (Z) ∈ R with r � 0, 1 � α > 0, and C(Z), C H (Z) > 0 such that

K
(
z, z′) : Hs → Hs uniformly for z, z′ ∈ [0, Z ] with constant C(Z), (51)∥∥K
(
z, z′) − K

(
z̄, z̄′)∥∥

(Hs,Hs−r)
� C H (Z)

(|z − z̄|α + ∣∣z′ − z̄′∣∣α)
(52)

for all z, z′ , z̄, and z̄′ ∈ [0, Z ]. Note that the Volterra kernel associated to any parametrix satisfies (51), K1 from Section 3.1
satisfies (52) with certain values of s, r = 1, and α = 1, and K2 from Section 3.2 satisfies (52) with certain values of s,
r = 0, and α = 1/2. Thus all the estimates of this section applied to either K1 or K2 may be considered as corollaries of
Theorems 6 and 7.

We first consider the iterated Volterra kernel Kn given by (9). The following estimate is proven by applying (52) to the
definition of the iterated kernel and using an inductive argument.

∥∥Kn(z) − Kn(z̄)
∥∥

(Hs,Hs−r)
� Zn−1

(n − 1)! C(Z)n−1C H (Z)|z − z̄|α. (53)

We next consider the resolvent R(z) defined in Section 2 corresponding to K(z, z′). By summing up (53) we obtain the
following:∥∥R(z) − R(z̄)

∥∥
(Hs,Hs−r)

� e Z C(Z)C H (Z)|z − z̄|α. (54)

Now, for u0 ∈ Hs , let g(z, x) = [R(z)u0](x) be the solution of the Volterra equation (6). A straightforward application of (54)
then immediately implies that∥∥g(z, ·) − g(z̄, ·)∥∥Hs−r � e Z C(Z)C H (Z)|z − z̄|α‖u0‖Hs . (55)

This, together with the comments above, shows that if 0 � s � 2 and g1(z, x) is the solution of (6) using K1 with initial data
u0 ∈ Hs , then g1 ∈ C0,1([0, Z ]; Hs−1). If −1 � s � 2 and g2(z, x) is the solution of (6) using K2 with initial data u0 ∈ Hs ,
then g2 ∈ C0,1/2([0, Z ]; Hs).

5. Approximation by semi-discretization

In this section we discretize the Volterra equation (6) with respect to the z variable. To accomplish this we use the
repeated trapezoid rule to approximate the integral, and it is here that the regularity estimates from the previous section
will play a key role. Using these estimates we have certain error bounds for the quadrature scheme which allow us to prove
in turn convergence of a resulting approximation of the solution to the Volterra equation.
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5.1. Quadrature scheme

To produce a numeric algorithm to solve the Volterra equation (6) we first introduce a quadrature scheme for the
integration involved there. Given that the Volterra kernel and solution have Hölder regularity and in general no better,
a natural choice of scheme is the trapezoid rule defined as follows.

For every N ∈ N we introduce a partition PN = {zN
0 , zN

1 , . . . , zN
N } of the interval [0, Z ]. That is, we chose the zN

i so that
0 = zN

0 < zN
1 < · · · < zN

N = Z . We then define hN
i = zN

i − zN
i−1, and the weights

w N
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

hN
j +hN

j+1
2 if 0 < j < i � N,

hN
j

2 if j = i > 0,

hN
1
2 if j = 0 and i > 0,

(56)

and otherwise w N
ij = 0. Also let hN = supi∈1,...,NhN

i . If B is any Banach space and f : [0, Z ] → B is continuous, then the
repeated trapezoid rule is given by

zN
i∫

0

f (z)dz =
i∑

j=0

w N
ij f

(
zN

j

) + E N
i ( f ). (57)

We are thinking of the sum in the previous expression as an approximation to the integral and E N
i ( f ) as an error term

which should approach zero as N → ∞. Indeed, we have in general the following estimates∥∥E N
i ( f )

∥∥
B � zN

i (hN)αL α
[0,zN

i ]( f ), (58)

where

L α
[0,zN

i ]( f ) = sup
z,z̄∈[0,zN

i ]:z �=z̄

‖ f (z) − f (z̄)‖B
|z − z̄|α .

The cases that are relevant here are when f (z′) = Km(zi, z′)g(z′, ·) : [0, zi] → Hs where m = 1 or 2 and s is in the allowed
range depending on m.

5.2. Semi-discrete Volterra equation

We now introduce the semi-discrete Volterra equation. If K is the Volterra kernel associated to a parametrix, as defined
in Section 2, then we will write KN

ij := K(zN
i , zN

j ). Also we define

AN
ij := w N

ij KN
ij ,

where wij are the weights given in (56). Thus AN is a (N + 1) × (N + 1) matrix with entries in the space of continuous
linear operators from Hs to Hs . The semi-discrete Volterra equation is then

gN
i = KN

i0u0 +
i∑

j=0

AN
ij gN

j for all i ∈ {0, . . . , N}. (59)

We assume that u0 ∈ Hs . If hN < 2 then, since Aii = hi Id/2 for i > 0, and A00 = 0, we see that this equation has a
unique solution in (Hs)N+1. This method of approximating g , using (59), is known as direct quadrature. The next proposition
establishes how well the solution of (59) approximates the solution of the Volterra equation.

Proposition 9. Suppose that the Volterra kernel K(z, z′) satisfies (51) and (52) for some values of the parameters, and for given u0 ∈ Hs

let g(z, x) ∈ L∞([0, Z ], Hs) be the solution of (6) and gN ∈ (Hs)N+1 be the solution of (59). Assume also that K(z, z′) extends to a
uniformly continuous map from Hs−r to Hs−r with the same constant C(Z) and that hN < 1. Then

supi∈{0,...,N}
∥∥g(zi, ·) − gN

i (·)∥∥Hs−r � 2e
(Z+ 2NhN

2−hN
)C(Z)

C H (Z)hα
N‖u0‖Hs . (60)

Proof. We first note that by (8), (52), and (55)∥∥K
(
zN , z′)g

(
z′, ·) − K

(
zN , z̄′)g

(
z̄′, ·)∥∥ s−r � 2e Z C(Z)C H (Z)

∣∣z′ − z̄′∣∣α‖u0‖Hs (61)
i i H
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for all i, z′ , and z̄′ . We will write dN
i (x) = g(zN

i , x) − gN
i (x). Then (6) and (59) imply

dN
i (x) =

( zN
i∫

0

[
K
(
zN

i , z′)g
(
z′, ·)](x)dz′ −

i∑
j=0

[
AN

ij g
(
zN

j , ·)](x)

)
+

i∑
j=0

[
AN

ij

(
g
(
zN

j , ·) − gN
j (·))](x)

= E N
i

([
K
(
zi, z′)g

(
z′, ·)]) +

i∑
j=0

[
AN

ij d
N
j (·)](x). (62)

Using now (58) with B = Hs−r and (61) we have

∥∥dN
i

∥∥
Hs−r � 2e Z C(Z)C H (Z)hα

N‖u0‖Hs + C(Z)

i∑
j=0

w N
ij

∥∥dN
j

∥∥
Hs−r

� 2
e Z C(Z)C H (Z)hα

N‖u0‖Hs

1 − hN/2
+ C(Z)hN

1 − hN/2

i−1∑
j=0

∥∥dN
j

∥∥
Hs−r .

A discrete Gronwall-type inequality (see [6, Section 1.5.3]) now implies that

∥∥dN
i

∥∥
Hs−r � 4e Z C(Z)C H (Z)hα

N‖u0‖Hs e
NhN C(Z)

1−hN /2 .

This completes the proof. �
If hN ≈ 1/N , as would be the case if the partition P is evenly spaced, then Proposition 9 implies that ‖g(zi, ·) −

gN
i (·)‖Hr−s ≈ (1/N)α as N → ∞. The proposition also reveals the key difference between the parametrices T1 and T2 and

corresponding Volterra kernels K1 and K2. For K1 we only have the Hölder estimates (52) in the case where r > 0, and so
we can only estimate the error incurred as a result of the discretization in a norm which is rougher than that of the space
where the initial data u0 lies. However, for K2 we can take r = 0 and obtain an error estimate with respect to the original
norm.

6. Concentration of sets of wave packets

In this section we assume that the initial data, u0, has a representation in the curvelet frame that is concentrated near a
finite set of curvelet indices Γ0, and then study how much the curvelet coefficients for the solution of (1) spread away from
Ψz,0(Γ0) as z increases. The motivation for this study is to apply the results to prove convergence of a numeric scheme to
solve (1) using only a finite set of curvelets.

Following [5], we first introduce the following weighted spaces.

Definition 10. Let Γ0 be a finite set of curvelet indices. We define the space Hσ ,α
Γ0

by the norm

‖ f ‖2
Hσ ,α

Γ0

=
∑
γ

∣∣∣2kσ min
γ0∈Γ0

{(
2max(k,k0)d̄(γ ;γ0)

)α}
fγ

∣∣∣2
,

where γ = (x, ν,k), and fγ are the coefficients of f with respect to the curvelet frame.

In this definition, σ corresponds to the Sobolev space regularity of f while α gives the degree to which the curvelet
coefficients of f are concentrated near Γ0. A useful estimate is the following

‖ f ‖2
Hσ ,α

Γ0

≈ min
γ0∈Γ0

∑
γ

∣∣2kσ (
2max(k,k0)d̄(γ ;γ0)

)α
fγ

∣∣2
. (63)

The constants relating the two sides can be found based on the “radius” of the set Γ0 (under a proper interpretation of the
radius).

Estimates in terms of the Hσ ,α
Γ0

norm allow us to easily estimate how well a given function is approximated by a finite
set of curvelets. Indeed, given a finite set of curvelet indices Γ0 ⊂ Γ let Γ r

0 be the set of all indices γ that are indices of
curvelets in the curvelet frame, and such that

min
γ0∈Γ0

2max(k,k0)d̄(γ ;γ0) � r.
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Then define �r
Γ0

to be the operator given by

�r
Γ0

f =
∑
γ ∈Γ r

0

fγ ϕγ .

If α � 0 and f ∈ Hσ ,α
Γ0

it is then straight forward to check that f ∈ Hσ and∥∥ f − �r
Γ0

f
∥∥

Hσ � min
(
r−α,1

)‖ f ‖Hσ ,α
Γ0

. (64)

This inequality will be useful below when we estimate the error incurred by solving the Volterra equation with only a finite
number of curvelets. However, to accomplish this goal we will first require the following lemma.

Lemma 11. Let 0 � α < m+1
2 , |σ | � m−1

2 with m = 1 (p ∈ C1,1 S1
cl) or 2 (p ∈ C2,1 S1

cl). It holds true that∥∥Km
(
z, z′)∥∥

(Hσ ,α
Ψz′,0(Γ0)

,Hσ ,α
Ψz,0(Γ0)

)
� C K (Z) (65)

uniformly in z, z′ ∈ [0, Z ].

Proof. Let cm,γ γ ′(z, z′) and c̃m,γ γ ′ (z, z′) be respectively matrices of the operators∑
k

(
∂z − ipk(z, y, D y)

)
Tk

m

(
z, z′) and Tm

(
z, z′)

with respect to the curvelet frame. Then by results in Sections 3 and 4 as well as [1, Lemma 2.2] we have the estimates∣∣cm,γ γ ′
(
z, z′)∣∣ � 2k(1−m)/2μδ

(
γ ,Ψz,z′

(
γ ′)) and

∣∣c̃m,γ γ ′
(
z, z′)∣∣�μδ

(
γ ,Ψz,z′

(
γ ′))

for any δ > 0. Also, by [5, Theorem 5.5] (or, more accurately, using a portion of the proof of that theorem) and (63) we have
the estimates∥∥(

pk(z, y, D y) − p(z, y, D y)
)
ϕγ

∥∥
Hσ ,α

Ψz,0(Γ0)
� ‖ϕγ ‖Hσ ,α

Ψz,0(Γ0)
� 2kσ min

γ0∈Ψz,0(Γ0)

{(
2max(k,k0)d̄(γ ;γ0)

)α}
for α and σ within the ranges specified in the hypotheses and where ϕγ is a curvelet at scale k. Making the same decom-
position as in the proof of Theorem 7 we have

∥∥Km
(
z, z′) f

∥∥2
Hσ ,α

Ψz,0(Γ0)
�

(∑
γ

∑
γ ′

2kσ min
γ0∈Ψz,0(Γ0)

{(
2max(k,k0)d̄(γ ;γ0)

)α}
cm,γ γ ′

(
z, z′)| fγ ′ |

+
∑
γ

∑
γ ′:k′=k

2kσ min
γ0∈Ψz,0(Γ0)

{(
2max(k,k0)d̄(γ ;γ0)

)α}
c̃m,γ γ ′

(
z, z′)| fγ ′ |

)2

.

Now we apply the estimate(
2max(k,k0)d̄

(
γ ;Ψz,0(γ0)

))α �
(
2max(k,k′)d̄

(
γ ;Ψz,z′

(
γ ′)))α · (2max(k′,k0)d̄

(
Ψz,0(γ0);Ψz,z′

(
γ ′)))α

which together with the bounds from above on the matrix coefficients cm,γ γ ′ and c̃m,γ γ ′ gives for any δ > 0

∥∥Km
(
z, z′) f

∥∥2
Hσ ,α

Ψz,0(Γ0)
� min

γ0∈Ψz,0(Γ0)

∑
γ

(∑
γ ′

μδ

(
γ0,Ψz,z′

(
γ ′))∣∣2k′σ (

2max(k′,k0)d̄
(
γ0;Ψz,z′

(
γ ′)))α fγ ′

∣∣)2

.

Finally, [1, Lemmas 2.1, 2.2, 2.4] imply with the last inequality and (63) that∥∥Km
(
z, z′) f

∥∥2
Hσ ,α

Ψz,0(Γ0)
� ‖ f ‖2

Hσ ,α
Ψz′,0(Γ0)

.

This completes the proof. �
The lemma also yields estimates for the resolvents:∥∥Rm(z)

∥∥
(Hσ ,α

Γ0
,Hσ ,α

Ψz,0(Γ0)
)
� C R,m(Z) (66)

uniformly for z ∈ [0, Z ].
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With the previous result we may now prove an error estimate that relates the solution of the fully discrete Volterra
equation (i.e. the semi-discrete equation from the previous section truncated to a finite set of curvelets) to the true Volterra
solution. We begin by modifying the semi-discrete Volterra equation to become fully discrete. Using the same notation as
in Section 5.2, for any given r > 0 and finite set of indices Γ0 let

ÃN
i j = wij�

r
Ψ

zN
i ,0

(Γ0)Ki j .

The fully discrete Volterra equation is then (compare with (59))

g̃N
i = �r

Ψ
zN
i ,0

(Γ0)Ki0u0 +
i∑

j=0

Ãi j g̃N
j . (67)

Note that for every i and N the solution g̃N
i of (67) is a linear combination of curvelets corresponding to the indices

ΨzN
i ,0(Γ0)

r . Now we present the result, which is a sort of extension of Proposition 9.

Corollary 12. Let u0 be a linear combination of curvelets with indices in the finite set Γ0 . Suppose that g(z, x) is the solution of (6)
corresponding to K2 , and that g̃N is the corresponding solution of (67). Then for any |s|� 1/2 and 0 � α < 3/2 we have the estimate

sup
i∈{0,...,N}

∥∥g
(
zN

i , ·) − g̃N
i

∥∥
Hs � C(Z)

(
h1/2

N + min
(
r−α,1

))‖u0‖Hs .

Proof. The proof is largely the same as the proof of Proposition 9. The primary difference is that in (62) d̃N
i (x) = g(zN

i , x) −
g̃N

i (x) replaces dN
i (x), ÃN

i j replaces AN
ij in the sum on the second line, and there appear the extra terms

∥∥∥∥∥
i∑

j=0

[
AN

ij − ÃN
i j

]
g
(
zN

j , ·)
∥∥∥∥∥

Hs

� min
(
r−α,1

)
Z C2(Z)C R,2(Z)‖u0‖Hs

and ∥∥Ki0u0 − �r
Ψ

zN
i ,0

(Γ0)Ki0u0
∥∥

Hs � min
(
r−α,1

)
C2(Z)‖u0‖Hs .

These estimates use the result of Lemma 11, (64), and (66) as well as the continuity of K2. Inserting these into the proof of
Proposition 9 yields the proof of the corollary. �

This last corollary establishes the possibility of approximating the solution of the Volterra equation using only curvelets
that lie within a certain distance of the Hamiltonian flow corresponding to the finite number of initial curvelets. We note
additionally that the estimates lend themselves well to a “step-by-step” approach to solving the fully discrete Volterra
equation (67). Given a choice of step size in the quadrature, and a choice for r, at each time step we compute only those
curvelet coefficients corresponding to indices in ΨzN

i ,0(Γ0)
r . This means, loosely speaking, that we only consider those

curvelets lying within r of the original curvelets flowed forward to time zi .
In the same vein as Remark 1 above, we comment that it should be possible to replace the frame of curvelets by

another frame that is also an FCLF. Since the major part of our analysis leading up to the results in this section uses only
the properties of FCLFs, it should then proceed in the same manner, and for a numerical scheme based on a parametrix
constructed using this different frame we expect the same result as Corollary 12. We point out that in harmonic analysis
there are a number of distinct “wave packet” frames and, speaking again somewhat loosely, amongst these those which are
based on a parabolic scaling in phase space will generally be FCLFs.

Finally, we point out that the approximate solution of (1) provided by the fully discrete Volterra equation will consist of
a sum of terms each being a composition of some number of operators of the form K2(zN

i , zN
j ) or T2(zN

i , zN
j ). We comment

that there will be a further error which has not been analyzed here arising from the numerical computation of these
operators which might be done in several ways. An efficient method might be carried out via a separated representation
similar to that used in the proofs of Theorems 6 and 7. A full analysis of this is reserved for future work. A method of
numerical implementation for T2 and some analysis of the associated error has been done in [23].

Appendix A. Curvelet like functions

In this appendix we develop some technical machinery which we use to analyze the various operators defined in terms
of the curvelet frame. In the main text, we use a curvelet frame based on parabolic scaling as defined, for example, in
either [5] or [1]. Our notation for curvelets and the curvelet frame matches that of [5]. In particular, we use the notation



M.V. de Hoop et al. / Appl. Comput. Harmon. Anal. 33 (2012) 330–353 345
Γ = Rn × Sn−1 ×R and refer to Γ as the set of “curvelet indices.” Also d is the pseudodistance on Rn × Sn−1 introduced in
[24, Definition 2.1]

d
(
x, ν; x′, ν ′) = ∣∣〈ν, x − x′〉∣∣ + ∣∣〈ν ′, x − x′〉∣∣ + min

{∣∣x − x′∣∣, ∣∣x − x′∣∣2} + ∣∣ν − ν ′∣∣2
. (A.1)

If γ = (x, ν,k) and γ ′ = (x′, ν ′,k′) ∈ Γ , let

d̄
(
γ ;γ ′) = 2−min(k,k′) + d

(
x, ν; x′, ν ′). (A.2)

The weight function μδ(γ ,γ ′) is given by

μδ

(
γ ,γ ′) = (

1 + ∣∣k′ − k
∣∣2)−1

2−( 1
2 n+δ)|k′−k|2−(n+δ) min(k′,k)d̄

(
γ ;γ ′)−(n+δ)

.

This weight function is different from, but equivalent to that introduced in [24]. We also use both notations f̂ and F { f }
for the Fourier transform of f depending on the aesthetic demands of the individual situation.

The curvelets at scale zero require a brief special note. These elements of the frame do not have a direction and so
are indexed only by their position. Nonetheless in sums over the frame such as (16) and (63) we include these zero scale
curvelets without comment. If γ = (x,0) is the index of a zero scale curvelet then the function d̄ defined in the previous
paragraph is modified to

d̄
(
γ ;γ ′) = 1 + ∣∣x − x′∣∣2

and this is then used in the definition of the weights uδ when one of the indices is at the zero scale.
We now begin to introduce more general classes of functions that behave in many ways like those which make up the

curvelet frame. For k ∈R we will denote by Ck the cylinder

Ck = [
2k−1,2k+1] ×Bn−1

2k/2 ⊂ Rn, (A.3)

where Bn−1
2k/2 is the (n−1)-dimensional ball of radius 2k/2 centered at the origin. The term “dyadic parabolic scaling” refers to

the relative proportions of these cylinders which scale like 2k in the direction of e1, and 2k/2 in the perpendicular directions.
Given ν ∈ Sn−1 let Θν ∈ O (n) represent any rotation that maps e1 into ν , and define

Cν,k = ΘνCk.

Naturally Cν,k is independent of the specific rotation that is chosen. Also, we write ρk = |Ck| ∼ 2k(n+1)/2. The families of
functions are now defined as follows.

Definition 13. A subset F ⊂ S(Rn) × Γ is a family of curvelet like functions (FCLF) if the following conditions are met:

1. For every j ∈ N, α ∈ Nn , and N ∈ N, there exists a constant C j,α,N > 0 such that the following estimates hold for all
( f , (x, ν,k)) ∈F

ρ
1/2
k

∣∣〈ν, ∂ξ 〉 j∂α
ξ

(
ei〈x,ξ 〉 f̂ (ξ)

)∣∣ � C j,α,N 2−k( j+ |α|
2 )

(
1 + 2−k/2‖ξ − Cν,k‖

)−N
.

2. There exists a constant C ∈R (possibly less than zero) such that for all ( f , (x, ν,k)) ∈F , k � C .

When we have a family of curvelet like functions, F , we use the notation πΓ : F → Γ for the map projecting F onto
the set of curvelet indices, and πx , πν , πk for the respective projections onto components of the curvelet indices. Also,
πS : F → S(Rn) is the projection onto S(Rn). When referring to a fixed family of curvelet like functions we will usually
write γ = (x, ν,k) for the curvelet index of arbitrary functions in the family.

We make the observation that if F and G are FCLFs such that πΓ (F) = πΓ (G), then we may form another FCLF as
F + G = {( f + g, γ ): ( f , γ ) ∈ F and (g, γ ) ∈ G}. That F + G defined in this way is in fact an FCLF follows easily from the
definition.

Curvelet frames with parabolic scaling give families of curvelet like functions if we remove the elements of the frame
whose Fourier transform covers the origin (i.e. the zero scale curvelets). The motivation for considering these families is that
they are more or less preserved under most of the operations that we would like to perform on curvelets. In the following
series of lemmas we will show precisely what this means, and in essence establish a calculus for families of curvelet like
functions.

Lemma 14. Suppose that F and G are two families of curvelet like functions. Then for every δ > 0 there exists a constant Cδ such that
for every f ∈F and g ∈ G∣∣〈πS( f ),πS(g)

〉∣∣ � Cδμδ

(
πΓ ( f ),πΓ (g)

)
.
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Proof. We first prove the result for the case when one of the families is given by a curvelet frame. Then we represent the
functions in each of two families with respect to this curvelet frame and apply a slight generalization of [1, Lemma 2.5] to
the case when the γ and γ0 need not be in the grid corresponding to the curvelet frame. �

We next study what happens when we take derivatives of curvelet like functions.

Lemma 15. Suppose that F is a family of curvelet like functions. Then{(
2−k〈ν, ∂y〉 f , γ

)}
( f ,γ )∈F and

{(
2k〈ν, y − x〉 f , γ

)}
( f ,γ )∈F

are also families of curvelet like functions. Furthermore, if we are given a map ν⊥ : F → Sn−1 such that 〈ν⊥( f , γ ), ν〉 = 0 for every
( f , γ ) ∈F , then{(

2−k/2〈ν⊥( f , γ ), ∂y
〉
f , γ

)}
( f ,γ )∈F

and {(
2k/2〈ν⊥( f , γ ), y − x

〉
f , γ

)}
( f ,γ )∈F

are both families of curvelet like functions.

Proof. For ( f , γ ) ∈F we have

2−kF
{〈ν, ∂y〉 f

}
(ξ) = i2−k〈ν, ξ〉 f̂ (ξ).

Combined with the inequality

2−k
∣∣〈ν, ξ〉∣∣ � 2

(
1 + 2−k/2‖ξ − Cν,k‖

)
this gives the first assertion of the lemma.

Next we have

F
{〈ν, y − x〉 f

} = 〈ν, D f̂ 〉,
which easily implies the second assertion.

The third and fourth assertions follow in the same way if we use also the inequality

2−k/2
∣∣〈ν⊥( f , γ ), ξ

〉∣∣ � (
1 + 2−k/2‖ξ − Cν,k‖

)
which holds for any ν⊥ satisfying the hypotheses. �

We next study how curvelet like functions change under pull-back by a change of coordinates. Suppose that Φ : Rn →Rn

is a diffeomorphism. First recall that the pull-back of a function f ∈ S(Rn) is given by the composition Φ∗( f )(x) = f (Φ(x)).
We define the pull-back of a curvelet index γ = (x, ν,k) by

Φ∗(γ ) = (
Φ−1(x),

(
dΦT (x)ν

)/∣∣dΦT (x)ν
∣∣,k + log2

(∣∣dΦT (x)ν
∣∣)).

Note that since Φ is a diffeomorphism, the map Φ∗ : Γ → Γ is invertible.

Lemma 16. Suppose that F is a family of curvelet like functions, and that {Φγ }γ ∈πΓ (F) is a family of diffeomorphisms on Rn satisfying∥∥∂α
x Φ±1

γ

∥∥� Cα for 0 < |α| � 2 and
∥∥∂α

x Φ±1
γ

∥∥ � 2k(|α|−2)/2Cα for 2 < |α|.
Then {(

Φ∗
γ ( f ),Φ∗

γ (γ )
)}

( f ,γ )∈F
is a family of curvelet like functions. Note that Φ∗

γ ( f ) is the pull-back of the function f , while Φ∗
γ (γ ) is the pull-back of the curvelet

index γ .

Proof. Let ( f , γ ) ∈F . By the Fourier inversion formula we have the following formula

〈
ν ′, ∂ξ

〉 j
∂α
ξ

(
ei〈Φ−1

γ (x),ξ 〉
Φ̂∗

γ f (ξ)
) = i j+|α|

(2π)n

∫ ∫
ei(〈Φγ (y)−x,η〉−〈y−Φ−1

γ (x),ξ 〉)

× 〈
ν ′,Φ−1

γ (x) − y
〉 j(

Φ−1
γ (x) − y

)α(
ei〈x,η〉 f̂ (η)

)
dη dy,
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where k′ ∈ R and ν ′ ∈ Sn−1 are the respective components of the pull-back Φ∗
γ (γ ). Note that this should be interpreted

as an iterated integral with the integration done first in η and then in y. Making the change x̃ = Φγ (y) − x in the second
integral gives

〈
ν ′, ∂ξ

〉 j
∂α
ξ

(
ei〈Φ−1

γ (x),ξ 〉
Φ̂∗

γ f (ξ)
) = i j+|α|

(2π)n

∫ ∫
ei(〈x̃,η〉−〈Φ−1

γ (x̃+x)−Φ−1
γ (x),ξ 〉)〈ν ′,Φ−1

γ (x) − Φ−1
γ (x̃ + x)

〉 j

× (
Φ−1

γ (x) − Φ−1
γ (x̃ + x)

)α(
ei〈x,η〉 f̂ (η)

) dη dx̃

|det(dΦγ (x̃ + x))| .

By Taylor’s theorem we may write

Φ−1
γ (x̃ + x)r − Φ−1

γ (x)r = dΦ−1
γ (x)r

p x̃p + Ψ̃γ (x̃, x)r
pqx̃qx̃p

using the summation convention. Here Ψ̃γ is a smooth array of functions that can all be simultaneously bounded in Cl in
terms of bounds on the derivatives of Φ−1

γ up to order l + 2. We will also write Φ̃γ (x̃, x)r
p = dΦ−1

γ (x)r
p + Ψ̃γ (x̃, x)r

pq x̃q . With
this notation

〈
ν ′, ∂ξ

〉 j
∂α
ξ

(
ei〈Φ−1

γ (x),ξ 〉
Φ̂∗

γ f (ξ)
) = (−i) j+|α|

(2π)n

∫ ∫
ei(〈x̃,η〉−〈Φ̃γ (x̃,x)x̃,ξ 〉)〈ν ′, Φ̃γ (x̃, x)x̃

〉 j

× (
Φ̃γ (x̃, x)x̃

)α(
ei〈x,η〉 f̂ (η)

) dη dx̃

|det(dΦγ (x̃ + x))|

= (−i) j

(2π)n

∫ ∫
ei(〈x̃,η〉−〈Φ̃γ (x̃,x)x̃,ξ 〉)(〈ν ′,dΦ−1

γ (x)∂η

〉 + (
ν ′

rΨ̃γ (x̃, x)r
pq∂

2
ηpηq

)) j

× (
Φ̃γ (x̃, x)∂η

)α(
ei〈x,η〉 f̂ (η)

) dη dx̃

|det(dΦγ (x̃ + x))| .

Now if we define the differential operator

L = 1 − i2−k〈η − ∂x̃(〈Φ̃γ (x̃, x)x̃, ξ〉), ∂x̃〉
1 + 2−k|η − ∂x̃〈Φ̃γ (x̃, x)x̃, ξ〉|2

then after several more rounds of integration by parts, for any M and Ñ the last expression equals

(−i) j

(2π)n

∫ ∫
ei(〈x̃,η〉−〈Φ̃γ (x̃,x)x̃,ξ 〉)(Lt)M(〈

ν ′,dΦ−1
γ (x)∂η

〉 + ν ′
rΨ̃γ (x̃, x)r

pq∂
2
ηpηq

) j

×
(

1 − 2k�η

1 + 2k|x̃|2
)Ñ(

Φ̃γ (x̃, x)∂η

)α(
ei〈x,η〉 f̂ (η)

) dη dx̃

|det(dΦγ (x̃ + x))| ,

which may now be interpreted as an integral over R2n . Using definition 13 and the hypotheses on Φγ , the integrand in the
previous formula can be bounded for any N by an expression of the form

C2−k( j+ |α|
2 )

(
1 + 2−k/2‖η − Cν,k‖

)−N(
1 + 2−k/2

∣∣η − ∂x̃
(〈
Φ̃γ (x̃, x)x̃, ξ

〉)∣∣)−M(
1 + 2k|x̃|2)−Ñ

for some positive C . Therefore, if Ñ and M are taken sufficiently large then

∣∣ρ1/2
k′

〈
ν ′, ∂ξ

〉 j
∂α
ξ

(
ei〈Φ−1

γ (x),ξ 〉
Φ̂∗

γ f (ξ)
)∣∣ � 2−k( j+ |α|

2 )
(
1 + 2−k/2

∥∥ξ − dΦT
γ (x)Cν,k

∥∥)−N

� 2−k( j+ |α|
2 )

(
1 + 2−k/2‖ξ − Cν ′,k′ ‖)−N

.

This is the required estimate and completes the proof. �
The next lemma says that we may decompose curvelet like functions into two pieces one of which is compactly sup-

ported in the frequency variable and the other which decays very quickly with the scale k.

Lemma 17. If F is a family of curvelet like functions, then for every ε > 0 it is possible to find a family of curvelet like functions G and
a map, TG :F → G such that
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1. πΓ ◦ TG = πΓ .
2. For every (g, γ ) ∈ G , if ξ ∈ supp(ĝ), then

2k(1/2 − ε) � |ξ | � 2k(2 + ε) and 2k(1/2 − ε) �
∣∣〈ν, ξ〉∣∣ � 2k(2 + ε).

3. For every m ∈R,{(
2km(

f − πS ◦ TG( f , γ )
)
, γ

)}
( f ,γ )∈F

is a family of curvelet like functions.

Proof. We begin by choosing a cut-off function χ ∈ C∞
c supported within ε of the set A1 = {2−1 � |ξ | � 2} ∩ {2−1 �

|〈ν, ξ〉| � 2} and equal to 1 within ε/2 of this set. We construct χ so that it is symmetric with respect to rotations that
preserve ν . Also, we set χk(ξ) = χ(2−kξ). The first task is to show that

G = {
χk(D) f , γ

}
( f ,γ )∈F

is a family of curvelet like functions which will then satisfy requirement 2. For ( f , γ ) ∈F we have

ρ
1/2
k 〈ν, ∂ξ 〉 j∂α

ξ ei〈x,ξ 〉 ̂[
χk(D) f

]
(ξ) = 〈ν, ∂ξ 〉 j∂α

ξ

(
ρ

1/2
k ei〈x,ξ 〉χk(ξ) f̂ (ξ)

)
and it follows from this expression and the Liebniz rule that G is a family of curvelet like functions.

It now remains to show that for any m,

H = {
2km(

1 − χk(D)
)

f , γ
}
( f ,γ )∈F

is a family of curvelet like functions. Once again for ( f , γ ) ∈F , we have using definition 13 that for any N∣∣ρ1/2
k 〈ν, ∂ξ 〉 j∂α

ξ ei〈x,ξ 〉 ̂[(
1 − χk(D)

)
f
]
(ξ)

∣∣
= ∣∣〈ν, ∂ξ 〉 j∂α

ξ

(
ρ

1/2
k ei〈x,ξ 〉(1 − χk(ξ)

)
f̂ (ξ)

)∣∣
� 2−k( j+ |α|

2 )
(
1 + 2−k/2‖ξ − Cν,k‖

)−N
sup

‖ξ−2k A1‖>ε2k−1

(
1 + 2−k/2‖ξ − Cν,k‖

)−2m

� 2−k( j+ |α|
2 )

(
1 + 2−k/2‖ξ − Cν,k‖

)−N
2−mk.

This completes the proof. �
Now we begin to examine the action of pseudodifferential operators on families of curvelet like functions.

Lemma 18. Suppose that F is a family of curvelet like functions, and that {pγ (y, ξ)}γ ∈πΓ (F) is a collection of smooth functions on
Rn × (Rn \ {0}) such that for some m ∈ R, any multi-indices α and β , and any nonnegative integer j there is a constant Cα,β, j so that

∣∣∂β
y ∂α

ξ 〈ν, ∂ξ 〉 j pγ (y, ξ)
∣∣ � Cα,β, j2

k |β|
2

(
1 + |ξ |)m− |α|

2 − j

for all (y, ξ). Then{(
2−km pγ (y, D) f , γ

)}
( f ,γ )∈F

is a family of curvelet like functions.

Proof. We begin by choosing a family G as in Lemma 17 with some small value of ε > 0. The following calculation then
applies when (h, γ ) equals either TG( f , γ ) or ( f − πS ◦ TG( f , γ ), γ ),

ρ
1/2
k 〈ν, ∂ξ 〉 j∂α

ξ ei〈x,ξ 〉F
{

pγ (y, D)h
}
(ξ) = 1

(2π)n

∫ ∫
ei〈η−ξ,y−x〉〈ν, ∂η〉 j∂α

η pγ (y, η)
(
ρ

1/2
k ei〈x,η〉ĥ(η)

)
dη dy

= 1

(2π)n

∫ ∫
ei〈η−ξ,y〉〈ν, ∂η〉 j∂α

η pγ (y + x, η)
(
ρ

1/2
k ei〈x,η〉ĥ(η)

)
dη dy

= 1

(2π)n

∫ ∫
ei〈η−ξ,y〉

(
1 − i2−k〈η − ξ, ∂y〉

1 + 2−k|η − ξ |2
)M(

1 − 2k�η

1 + 2k|y|2
)N

× 〈ν, ∂η〉 j∂α
η pγ (y + x, η)

(
ρ

1/2ei〈x,η〉ĥ(η)
)

dη dy.
k
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In the case when (h, γ ) = TG( f , γ ), by taking M sufficiently large this integral may be bounded by the required estimate
since on the support of h∣∣∂β

y ∂α
η 〈ν, ∂η〉 j pγ (y + x, η)

∣∣ � 2k(m− j− |α|
2 + |β|

2 )

and (
1 + 2−k/2|η − ξ |)−1(

1 + 2−k/2‖η − Cν,k‖
)−1 �

(
1 + 2−k/2‖ξ − Cν,k‖

)−1
.

For the case when (h, γ ) = ( f − πS ◦ TG( f , γ ), γ ), we use the fact that 2km̃( f − πS ◦ TG( f , γ )) gives a family of curvelet
like functions for any m̃. Therefore the integral in this case may be bounded by a constant times

2−km̃(
1 + 2−k/2‖ξ − Cν,k‖

)−N

for any m̃. This proves the result. �
The next lemma examines the case of Lemma 16 when the diffeomorphisms depend on a parameter.

Lemma 19. Suppose that F is a family of curvelet like functions, and that {Φγ }γ ∈πΓ (F) is a smooth family of functions from [z0, Z ]×
Rn to Rn such that{

Φγ (z, ·)}
γ ∈πγ (F)

satisfies the hypotheses of Lemma 16 for every fixed z with the constants in the estimates uniform with respect to z, and∣∣∂α
y ∂zΦγ (z, y)

∣∣ � Cα2k |α|
2 .

Then {(
2−k∂z

[
Φ∗

γ (z, ·) f
]
,Φ∗

γ (γ )
)}

( f ,γ )∈F
is a family of curvelet like functions.

Proof. Let ( f , γ ) ∈F . Then, as in the proof of Lemma 16 we use the Fourier inversion formula to establish that

∂z
[
Φ∗

γ (z, ·) f
]
(y) = i

(2π)n

∫ ∫
ei〈Φγ (z,y),ξ 〉〈∂zΦγ (z, y), ξ

〉
f̂ (ξ)dξ

= Φ∗
γ (z, ·)[〈∂zΦγ

(
z,Φ−1

γ (z, ·)), ∂y
〉
f
]
(y).

The collection of functions {〈∂zΦγ (z,Φ−1
γ (z, y)), ξ〉}γ ∈πγ (F) satisfy the hypotheses of Lemma 18 with m = 1, and so that

lemma and Lemma 16 imply the result. �
The next lemma gives an explicit expression for the leading order terms of the action of a suitable family of pseudo-

differential operators with principal symbols that are homogeneous of degree 1 on a family of curvelet like functions. For
every ν ∈ πν(F) we use the notation Pν for the matrix which gives orthogonal projection onto the space perpendicular
to ν .

Lemma 20. Suppose that F is a family of curvelet like functions, and that {pγ }γ ∈πΓ (F) is a collection of smooth functions on Rn ×
(Rn \ {0}) such that∣∣∂β

y ∂α
ξ pγ (y, ξ)

∣∣ � Cα,β2k |β|
2

(
1 + |ξ |)1−|α|

,

and every pγ is positive homogeneous in ξ of degree 1 on {2C−2 � |〈ξ, ν〉|} where C is the constant from part 2 of Definition 13. Also,
let φ(t) ∈ C∞

c (R) be a function that is equal to zero when |t|� 2C−3 and equal to 1 when |t| > 2C−2 . If for every ( f , γ ) ∈F we define

g = 2k/2
(

pγ (y, D) f − 〈
∂ξ pγ (y, ν), D f

〉 − 1

2
tr

(
∂2
ξ pγ (x, ν)

φ(〈ν, D〉)
〈ν, D〉 D2 f

))

then {
(g, γ )

}
( f ,γ )∈F

is a family of curvelet like functions.
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Proof. First, applying both Lemma 17 and Lemma 18 we may assume without loss of generality that every ( f , γ ) ∈ F
satisfies part 2 of Lemma 17 for some small value of ε > 0.

Next we make the following expansion of pγ , which holds for ξ ∈ supp( f̂ ) and follows using the homogeneity assump-
tion:

pγ (y, ξ) = 〈
∂ξ pγ (y, ν), ξ

〉 + 1

2

n∑
q,r=1

∂2
ξ pγ (x, ν)qr

ξqξ r

〈ξ, ν〉 + Rγ (y, ξ), (A.4)

where

Rγ (y, ξ) = 1

2

n∑
q,r,s=1

( 1∫
0

(1 − t)2∂3
ξqξ rξ s pγ

(
y, 〈ξ, ν〉ν + t Pνξ

)
dt

)
(Pνξ)q(Pνξ)r(Pνξ)s

+ 1

2

n∑
q,r,s=1

( 1∫
0

∂3
yqξ rξ s pγ

(
x + t(y − x), ν

)
dt

)
(x − y)q (Pνξ)r(Pνξ)s

〈ξ, ν〉 .

Note that in order to obtain this formula we use the fact that ν lies in the kernel of the Hessian ∂2
ξ pγ (y, ν) due to

the homogeneity assumption. We write (R1
γ )qrs(y, ξ) and (R2

γ )rs(y) respectively for the two arrays of functions inside
parentheses given by the integrals in the preceding formula. From the hypotheses and the fact that every ( f , γ ) ∈F satisfies
part 2 of Lemma 17 we see that each of these functions satisfy the hypotheses of Lemma 18 with respectively m = −2 and
m = 0 for ξ restricted to supp( f̂ ) (in fact, (R2

γ )rs satisfies the hypotheses with m = −1/2 when restricted in this way).
Therefore by Lemma 15{

2k/2[Rγ (y, D) f
]
, γ

}
( f ,γ )∈F

is a family of curvelet like functions. From (A.4) we observe that

g = 2k/2[Rγ (y, D) f
]
,

and so the proof is complete. �
Appendix B. Lemma for paradifferential estimates

In this appendix we will state and prove the lemma used to deal with the “rough” parts of the Volterra kernels. The
lemma is an extension of Lemma 13 in [25] to a broader class than just multipliers. The expansion methods used here can
be found for example in [26] where credit is given to [27] for originating the ideas. See also [1, Theorem 4.5].

Let m a nonnegative integer, a(x, ξ) ∈ Cm,1 S1
cl(R

n) be homogeneous of order 1 in ξ , and ak be obtained by (9) applied
to a instead of p. Also, let β ∈ C∞

0 (Rn) be a function such that 0 � β � 1, supp(β) ⊂ {1/2 � |ξ | � 2} for some l0 ∈ Z+ , and
constructed so that β0(ξ) + ∑∞

k=1 β(2−k+1ξ) = 1 for another function β0 ∈ C∞
0 (Rn) with support contained in the unit ball.

For convenience we define βk(ξ) = β(2−k+1ξ) for k � 1 (i.e. so that {βk} provides a Littlewood–Paley partition of unity).
Assume that Fk is a family of operators on L2(Rn) satisfying estimates of the form

‖Fku‖L2(Rn) � C2kr
∥∥βk(D)u

∥∥
L2(Rn)

. (B.1)

We will further assume that each Fk is frequency localized at the scale A2k for some constant A in the sense that (1 −
βk(D/A))Fk = Rk where Rk : Hs′ → Hs is continuous uniform in k for all s′ and s.

Lemma 21. If m � 0 and −(m + 1)/2 � s � m + 1 then there is an N ∈N such that for any u ∈ Hs+r−(m−1)/2(Rn)∥∥∥∥
(∑

k

(
a(y, D) − ak(y, D)

)
Fk

)
u

∥∥∥∥
Hs

�
(
C + C ′) ∑

|α|�2N

sup
ω∈Sn−1

∥∥∂α
ξ a(·,ω)

∥∥
Cm,1‖u‖

Hs+r− m−1
2

.

The constant C in this estimate is the same as the constant in (B.1), and C ′ is a uniform modulus of continuity for Rk acting between
appropriate spaces.

Proof. For ease of notation we will write fk(y, ξ) = a(y, ξ)− ak(y, ξ) and now record a few properties of fk . First, from the
homogeneity of a it is still true that fk is homogeneous of degree 1 in ξ . Second, because ak is obtained by a low pass filter
in y from a, f̂k(η, ξ) = f̂ j(η, ξ) for |η| � 2max(k, j)/2. Finally, the estimates∣∣∂β

y ∂α
ξ fk(y, ξ)

∣∣ � 2−k(m+1−|β|)/2
∥∥∂α

ξ a(·, ξ)
∥∥

Cm,1 (B.2)

for |β| � m + 1 follow from (10).
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The first step of the proof will be to decompose fk(y, D) in terms of a sum of multiplication and convolution operators
by using spherical harmonics in the phase space. Indeed, let {wκ } denote the set of eigenfunctions of �Sn−1 , with the
eigenvalue of wκ denoted by λκ , which form an orthonormal basis for L2(Sn−1). By the homogeneity of fk in ξ we have

fk(y, ξ) = |ξ |
∑
κ

fkκ (y)wκ

(
ξ/|ξ |),

where

fkκ(y) =
∫

Sn−1

fk(y,ω)wκ (ω)dω.

By Green’s formula we have for any N ∈N

λN
κ fkκ =

∫
Sn−1

fk(y,ω)�N
Sn−1 wκ (ω)dω =

∫
Sn−1

(
�N

Sn−1 fk
)
(y,ω)wκ (ω)dω,

which using (B.2) gives∣∣∂β
y fkκ

∣∣ � λ−N
κ 2−k(m+1−|β|)/2

∑
|α|�2N

sup
ω∈Sn−1

∥∥∂α
ξ a(·,ω)

∥∥
Cm,1 (B.3)

for |β| � m + 1 and any N . Also, we can see from the definition that the family { fkκ } inherits the property that f̂kκ (η) =
f̂ jκ (η) for |η|� 2max(k, j)/2 from { fk}. With this decomposition we have∑

k

fk(y, D)Fk =
∑
k,κ

fkκ(y)|D|wκ

(
D/|D|)Fk.

Following [1] we now split this sum to be estimated into two sums with even and odd k so that the sets where the Fk in
each sum are concentrated do not overlap. Each of these sums may now be treated in the same way and so we focus only
on the sum with even k which may be decomposed in the following way∑

k even

fk(y, ξ)Fku =
∑

κ,k even

fkκ(y)βk(D/A)vκ −
∑

κ,k even

fkκ(y)βk(D/A)
∑

j even, j �=k

R jκ u +
∑

κ,k even

fkκ(y)Rkκ u, (B.4)

where vκ = ∑
j even |D|wκ (D/|D|)F ju and Rkκ = |D|wκ (D/|D|)Rk . Note that using (B.1) and the estimate ‖wκ‖L∞ � λ

n−1
4

κ

we have

‖vκ‖
Hs− m+1

2
� Cλ

n−1
4

κ ‖u‖
Hs+r− m−1

2
.

Since Rkκ has the same mapping properties as Rk , but with norms bounded by λ
n−1

4
κ , if we take N to be large enough then

the sums on the second line of (B.4) give an operator with the required properties provided that |s| � m + 1 in which case
fkκ acts as a multiplier mapping Hs to Hs with norm bounded by (B.3). Thus, using the rapid decay of fkκ in κ , we have
reduced the proof to showing that operators of the form∑

k

fkκ (y)βk(D/A)

map Hs− m+1
2 to Hs continuously with appropriately bounded norm for −(m + 1)/2 � s � m + 1. In fact this is already done

for the case m = 1 in [1].
We finally introduce one more decomposition so that the last sum becomes

S =
∑
k, j

β j(D/A) fkκ(y)βk(D/A). (B.5)

Now we will look in more detail at the operators in this sum, which we will label as

Γ jkκ = β j(D/A) fkκβk(D/A).

We will use the notation l(A) = min(0,floor(log2(A))) and

‖a‖N =
∑

sup
ω∈Sn−1

∥∥∂α
ξ a(·,ω)

∥∥
Cm,1 .
|α|�2N
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Taking advantage of the frequency localization of β(D/A) we may show

‖Γ jkκ‖L2→L2 �

⎧⎪⎨
⎪⎩

Aλ−N
κ 2− j(m+1)‖a‖N j > k + 3 − l(A),

Aλ−N
κ 2−k(m+1)/2‖a‖N k + 3 − l(A) � j � k − 3 + l(A),

Aλ−N
κ 2−k(m+1)‖a‖N k − 3 + l(A) > j.

With these estimates available we now return to (B.5). For v ∈ C∞
0 (Rn)

‖S v‖2
Hs � C2

∑
k, j

22 js‖Γ jkκ‖2
L2→L2

∥∥βk(D)v
∥∥2

L2

� C2
∑
k, j

22( js−k(s− m+1
2 ))‖Γ jkκ‖2

L2→L2

(
2k(s− m+1

2 )
∥∥βk(D)v

∥∥
L2

)2

� C2‖a‖2
N

( ∑
j>k+3−l(A)

22( j(s−m−1)−k(s− m+1
2 ))

(
2k(s− m+1

2 )
∥∥βk(D)v

∥∥
L2

)2

+
∑

k−3+l(A)� j�k+3−l(A)

22( js−ks)(2k(s− m+1
2 )

∥∥βk(D)v
∥∥

L2

)2

+
∑

k> j+3−l(A)

22( js−k(s+ m+1
2 ))

(
2k(s− m+1

2 )
∥∥βk(D)v

∥∥
L2

)2
)

.

If s < m + 1, then the first sum in parentheses is bounded by ‖u‖2

Hs− m+1
2

. The second sum converges for any s and is also

bounded by a constant times ‖u‖2

Hs− m+1
2

. Finally, if s > (m + 1)/2, then the third sum is bounded by the same quantity. This

completes the proof of the lemma for −(m + 1)/2 < s < m + 1.
To complete the proof for the endpoints s = −(m + 1)/2 and s = m + 1 we first consider the case m � 1 where we use

induction on m, and the fact mentioned above that the m = 1 case is already proven in [1]. Indeed, we already have that

S∂x : H
m+1

2 → Hm and ∂x S : H− m−1
2 → H0, and so it suffices to show that

[∂x, S] : Hs− m−1
2 → Hs

for s = m and s = 0. However,

[∂x, S] =
∑

k

∂y fkκ (y)βk(D/A),

and the functions ∂y fkκ have the same properties as fkκ but with m replaced by m − 1. Using induction the proof is now
complete for m � 1. In case m = 0, we use by the above that

S〈D〉 1
2 : H

1
2 → H

1
2 , 〈D〉 1

2 S : H0 → H0.

Thus, it suffices to show that [〈D〉 1
2 , S] : Hs → Hs for s = 1

2 and s = 0. In fact,[〈D〉 1
2 , S

] : H0 → H
1
2 ,

as can be seen by interpolating the estimates in Propositions 4.1.B and 4.1.E of [26], since S ∈ LipS1
cl . We remark that the

estimates in [26] are stated for A ∈ C1 S1
cl but in fact hold for A ∈ LipS1

cl , as seen by the Propositions 4.1.A and 4.1.D from
which they are deduced. �
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