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Abstract

We continue our study of the Johnson–Lindenstrauss lemma and its connection to circulant matrices
started in Hinrichs and Vybíral (in press) [7]. We reduce the bound on k from k = Ω(ε−2 log3 n) proven
there to k = Ω(ε−2 log2 n). Our technique differs essentially from the one used in Hinrichs and Vybíral
(in press) [7]. We employ the discrete Fourier transform and singular value decomposition to deal with the
dependency caused by the circulant structure.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Let x1, . . . , xn ∈ R
d be n points in the d-dimensional Euclidean space R

d . The classi-
cal Johnson–Lindenstrauss lemma tells that, for a given ε ∈ (0, 1

2 ) and a natural number k =
Ω(ε−2 logn), there exists a linear map f : R

d → R
k , such that

(1 − ε)
∥∥xj

∥∥2
2 �

∥∥f
(
xj

)∥∥2
2 � (1 + ε)

∥∥xj
∥∥2

2

for all j ∈ {1, . . . , n}.
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Here ‖ · ‖2 stands for the Euclidean norm in R
d or R

k , respectively. Furthermore, here and
any time later, the condition k = Ω(ε−2 logn) means, that there is an absolute constant C > 0,
such that the statement holds for all natural numbers k with k � Cε−2 logn. We shall also always
assume, that k � d . Otherwise, the statement becomes trivial.

The original proof of this fact was given by Johnson and Lindenstrauss in [9]. We refer to
[6] for a beautiful and self-contained proof. Since then, it has found many applications for ex-
ample in algorithm design. These applications inspired numerous variants and improvements of
the Johnson–Lindenstrauss lemma, which try to minimize the computational costs of f (x), the
memory used, the number of random bits used and to simplify the algorithm to allow an easy
implementation. We refer to [8,1–3,12] for details and to [12] for a nice description of the history
and the actual “state of the art”.

All the known proofs of the Johnson–Lindenstrauss lemma work with random matrices and
proceed more or less in the following way. One considers a probability measure P on a some
subset P of all k × d matrices (i.e. all linear mappings R

d → R
k). The proof of the Johnson–

Lindenstrauss lemma then emerges by some variant of the following two estimates

P
(
f ∈ P :

∥∥f (x)
∥∥2

2 � 1 + ε
)
< 1 − 1

2n

and

P
(
f ∈ P :

∥∥f (x)
∥∥2

2 � 1 − ε
)
< 1 − 1

2n
,

which have to be proven for all unit vectors x ∈ R
d , and a simple union bound over all points

xj /‖xj‖2, j = 1, . . . , n. Here and later on we assume, without loss of generality, that xj �= 0 for
all j = 1, . . . , n.

The biggest breakthrough in the attempts to minimize the running time of f was achieved
by Ailon and Chazelle in [2] (with improvements by Matoušek [12] and Ailon and Liberty [4]).
The mapping f is given in [2] as the composition of a sparse matrix, a certain random Fourier
matrix and a random diagonal matrix. The value f (x) can be computed with high probability
very efficiently, i.e. using O(d logd + min{dε−2 logn, ε−2 log3 n}) operations. This was later
further improved by Ailon and Liberty to O(d logk) for k = O(d1/2−δ), for any arbitrary small
fixed δ > 0.

In [7], we studied a different construction of f , namely the possibility of a composition of
a random circulant matrix with a random diagonal matrix. As a multiple of a circulant matrix
may be implemented with the help of a discrete Fourier transform, it provides the running time
of O(d logd), requires very few random bits (only 2d random bits in the case of Bernoulli
variables) and allows a very simple implementation, as the Fast Fourier Transform is a part of
every standard mathematical software package.

The main difference between this approach and the usual constructions available in the litera-
ture is that the components of f (x) are now no longer independent random variables. Decoupling
this dependence, we were able to prove in [7] the Johnson–Lindenstrauss lemma for composi-
tion of a random circulant matrix and a random diagonal matrix, but only for k = Ω(ε−2 log3 n).
It is the main aim of this note to improve this bound to k = Ω(ε−2 log2 n). This comes essen-
tially closer to the standard bound k = Ω(ε−2 logn). Reaching this optimal bound (and keeping
the control of the constants involved) remains an open problem and a subject of a challenging
research.
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We use a completely different technique here. We use the discrete Fourier transform and the
singular value decomposition of circulant matrices. That is the reason, why we found it more
instructive to state and prove our variant of Johnson–Lindenstrauss lemma for complex vectors
and Gaussian random variables. As a corollary, we obtain of course a corresponding real version.

Before we state our main result, we give the necessary definitions.

Definition 1.1. Let α and β be independent real Gaussian random variables with

Eα = Eβ = 0 and E|α|2 = E|β|2 = 1.

Then we call

a = α + iβ

a complex Gaussian variable.

Let us note, that if a is a complex Gaussian variable, then

Ea = Eα + iEβ = 0 and E|a|2 = Eα2 + Eβ2 = 2.

Definition 1.2. (i) Let k � d be natural numbers. Let a = (a0, . . . , ad−1) ∈ C
d be a fixed complex

vector. We denote by Ma,k the partial circulant matrix

Ma,k =

⎛
⎜⎜⎜⎜⎝

a0 a1 a2 · · · ad−1
ad−1 a0 a1 · · · ad−2
ad−2 ad−1 a0 · · · ad−3

...
...

...
. . .

...

ad−k+1 ad−k+2 ad−k+3 · · · ad−k

⎞
⎟⎟⎟⎟⎠ ∈ C

k×d .

If k = d , we denote by Ma = Ma,d the full circulant matrix. This notation extends naturally to
the case, when a = (a0, . . . , ad−1) are independent complex Gaussian variables.

(ii) If � = (�0, . . . , �d−1) are independent Bernoulli variables, we put

D� = diag(�) :=

⎛
⎜⎜⎝

�0 0 · · · 0
0 �1 · · · 0
...

...
. . .

...

0 0 · · · �d−1

⎞
⎟⎟⎠ ∈ R

d×d .

Of course, D� : C
d → C

d is an isomorphism.

Theorem 1.3. Let ε ∈ (0, 1
2 ), n � d be natural numbers, and let x1, . . . , xn ∈ C

d be n arbitrary
points in C

d . Let a = (a0, . . . , ad−1) be d independent complex Gaussian variables and let � =
(�0, . . . , �d−1) be independent Bernoulli variables.

If k = Ω(ε−2 log2 n) is a natural number, then the mapping f : C
d → C

d given by f (x) =
1√ Ma,kD�x satisfies

2k
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(1 − ε)
∥∥xj

∥∥2
2 �

∥∥f
(
xj

)∥∥2
2 � (1 + ε)

∥∥xj
∥∥2

2

for all j ∈ {1, . . . , n} with probability at least 2/3. Here ‖·‖2 stands for the �2-norm in C
d or C

k ,
respectively.

For reader’s convenience, we formulate also a variant of Theorem 1.3, which deals with real
Euclidean spaces.

Corollary 1.4. Let ε ∈ (0, 1
2 ), n � d be natural numbers, and let x1, . . . , xn ∈ R

2d be n arbitrary
points in R

2d . Let α0, . . . , αd−1, β0, . . . , βd−1 be 2d independent real Gaussian variables and let
� = (�0, . . . , �d−1) be independent Bernoulli variables.

If k = Ω(ε−2 log2 n) is a natural number, then the mapping f : R
2d → R

2k given by

f (x) = 1√
2k

(
Mα,k −Mβ,k

Mβ,k Mα,k

)(
D� 0
0 D�

)
x

satisfies

(1 − ε)
∥∥xj

∥∥2
2 �

∥∥f
(
xj

)∥∥2
2 � (1 + ε)

∥∥xj
∥∥2

2

for all j ∈ {1, . . . , n} with probability at least 2/3. Here ‖ · ‖2 stands for the �2-norm in R
2d

or R
2k , respectively.

The proof follows trivially from Theorem 1.3 by considering complex Gaussian variables
a = (α0 +iβ0, . . . , αd−1 +iβd−1) and complex vectors yj = (x

j

0 +ix
j
d , . . . , x

j

d−1 +ix
j

2d−1) ∈ Cd ,
j = 1, . . . , n.

2. Used techniques

We give an overview of the techniques used in the proof of Theorem 1.3.

2.1. Discrete Fourier transform

Our main tool in this note is the discrete Fourier transform. If d is a natural number, then the
discrete Fourier transform Fd : C

d → C
d is defined by

(Fdx)(ξ) = 1√
d

d−1∑
u=0

xu exp

(
−2πiuξ

d

)
.

With this normalization, Fd is an isomorphism of C
d onto itself. The inverse discrete Fourier

transform is given by

(
F −1

d x
)
(ξ) = 1√

d

d−1∑
xu exp

(
2πiuξ

d

)
.

u=0
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Observe, that the matrix representation of F −1
d is the conjugate transpose of the matrix represen-

tation of Fd , i.e. F −1
d = F ∗

d .
The fundamental connection between discrete Fourier transform and circulant matrices is

given by

Ma = Fd diag(
√

dFda)F −1
d , (2.1)

which may be verified by direct calculation. Hence every circulant matrix may be diagonalized
with the use of a discrete Fourier transform, its inverse and a multiple of the discrete Fourier
transform of its first row.

2.2. Singular value decomposition

The last tool needed in the proof is the singular value decomposition. Let M : C
d → C

k be a
k × d complex matrix with k � d . Then there exists a decomposition

M = UΣV ∗,

where U is a k ×k unitary complex matrix, Σ is a k ×k diagonal matrix with nonnegative entries
on the diagonal, V is a d × k complex matrix with k orthonormal columns and V ∗ denotes the
conjugate transpose of V . Hence V ∗ has k orthonormal rows. The entries of Σ are the singular
values of M , namely the square roots of the eigenvalues of MM∗.

If a = (a0, . . . , ad−1) ∈ C
d is a complex vector and Ma is the corresponding circulant matrix,

then its singular values may be calculated using (2.1). We obtain

MaM
∗
a = Fd diag(

√
dFda)F −1

d

[
Fd diag(

√
dFda)F −1

d

]∗
= Fd diag(

√
dFda)diag(

√
dFda)F −1

d

= Fd diag
(
d|Fda|2)F −1

d .

Hence, the singular values of Ma are {√d|(Fda)(ξ)|}d−1
ξ=0.

The action of an arbitrary projection onto a vector of independent real Gaussian variables is
very well known. It may be described as follows.

Lemma 2.1. Let a = (a0, . . . , ad−1) be independent real Gaussian variables. Let k � d be a
natural number and let x1, . . . , xk be mutually orthogonal unit vectors in R

d . Then

{〈
a, xj

〉}k

j=1

is equidistributed with a k-dimensional vector of independent real Gaussian variables.

A direct calculation shows, that Lemma 2.1 holds also for complex vectors a and x1, . . . , xk .
We present the following formulation of this fact.

Lemma 2.2. Let a = (a0, . . . , ad−1) be independent complex Gaussian variables. Let W be a
k × d matrix with k orthonormal rows. Then Wa is equidistributed with a k-dimensional vector
of independent complex Gaussian variables.
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3. Proof of Theorem 1.3

We shall need the following statement, which describes the preconditioning role of the diag-
onal matrix D� . A similar fact has been used also in [2]. Nevertheless, using discrete Fourier
transform instead of a Hadamard matrix does not pose any restrictions on the underlying dimen-
sion d . Without repeating the details, we point out, that we discussed briefly in [7, Remark 2.5],
why this preconditioning may not be omitted.

Lemma 3.1. Let n � d be natural numbers and let x1, . . . , xn ∈ C
d be complex vectors. Let � =

(�0, . . . , �d−1) be independent Bernoulli variables. Then there is an absolute constant C > 0,
such that with probability at least 5/6,

∥∥FdD�

(
xj

)∥∥∞ � C
√

logn√
d

· ∥∥xj
∥∥

2 (3.1)

holds for all j ∈ {1, . . . , n}.

Proof. Let x = α + iβ be a unit complex vector in C
d . We put y = (y0, . . . , yd−1) = FdD�(x).

Combining the inclusion

{
z ∈ C: |z| > s

} = {
z ∈ C: (	z)2 + (
z)2 > s2} ⊂

{
z ∈ C: |	z| > s√

2

}

∪
{
z ∈ C: |
z| > s√

2

}

with

P�

(
|	yl | > s√

2

)
= 2P�

(
	yl >

s√
2

)
,

we may estimate

P�

(|yl | > s
)
� 2P�

(
	yl >

s√
2

)
+ 2P�

(

yl >

s√
2

)
, l = 0, . . . , d − 1, (3.2)

where

	yl = 1√
d

d−1∑
u=0

�u

[
αu cos(2πlu/d) + βu sin(2πlu/d)

]

and


yl = 1√
d

d−1∑
u=0

�u

[
βu cos(2πlu/d) − αu sin(2πlu/d)

]

are the real and the imaginary part of yl , respectively.
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Let t > 0 be a real parameter to be chosen later. Using Markov’s inequality we may proceed
in a standard way:

P�

(
	yl >

s√
2

)
= P�

(
exp

(
t	yl − st√

2

)
> 1

)

� exp

(
− st√

2

)
E� exp(t	yl)

= exp

(
− st√

2

) d−1∏
u=0

cosh

[
t√
d

[
αu cos(2πlu/d) + βu sin(2πlu/d)

]]

� exp

(
− st√

2

) d−1∏
u=0

exp

(
t2

2d

[
αu cos(2πlu/d) + βu sin(2πlu/d)

]2
)

� exp

(
− st√

2

) d−1∏
u=0

exp

(
t2

2d

[
α2

u + β2
u

]) = exp

(
− st√

2
+ t2

2d

)
.

We have used the inequality cosh(v) � exp(v2/2), which holds for all v ∈ R, and the inequality

between geometric and quadratic means. For the optimal t = sd√
2

, this is equal to exp(− s2d
4 ).

As the second summand in (3.2) may be estimated in the same way, we obtain

P�

(|yl | > s
)
� 4 exp

(
− s2d

4

)
, l = 0, . . . , d − 1. (3.3)

Choosing s = Ω(d−1/2√logn ) and applying the union bound over all nd � n2 components of
{Fd D�(xj /‖xj‖2)}nj=1, we obtain the result. �
Proof of Theorem 1.3. Let us choose a vector � = (�0, . . . , �d−1) ∈ {−1,+1}d , such that (3.1)
holds. According to Lemma 3.1 this happens with probability at least 5/6.

Let us take x̃ = xj

‖xj ‖2
for any fixed j = 1, . . . , n. We show, that there is an absolute constant

c > 0, such that

Pa

(‖Ma,kD�x̃‖2
2 � 2(1 + ε)k

)
� exp

(
− ckε2

logn

)
(3.4)

and

Pa

(‖Ma,kD�x̃‖2
2 � 2(1 − ε)k

)
� exp

(
− ckε2

logn

)
(3.5)

hold. From (3.4) and (3.5), Theorem 1.3 follows again by a union bound over all j = 1, . . . , n.
Let yj = Sj (D�x̃) ∈ C

d , j = 0, . . . , k − 1, where S is the shift operator defined by

S : C
d → C

d, S(z0, . . . , zd−1) = (z1, . . . , zd−1, z0).

We denote by Y the k × d matrix with rows y0, . . . , yk−1.
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Then it holds

‖Ma,kD�x̃‖2
2 =

k−1∑
j=0

∣∣∣∣∣
d−1∑
u=0

a(u−j) mod d�ux̃u

∣∣∣∣∣
2

=
k−1∑
j=0

∣∣∣∣∣
d−1∑
u=0

y
j
uau

∣∣∣∣∣
2

= ‖Ya‖2
2.

Let Y = UΣV ∗ be the singular value decomposition of Y . As mentioned above, b := V ∗a is
a k-dimensional vector of independent complex Gaussian variables. Hence,

Pa

(‖Ya‖2
2 > τ

) = Pa

(∥∥UΣV ∗a
∥∥2

2 > τ
) = Pb

(‖UΣb‖2
2 > τ

)
= Pb

(‖Σb‖2
2 > τ

) = Pb

(
k−1∑
j=0

λ2
j |bj |2 > τ

)
,

holds for every τ > 0. Here, λj , j = 0, . . . , k − 1, are the singular values of Y . Let us denote
μj = λ2

j . Then

‖μ‖1 =
k−1∑
j=0

λ2
j = ‖Y‖2

F = k,

where ‖Y‖F is the Frobenius norm of Y .
Moreover,

‖μ‖∞ = ‖λ‖2∞ = sup
z∈Cd ,‖z‖2�1

‖Yz‖2
2

� sup
z∈Cd ,‖z‖2�1

‖MD�x̃z‖2
2 = d

∥∥FdD�(x̃)
∥∥2

∞ � C2 logn, (3.6)

where MD�x̃ stands for the d × d complex circulant matrix with the first row equal to D�x̃.
This leads finally also to

‖μ‖2 �
√‖μ‖1 · ‖μ‖∞ � C

√
k logn. (3.7)

Then

Pa

(‖Ya‖2
2 > 2(1 + ε)k

) = Pb

(
k−1∑
j=0

μj

(|bj |2 − 2
)
> 2εk

)
.

We denote

Z :=
k−1∑

μj

(|bj |2 − 2
)
.

j=0
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The complex version of Lemma 1 from Section 4.1 of [11] (cf. also Lemma 2.2 of [12]) states
that

Pb

(
Z � 2

√
2‖μ‖2

√
t + 2‖μ‖∞t

)
� exp(−t). (3.8)

Using (3.6) and (3.7), we arrive at

Pb

(
Z � 2

√
2C

√
tk logn + 2C2t logn

)
� exp(−t).

Choosing t = c′kε2

C2 logn
for c′ > 0 small enough, we get

Pb(Z � 2εk) � exp

(
− ckε2

logn

)
.

This finishes the proof of (3.4). Let us note, that (3.5) follows in the same manner with (3.8)
replaced by

Pb

(
Z � −2

√
2‖μ‖2

√
t
)
� exp(−t),

which may be again found in Lemma 1, Section 4.1 of [11]. �
Remark 3.2. The statement and the proof of Theorem 1.3 do not change, if we replace the partial
circulant matrix Ma,k with any k × d submatrix of Ma .

Note added in proof

Interesting new work of Ailon and Liberty [5] appeared during the review process of this
paper. Their transformation is the composition of a random sign matrix with a random selection
of a suitable number k of rows from a Fourier matrix. Their bound on k, namely k = Ω(ε−4 logn ·
polylogd), is optimal up to the polylogd factor. Depending on d and n, this may be better than
our bound.

In another very recent preprint [10], Krahmer and Ward applied the RIP bounds of [13] to
prove that partial circulant matrices satisfy the Johnson–Lindenstrauss lemma if

k = Ω
(
max

(
ε−1 log3/2 n · log3/2 d, ε−2 logn · log4 d

))
.
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