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INTRODUCTION 

In this paper we introduce the notion of separability for functors. As 
special cases we mention the restriction (of scalars) functor, ‘p*, and the 
induction functor, cp *, associated to a ring homomorphism ‘p: R + S; 
separability of ‘p* relates to separability of S over R which is defined in 
terms of splitting of the canonical map II/: S 0 R S -+ S as an S-bimodule 
map. Separable functors and their properties have various applications, but 
here we restrict to applications in the theory of graded rings where the 
morphism cp is usually taken to be the map R, + R, where e is the neutral 
element of the group G. However, there are a few very natural functors 
around that allow interesting applications. After the general properties of 
separability studied in Section 1 we turn to separability of the restriction 
functor for graded rings in Section 2. In case R is strongly graded by G 
then R is separable over R, if and only if G is finite and the trace function 
is surjective. The forgetful functor U: R-gr + R-mod (U forgets the 
gradiation) is always a separable functor. 

The body of this paper deals with the properties of the right adjoint F of 
U in case G is finite of order n. Let Cal,(M) be the set of n x l-columns 
over it4 and H: R-mod + R-gr the functor obtained by putting H(M) = 
Cal.(M) viewing it as a graded R-module in some way, then the functors F 
and H are equivalent. In Theorem 3.6 we provide a separability criterion 
for Fusing smash-product constructions appearing in the duality for coac- 
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tions. Separability of F is weaker than separability of R over R, but in the 
strongly graded case it amounts to the same thing. The genera1 properties F 
enjoys are summed up in Theorem 3.10, e.g., F preserves: finitely generated, 
finitely presented, Noetherian, Artinian, Krull dimension, Gabriel dimen- 
sion, projective, injective, essentiality, inj.dimension (if /Cl = n is invertible 
in R). If M is a simple R-module then F(M) is semi-simple of finite length 
(G is finite here!) in R-gr; this provides alternative approaches to results of 
E. Dade [3] and P. Greszczuk [43. Finally, we present yet another con- 
struction of the functor F using group rings over graded rings; in this way 
we show that existing techniques in the literature, i.e., smash-products, 
duality for (co-)actions, group ring constructions, blend together well in 
the study of the functor F and its separability properties. 

From the generality of Section 1 it is clear that several other applications 
may exist outside the graded context, e.g., separability of representable 
functors, etc., but we hope to come back to such applications in the future. 

1. SEPARABLE FUNCTORS 

Consider categories W, 9 (in most applications these categories are 
abelian or at least additive). 

A covariant functor F: 59 -+ 9 is said to be a separable functor if for all 
objects M, N in ‘9 there are maps (P:.~, qLsN: Hom.(F(M), F(N))+ 
Horn&M, N), satisfying the following conditions: 

SF.l. For a~ Hom,(M, N) we have qLJF(a)) =a. 
SF.2. Given M’, N’ in V, ae Hom,(M, M’), BE Hom,(N, N’), 

SE Hom.(F(M), F(N)), g E Hom,(F(M’), F(N’)) such that the following 
diagram is commutative: 

F(M) f * F(N) 

I 
FlZJ 

I 
F( 6 b 

F(M’) g + F(N’) 

then the foliowing diagram is also commutative: 

A4 &,(/) 
l N 
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Note that condition SF.1 entails that qI;MJl F,,,,J = 1 M. A few elementary 
properties of separable functors are summed up as: 

1.1. LEMMA. 1. An equivalence of categories is separable. 

2. If F: %? -+ 9, G: 2 + 8 are separable functors then the composed 
functor GF is separable too. 

3. Let F, G be as in 2. If GF is separable then F is a separable functor. 

Proof 1. The map JI-+ F(f), Horn&M, N) + Hom,(F(M), F(N)) is 
bijective. 

2. For M, N is %’ and f oHom,(GF(M), GF(N)) we define CpKJf) 
to be cPFM.N(v&.F,N,(f)). 

3. ForfEHom&F(M), F(N)) we define ~;,~(f)=(~‘$r~(G(f)). 1 

Note that SF.1 holds for a full and faithful functor F: V -+ 9, i.e., when 
for M, N in 5%’ the map Hom,(M, N) + Horn .(F( M), F(N)), f t-+ F(f) is 
bijective. 

The separability of a functor F: %? -+ 59 sometimes allows one to deduce 
properties of M in %? from corresponding properties of F(M) in D; the 
following proposition provides some examples of such properties. 

1.2. PROPOSITION. Let F: % + S!? be a separable functor and let M, N be 
objects in V. Then we have: 

1. Iff E Hom,(M, N) is such that F(f) is split then f is split. 

1’. Zf f E Hom,(M, N) is such that F(f) is co-split, i.e., there is an 
w~Horn,(F(N), F(M)) such that F(f)w= l,,,), then f is co-split. 

For the following properties we assume that V and 9 are abelian categories. 

2. If F(M) is quasi-simple (i.e., every subject splits off) and F conser- 
ves monomorphisms then M is quasi-simple in V. 

3. If F conserves epimorphisms, resp. monomorphisms, and F(M) is 
projective, resp. injective, then M is projective, resp. injective. 

Proof 1. There is a map u: F(N) -+ F(M) such that uF(f) = 1 F, M). Put 
g = (p;. ,Ju). Condition SF.2 yields that gf = 1 M because of the diagram 

F(M) - ln.w1 F(M) 
r‘l I ) 

I I 
FIIH) 

F(N) u F(M) 

The proof of 1’ is similar. Statements 2, 3 may be derived from 1 and 1’ in a 
straightforward way. 1 
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Specializing the categories %? and 9 further one may study separable 
functors in many different situations but we focus here on module 
categories. 

Let cp: R -+ S be a ring homomorphism. To cp we associate the following 
functors: 

a. ‘p*: S - mod + R-mod, the restriction (of scalars) functor 
associating to an S-module M the R-module structure defined on the set A4 
by the ring morphism cp: R + S. 

b. cp*: R-mod + S-mod, the induction functor, associating to an 
R-module M the S-module S@ R M (note that all modules are left modules 
unless otherwise specified). The functor (p* is exact but ‘p* is only right 
exact. We say that SJR is separable if the map $: SQ R S + S, s @ s’ I-+ ss’, 
splits as an S-S-bimodule map. Note that this definition is compatible with 
the definition of separability for commutative ring extensions. We intend to 
relate separability of S/R and separability of the functors introduced above. 

1.3. PROPOSITION. 1. cp * is separable $ and onIy if S/R is separable. 

2. cp * is separable if and only if cp splits as an R-bimodule map. 

Prooj: 1. Suppose that cp, is separable. Let sMs and ,N, be SS- 
bimodules and f: M -+ N an R--S-bimodule morphism. Separability of ‘p* 
entails the existence of a map cp ,+,. G Horn ,dvJW, cp,(N)) + 
Hom,(M, N). Put g = cp ,+,. ,v( f ), g E Hom,(M, N). We claim that g is an 
S-S-bimodule morphism. For s E S we define x,(x) = xs and we obtain the 
commutative diagram 

Since rr = cp,(x,), condition SF.2 yields a commutative diagram 

Hence g(xs) = g(x)s for all XE M, and therefore g is as claimed. To the 
morphism Y? S@ R S + S, s @ s’ H ss’, we may associate an R-S-bimodule 
morphism Y’: S + SOR S, SH I OS, such that YY’= I ,s. If we put ‘Y, = 
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cps,s oR &q’) then we have y/P, = 1 s and Y, is an S-S-bimodule 
morphism. Hence Y is split as an S-S-module morphism. 

Conversely, assume that ‘Y is split by some S-S-bimodule morphism, 63 
say. Let M, N be S-modules andJoHomR(q,(M), q,(N)). 

Define 7 by the following commutative diagram of S-module maps: 

I I 
2 2 

M 3 , N 

From this diagram it is easily deduced that f=f in case f is S-linear. Let 
u ,,,: M -+ SO R M, uN: S@ R N -+ N be the composition of the vertical maps 
resp. on the left and on the right in the diagram. Given S-modules M’, N’ 
and a E Hom( M, M’), fi E Horn s( N, N’), g E Horn R( M’, N’) then one 
obtains a diagram 

In this diagram the diagonal maps are splittings and one easily deduces 
that the inner square is commutative if the outer square is commutative. 
Hence ‘p* is separable. 

2. Suppose first that SO R - is a separable functor. Then the com- 
position of 10 rp and 7: SO R S + S@ R R, SOS’ H .w’ @ 1 is the identity 
map. Therefore -7 provides a splitting for cp. Conversely, suppose that +J is 
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split by an R-linear map Y. If .f: S$JR M --) SQR N is S-linear then we 
define 7 by the commutative diagram 

A routine verification then establishes (as in 1) that S@, - is separable. i 

1.4. COROLLARY. Zf cp: R -+ S is an epimorphism in the category of rings 
then ‘p.+ is a separable functor. 

Proof. Since v, is an epimorphism S@ R S -+ S, s OS I-+ ss’, is an 
isomorphism (e.g., B. Stenstrom, Proposition 1.2, p. 225 [IO)). B 

2. SEPARABILITY OF THE RF~TRICTION FUNCTOR 
FUR GRADED RIWS 

Consider now a ring R graded by a group G, R = @ tif G R,. For full 
detail on graded rings we refer to [lo]. 

A ring R is said to be srrongly graded if R, R, = R,: for all (T, z E G. The 
latter condition makes each R,, (r E G, into an invertible R,-bimodule and 
it is well known that az = a( holds for all CIE R,, z in the centre Z(R,) 
of R,, and CJ E Aut(Z( R,)) associated to the isomorphism class [R,] of R,; 
cf. Cl5, 73. In fact we may give a direct description of this G-action on 
Z{ R,) (cf. [ 141) as follows. Since R, R, I = R,. for each go G, we may fix a 
decomposition 1 =x, a,b, with 0,~ R,, b,~ R, I, now put a(z) =x, a,zh, 
for ZEZ(R,) and one checks directly that a(z az for all ZEZ(R,.) and 
GE R,. Let q, be the restriction functor associated to the ring morphism 
40: R, + R. The induction functor ‘p* associated to 4p is given by 
ROR, -- and for graded rings this induction is the adjoint of the restriction 
functor. In Proposition 1.3 we provided criteria for cp*, ‘p* to be separable. 
Verification of the splitting of 50 as an R-bimodule map presents no 
problem in the graded situation, so we focus on separability of ‘p* for a 
moment. The criterion for separability of R/R, contained in the following 
proposition is in fact the same as the one obtained by Y. Miyashita in [7], 
where finite groups were considered; see also K. H. Ulbrich [ 151. 
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2.1. PROPOSITION. Let R be strongly graded by G, then R/R, is separable 
ifandonlyifthetracet:Z(R,)-,Z(R,),a~~~,,a(a)issurjectiveandG 
is finite (this is yet another version of Maschke’s theorem). 

Proof First suppose that R/R, is separable, i.e., there is an R-bimodule 
splitting for the canonical mapping: tj: R@ R, R -+ R, SOS’ ++ ss’. Say 
&R--+R@>,R splits the map I,/I, Put &~)=.~ER@&R, then $(s)=l. 
Since # determines an R-bimoduIe splitting for 1,6 it is clear that i,s=.sA, 
for all i, E R,, SE G. So R/R, is separable if and only if there is an 
SE R@, R such that 1,6(s)= 1 and Afs=sir for all i,~ R,, LEG. Because 
R is strongly graded by G we have isomorphisms: R@ R, R z 
e O,r E o R, OR, R,, R, 0 R, 2 R,, as R,-bimodules. 

We write 4’, II/’ for the R-bimodule maps determined by the commutative 
diagram 

We put d’( 1) = a(s) = s’ = C, E s C’ a, @ b, I for some finite subset S of G, 
putting c,,, I = $‘(C’a,@bO-~), Then 1 =x:oES~b.O 1 with c,,, IE R,. The 
fact that s’ is RF-centralizing leads to c,,,-I EZ(R,). Pick j,,~ R,, TEG, 
then AJ’ = $2, yields (by comparing homogeneous parts of equal degree) 
~‘I,a,@b,-I=x’a,,@b, I~ 13,~. Hence we arrive at Ate,+,-,= 
c tn.n-ir-IAr, and in view of the de~nition of the G-action on Z(R,) we also 
obtain, for every 2, E R,, (4,(c,.,-I) -c 
C -it.., follows. In particular c,,, 

, = (b ?, ;’ 1 ‘;F~O; ;“=““, ~~t~~~(~) =) 
i c,.. ,, an 

I I 
rn. 17 

leads to the desired element of trace equal to I. It also follows that 6’;s 
finite because if G were inlinite then there would exist a 7~ G such that 
to#S and then c,,,,-],-I =0 would lead to ~c,,~-I =0 for all YE R,, hence 
Co,,- - -0, a contradiction (choice of the c,..-I!). 

Conversely, if there is an element UE Z(R,) having trace one, then we 
may produce a bimodule splitting of I+// by sending 1 to (~Ju)),,~; this 
claim is easy to check. fl 

2.2. Remarks. 1. In the situation of the above proposition an explicit 
description of f (as in the proof of Proposition 1.3( 1)) for a given 
SE Horn R,(M, N) is available. Fixing an element UE Z(R,) having trace 
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one, and fixing for each r E G a decomposition 1 = C, ~ti)util, with U~)E R,, 
uvJ1 E R,-L, then we may write 

The reader may verify (or look up [ 141) that this does not depend on the 
chosen decomposition of 1. 

2. In [3], E. Dade also considers the co-jnduct~on functor but in the 
strongly graded case co-induction and induction are isomorphic. 
Nevertheless, in general, it may be interesting to investigate separability of 
the co-induction functor. 

2.3. COROLLARY. Let G he a j’inite group of order n. Then R[G] is 
separable mer R tf and only if n is i~~ert~b~e in R. 

A very important functor is the forgetful functor iJ, U: R-gr + R-mod, 
associating to a graded R-module A4 the underlying ungraded module @ 
(usually we write &$ instead of U(M)). The following section is devoted to 
the right adjoint of U. As a transition to the next section we just mention: 

2.4. PROPOSITION. lf‘ R is an arbitrary G-grud~d ring then the functor U 
is ~eparabIe. 

Proof. Consider M, NE R-gr and f E Horn R(M, &f. If m E M has 
decomposition rn = M,! + ,a. + m,, then we define I = C,f(rr~~,)~, 
and it is easily checked that fe Horn~~*~~~, I?) and that the map 
- : Horn R( &f, 8) + Horn RJ M, N) satisfies SF. 1 and SF.2. 1 

3. THE RIGHT ADJOINT F OF U 

As before let LI: R-gr -+ R-mod denote the forgetfu1 functor and we will 
write &# for U(M). Recall the construction of a right adjoint F of U (cf. 
[ 10, p. 43); if ME R-mod then F(M) is deftned to be the additive group 
0 o c G “M, where each “M is a copy of M (we write “M = f ‘x, x E M f ) and 
R-module structure is given by r ed x= ““(r~) for rE R,. Obviously the 
gradation of F{M) is given by F(M), = “M, CT E G. If f: M -+ N is R-linear 
then F(f): F(M) --, F(N) is given by F(f)( “x) = “f(x) and clearly F(f) is 
homogeneous of degree eE G, e the neutral element. The functor F is exact 
and it is a right adjoint for U. Note that U(~(~)) need not be a direct sum 
of copies of M since the component “M, o E G, is not an R-submodule of 
F(M), but it is an R~-submodule of course. The idea for this construction of 
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F stems from G. Bergman. Recall that M(1) for ;1 E G is the shifted 
R-module graded by M(I), = MTi, 7 E G. 

3.1. LEMMA. Z~ME R-gr then F(M)= @ j,EG M(A). 

Prooj For XE M we write x= Cwt c xg. Define a map u: F(M) + 
0 i. E c M(A), ‘x w (x,), E c, where x, is considered as an element of 
WC -IT), = M,. It is easy to verify that u is an isomorphism in R-gr. 1 

The functor F may also be constructed in at least two other ways. A first 
alternative construction uses smash-products, and a second construction is 
based on group rings over graded rings. For the smash-product construc- 
tion we follow D. Quinn [ 123. 

Assume IGJ = n, i.e., G is finite. Let M,(R) denote the n x n-matrices over 
R where rows and columns are indexed by elements of G. If a E M,(R) then 
we write a(~, y) for the entry in the (x, y)-position of a. For a, p in M,(R) 
the matrix product a, fl is given by a/l(x, y) = xz:,, G a(x, z) /3(z, y). If 
x, LEG then we let e,,, be the matrix a with a(x, y) = 1 and a(-, -) = 0 
elsewhere. 

Let px = e,,,, x~G.Define?:R~M,(R),r~C,,,.r,, le,,,.Thatqis 
a ring monomorphism is easily verified. We put q(r) = r” and a = Im q; let 
R # G* be the subring of M,(R) generated by i? and the set of orthogonal 
idempotents (p,, x E G}. We call i? # G* the smash-product of R by G and 
it is exactly the construction given by M. Cohen and S. Montgomery in 
[Z]. Clearly R # G* is a free (left and right) W-module with basis 
{P,, xeG1 and (Fpb,)(ZpY) = (Es”xv-~)pY for r, s E R, x, y E G; cf. 
Proposition 1.4 of [2]. 

Given g E G we define S = C, E G e,.,. Obviously g is a unit of MC(R) 
and G is isomorphic to G= (g, g E G}. Theorem 1.3 of [ 121 yields 
M,(R) = (a # G*)G and with Theorem 3.5 (Duality for Coactions) of [2] 
we have M-,(R) E (E # G*) * G, i.e., M,(R) is a skew group ring of G over 
the ring R # G*. For ME R-mod we let Cal,(M) be the set of n x l- 
columns over M. If m E Col,JM) then x, stands for the element of M 
appearing in the x-position of m. Let a E M,(R) act on m E Co1 JM) as 
follows: “(am)=CyEG a(x, ~)~rn (cf. D. Quinn [12, p. 160]), so Co].(M) 
is a left M,(R)-module in a natural way and we may view it as an ii # G*- 
module by restriction of scalars. An i? # G*-module W has a natural struc- 
ture of a graded R-module given by putting W, = pX W, XE G, and for 
re R, WE W we have rw = r](r)w. So we obtain the functor (-)Br: 
a # G-mod + R-gr which is an equivalence of categories (Theorem 2.2 [a]). 
In particular, ColJM) has the structure of a graded R-module. As 
indicated above we also obtain a functor H: R-mod + R-gr, defined by 
H(M) = ColJM) and considering this as a G-graded R-module. 

4X1/123 2-10 
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3.2. LEMMA. Thefinctors F and N are isomorphic. 

ProoJ For M E R-mod define cp( M): F(M) -+ H(M), m = ( ‘m), E G‘ M m, 
where m is the column with ‘rn in the position x E G. If re R, and m is 
homogeneous in F(M), m = ‘m say, then we claim that cp(M)(r”m) =c 
r~(~)(‘m). Indeed, we have q(r)=x,,.EGrl.z Ie,,,=rx:,,,eY lc (since 
r E R,). Wence for f E G we calculate 

= rl(r)(f, xl ‘m (note that ‘m = 0 for z # x). 

However, v(r)(t,x)=r when /=y and X=(T ‘y, and q(r)(t,x)=O 
otherwise. Hence, ‘(q(r)(cp(M)(m)))== rm = r ‘m, where I = ex and ‘( rm) = 0 
when I fox. It follows indeed that p(M) is R-linear. It is easy to check the 
bijectivity of q(M). Now for x E G we have cp( M)(F( M) ,f = px ColG( M) = 
H(M) 1. Therefore cp( M) is a graded isomorphism. On the other hand, it is 
also clear that rp = (cp( M)) ME R.mod is a functional morphism F -+ H and so 
cp is a functorial isomorphism. 1 

3.3. Remark. Let Col,(-): R-mod -+ Mu-mod be the functor taking 
M to Col,( M) viewed as an ~~(R)~moduIe. The foregoing lemma shows 
that H is the composition of the following functors: H= (-) _s,oi*o 
Col,(-), where the functor i,: MG( R)-mod -+ w # G*-mod is given by the 
inclusion map i: R # G* -+ M,(R). The functor Col,(-) is an equivalence 
of categories by a classical result of Morita; cf. Anderson and Fuller 
[ 1, p. 2651. 

3.4. PROPOSITION. Let R be a .~tr#~g~y graded ring of type G. Then F is a 
separable functor if and only if R is separable ouer R,. 

Proof In view of Theorem i.3.4 [lo], the functor RQR, -: Rdmod + 
R-gr given by NH R@, N is an equivalence with inverse functor (-),: 
R-mod -+ R,mod. The composition (-),z F is thus isomorphic to the 
functor i,: R-mod + R,-mod, where i: R,cs R is inclusion. Hence F is 
isomorphic to the functor (R @ R, -) 0 i, . The first being an equivalence of 
categories, F is separable if and only if i, is separable, i.e., F is separable if 
and only if R is separable over R,. 1 

A more general characterization may be obtained from K # G*. Let 
Z(R # G*) = Z be the centre of i? # G*. 

3.5. LEMMA. Z= (~rE(ja’*‘jD~,a’.*‘EZ(R,)f, where ZfR,) is the certtre 
of R,,, and a’.“?.. = I,a’“‘ ‘tifor all %, E R,, cr E G. 
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Prooj Consider the canonical monomorphism q, 

q:R+i?#G*, rf-+ C rr, le,,,, 
\,rc-C 

where r=xr,. 
I 

If we write 1 (i for the identity of M,(R) then for r E Z(R,) we obtain 
?=~(r)=r~,~EGe,..~=r~:,,,p,=r.lG. 

Put A’= {xKEGa(.“p,, u”‘EZ(R,) and a”‘i.,=I,a’“F’“‘, i.,~ R,]. TO 
establish that Xc 2 it will be sufficient to show for A,E R, that 
u(rl(l~)p~)=‘~(%,)p~)u. We now calculate 

u(rj(%,)~,~)= Cu”‘p,x ZapJ=(a’OJ’i.,) - p, 
( > I 

= V(Q ‘OJ’%#)pV= q(l.&?-“‘)pJ 

= ‘1(LJa’)P, 

hence Xc2 follows. Conversely, if UE 2 is given as U= x.VEG t](u’+‘)p,, 
where a’“‘~ R for x E G, then we may derive from up! = pYu the equalities 
~P,=v(@)P~ and P.~u=P~(~.~~~~~(~‘“‘)P,)=~~,(;~~(u:”,’I)P,. In par- 
ticular we obtain that ~(a”“) = ~((a”‘),), hence U”‘E R, for any YE G. 
Therefore u = x,VE G ~(a’“‘) p.,, where a’-” E R, for every x E G. If we 
consider I, E R, then uq(i.,) = q(j.,)u yields that {a’“‘, XE G} satisfies 
u’“‘i., = AOu(O-‘x’ for i., E R, and consequently u E A’. 1 

3.6. THEOREM. The finctor F is separable $ and only if there is a jumily 
{a’“‘, x E G} in Z( R,) such [hut: 

1. xx a’^‘= 1. 
2. For all 1, E R,, ~“‘1, = ?.nu’n-‘r’. 

Proof By Lemma 3.2 it suffices to establish that H is separable. Taking 
into account Remark 3.3, the latter comes down to the separability of 
i,: MG( R)-mod + w # G*. Hence F is separable if and only if (1? # G*) * G 
is separable over i? # G*. Now the result follows easily from 
Proposition 2.1. 1 

3.7. COROLLARY. If n = JGJ is invertible in R then F is a separable 
finctor. 

Proof: Put u”‘=n-’ for all xEG. 1 
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3.8. COROLLARY. Let R he a G-graded ring and assume that rhe 
.following properties hold: 

1. Z(R,) c Z(R), where Z(R) is the centre of R. 

2. If aR, = 0 for a E R,, any a E G, (hen a = 0. Then F is separable if 
and only if n is invertible in R. 

Proof: Theorem 3.6 provides us with a family {a”‘, XE G} in Z(R,) 
such that x ~ a’ ” = 1, satisfying a(’ = j.,a(’ ‘I) for %, E R,, then a”‘&, = 
a’“-“‘;.O and therefore a(.“=a(‘-“I. Since a E G is arbitrary we have a”’ = a 
for any x E G, thus na = 1 and hence n is invertible in R. 1 

3.9. Remarks. 1. Note that condition 2 in Corollary 3.8 cannot be 
dropped. As an example consider R = @(I E G‘ R, with R, = 0 for all a # e 
and R, = A such that n = IGI is not invertible in A, then F is separable. 
Indeed for ME R-mod, F(M) = M”. If u E Horn R.I(r(F( M), F(N)) then u has 
the form U=U, x ... XU,, where each u,: M -+ N is R-linear. We may 
define cp M, N: 

Hom,.,,(F(M), F(N))+Hom,(M, N)=Hom,(M, NJ, cPM.,4(U)=~I. 

2. Let k be a perfect field and V a k vectorspace of finite dimension. 
The trivial extension R = k x V = {(a, x), a E k, x E V} has multiplication 
defined by (a, x)(h, y) = (ah, hx + ay), and the ring R is commutative and 
Z,-graded by putting R,=kx (0) and R,= {O} x V. Since R, is a 
nilpotent ideal of R, Corollary b, p. 192, from [ 111 entails that R is not 
R,-separable. On the other hand, if char k # 2, then the conditions in 
Corollary 3.6 hold and therefore F is a separable functor. This makes it 
clear that the separability of F does not entail that R is separable over R,. 
However, in case R is strongly graded Proposition 3.4 yields this 
implication. 

We now continue the study of the properties of F when G is linite. For 
MER-mod define z,,,:M+F(M) and py:F(M)+M, by a,(m)= 
(“mn)oE Gt where “m=m for all aEG, /IM((r~),EG)=xrEG. Ix. Clearly, xM 
and /I M are R-linear and (/I ,,, u a ,,,)(x) = nx for all x E M. The Krull dimen- 
sion of ME R-mod is denoted by Kdim R M, similar for Kdim R, A4 when M 
is viewed as an R,-module. By Gdim, M, resp. Gdim R, M, we denote the 
Gabriel dimension of M over the ring R, resp. over R,. 

3.10. THEOREM. The functor F enjoys the following properties: 

1. If n = JGJ is invertible in R then M is isomorphic to a direct sum- 
mand of F( M ). 
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2. If M is finitely generated, resp. finitely presented, then F(M) is a 
finitely generated R-module, resp. finitely presented R-module. 

3. If M is a Noetherian R-module then F(M) is a Noetherian 
R-module . 

4. If M is an Artinian R-module then F(M) is an Artinian R-module. 

5. If M has Krull dimension, resp. Gabriel dimension, then F(M) has 
Krull dimension, resp. Gabriel dimension. Moreover we have 

Kdim R M = Kdim R F(M) resp. Gdim R M = Gdim R F(M). 

6. If M is projective, resp. injective, then F(M) is projective, resp. 
injective. 

7. If M’ is an essential R-submodule of M and M is n-torsion free then 
F(M’) is an essential R-submodule of F(M). 

8. If n is invertible in R, and ME R-mod, then inj.dim, M = 
inj.dim R F(M). Here the injective dimension of M in R-mod is denoted by 
inj.dim R(-). 

Proof: From Proposition 3.4 and Remark 3.3 we retain that F is 
isomorphic to (-)gr c i, 0 Co1 c(-), where i, corresponds to the inclusion 
i: R # G* --, M,(R). Moreover the functors Col,(-) and (-)Br are 
equivalences of categories. 

1. Since n-‘fiMOaM= 1 M. 
2. If M is a finitely generated R-module, ColJ M) is a finitely 

generated M,(R)-module. Since Ma(R) = (R # G*)C 5 (R # G*) * G and 
G being finite, it follows that Cal,(M) is a finitely generated R # G*- 
module. Because (-)gr is an equivalence of categories we obtain that F(M) 
is Iinitely generated in R-gr hence also as an R-module. A similar argument 
may be used in the finitely presented case. 

3,4. If M is Noetherian, resp. Artinian, then the fact that Col,(-) 
is an equivalence of categories entails that Co],(M) is Noetherian, 
resp. Artinian, as an M.(R)-module. Theorem 1.8.10 of [lo], resp. 
Theorem 1.8.12, yields that Cola(M) is Noetherian, resp. Artinian, over the 
ring R # G*. Since (-)Br is an equivalence of categories it follows that F(M) 
is Noetherian, resp. Artinian, in R-gr. Corollary 11.3.3 of [lo] then yields 
that F(M) is Noetherian, resp. Artinian, as an R-module. The same 
argumentation may be used to established 5, indeed, Theorem 1.8.12 and 
Theorem 1.8.14 of [lo] yield that F(M) has Krull dimension, resp. Gabriel 
dimension, in R-gr. Then we may apply Corollary 11.521 of [lo], and 
statement 5 follows. 

6. The case where M is projective is easy. Assume that M is an injec- 
tive R-module. Then Cal,(M) is injective as an M,(R)-module. Since 
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M,(R) is a free (left and right) module over R# G* it follows that 
Cal,(M) is injective as an R # G*-module. Since (-)gr is an equivalence of 
categories we obtain that F(M) is injective in R-gr. By Theorem 4.7 of [9] 
it follows that F(M) is injective in R-mod. 

7. Since Col,(-) is an equivalence of categories, Col,( M’) is an 
essential M,(R)-submodule of ColJM). By the essential version of 
Maschke’s theorem for strongly graded rings, cf. [16], it follows that 
Col,(M’) is an essential submodule of Cal,(M) as R # G*-modules. Again 
using the equivalence (-)Br we obtain that F(M’) is an essential subobject 
of F(M) in the category R-gr. Lemma 1.2.8 of [lo] yields that F(M’) is an 
essential R-submodule of F(M). 

8. Consider a minimal injective resolution of M in R-mod: 

O-+M-+Q,+Q,-Q2- . . . . 

Applying 6 and 7 and the fact that F is an exact functor, we obtain a 
minimal injective resolution of F(M) in R-mod: 

O-,F(M)jF(Q,)~F(Q,)~F(Q,)~ .... 

That inj.dim R M = inj.dim R F(M) is now obvious. 1 

3.11. COROLLARY. Le! R he graded by the finite group G. Let 
ME R-mod, then the following properties hold: 

1. If M is Noerheriun, resp. Artiniun, then R,M is Noetherian, resp. 
Artinian. 

2. If M has KruN dimension, resp. Gabriel dimension, then ,,,M has 
Krull dimension, resp. Gabriel dimension, and Kdim R, M = Kdim R M, resp. 
Gdim R, M = Gdim R M. 

Proof 1. If M is Noetherian, resp. Artinian, then by Theorem 3.10, 
F(M) is Noetherian, resp. Artinian, and hence F(M), is Noetherian, resp. 
Artinian, R,-module for every cr E G (cf. Lemma 11.3.2 [lo]). Since G is 
finite, F(M) is Noetherian, resp. Artinian, as an R,-module. Since M is 
isomorphic to a submodule of F(M), the statement follows. 

2. If M has Krull, resp. Gabriel, dimension then F(M) has Krull 
dimension, resp. Gabriel dimension, in view of Theorem 3.10. From 
Corollary 11.5.21 of [lo] we obtain 

Kdim, F(M)= sup{ KdirnRc F(M),,} = Kdim,, F(M). 
n F G 

Since F(M), z M as R,-modules, Kdim R F(M) = Kdim R, M. Theorem 3.10 
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then entails Kdim. M = Kdim, F(M) and thus Kdim, M= Kdim, M. 
A similar argument works for G-dim. 1 

3.12. Remarks. 1. The implication ,+V is Noetherian implies R.M is 
Noetherian has been proved first by P. Greszczuk in [4]. 

2. Let M’ be an essential R-submodule of M and assume that M is 
n-torsion free. For any nonzero x in M there are c E G and /I, E R, such 
that %,XE M’ and i.,x #O. This result is exactly Theorem 1.8 of D. Quinn 
[ 123. Indeed, we consider the commutative diagram 

F(M’) 4 F(M) 

f.W 
I I 

au 

M’ 4 M 

Since a,(~)#0 and F(M’) is essential in F(M) (cf. Theorem 3.10.7) then 
Lemma 1.2.8 of [lo] provides us with a (TE G and a j.,E R, such that 
i.,a,w(x)E F(M’) and A,x,~(x) # 0. However, we have i.,a,(x) =rM.(itiox) 
and therefore 1,~ E M’, I,x # 0. 

3. If n = ICI is invertible in R then gldim R = gr.gldim R. Here 
gl.dim R, resp. gr.gldim R, is the homological global dimension of R-mod, 
resp. of R-gr. Indeed, gr.gldim R < gldim R is obvious and from 
Theorem 2.10.8 we retain inj.dim R M = inj.dim R F(M) = gr.inj.dim R F(M) < 
gr.dldim R. This yields the other inequality gldim R 6 gr.gldim R. This result 
is in fact Theorem 4.11 of [93. 

3.13. THEOREM. Let R = @ o E ti R, be graded by the finite group G. If 
ME R-mod is simple then F(M) is a semi-simple object in R-gr of finire 
length. 

Proof Since Co1 (;(-) is an equivalence, Col,( M) is a simple MJ R)- 
module. By the Clifford theorem for strongly graded rings (cf. 
Theorem 1.3.33 of [IO]) Co],(M) is semi-simple of finite length as an 
R # G*-module. Again, since (-)Br is an equivalence, F(M) is a semi-simple 
object of R-gr having finite length. 1 

3.14. Remark. From Theorem 3.13 we retain that for a simple 
R-module M there exists a simple object N in R-gr such that M is 
isomorphic to a submodule of N. This result is then exactly Theorem 12.10 
of [3]. 

3.15. COROLLARY (Greszczuk [4]). If M is a semi-simple R-module oj 
finite length then ,,,,M is semi-simple offinite length and moreover I( ,+,M) < 
IGI 4 ,df). 
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Proof: Put n = [Cl. We may assume that M is a simple R-module. 
Theorem 3. I3 shows that I,.,,( F( M)) <n, where lR.gr denotes length in the 
category R-gr. By Lemma 1.7.1 of [lo] we know that F(M), is a semi- 
simple R,-module and also I,( F( M),) < R.gr (F(M)) < n. Since F(M) = 

Q bE G F(M), we have I( R,F( M)) < n’. On the other hand, F(M)2 M” in 
R,-mod, hence /( R,F( M)) = nl( R,M) and I( R,M) Q n. 1 

For the sake of completeness let us conclude by constructing F in yet 
another way, using the construction of group rings over graded rings as 
introduced by M. Van den Bergh in [ 133; cf. also C. Nastasescu [9]. 

Let R be graded of type G, G arbitrary now, and let R[G] be the group 
ring over R graded by R[ G] ~ = Ra, 0 E G. There is a graded subring S = 
C,, G R,a in R[G] that is in fact isomorphic to R as a graded ring under 
the isomorphismj: R-S, ~OEGu,,~~fl.E(;a,a, where u,ER,, CYER. 

Note that the standard copy R = Re in R[G] is not a graded subring of 
R[GJ. If M is an R-module then M[G] is a graded R[G]-module in the 
usual way, note M[G] = R[G]@, M. Obviously ,M[G] is a graded 
S-module and the isomorphism j: R + S defines on M[G] a structure of a 
graded R-module by restriction of scalars. In this way we have obtained a 
functor 

H’: R-mod -+ R-gr, H’(M) = iJ ,M[G]). 

3.16. PROPOSITION. The functors F and H’ are isomorphic. 

Proof For an R-module M define V,w: F(M) -+ H’(M) by V,W( "x) = xc, 
where 'x E “M = F(M),, (TE G. It is easy to check that V, is an 
isomorphism. 

Using Proposition 3.16 in combination with the results of [9, 133 we 
have alternative ways to obtain the properties of the functor F mentioned 
before. Obviously the notion of separability awaits application to other 
functors, not necessarily in a graded context. 1 
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