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Abstract

In this paper, we use the theory of deformation quantization to understand Connes’ and Moscovici’s
results [A. Connes, H. Moscovici, Rankin–Cohen brackets and the Hopf algebra of transverse geometry,
Mosc. Math. J. 4 (1) (2004) 111–130, 311]. We use Fedosov’s method of deformation quantization of sym-
plectic manifolds to reconstruct Zagier’s deformation [D. Zagier, Modular forms and differential operators,
in: K.G. Ramanathan Memorial Issue, Proc. Indian Acad. Sci. Math. Sci. 104 (1) (1994) 57–75] of modular
forms, and relate this deformation to the Weyl–Moyal product. We also show that the projective structure
introduced by Connes and Moscovici is equivalent to the existence of certain geometric data in the case of
foliation groupoids. Using the methods developed by the second author [X. Tang, Deformation quantiza-
tion of pseudo (symplectic) Poisson groupoids, Geom. Funct. Anal. 16 (3) (2006) 731–766], we reconstruct
a universal deformation formula of the Hopf algebra H1 associated to codimension one foliations. In the
end, we prove that the first Rankin–Cohen bracket RC1 defines a noncommutative Poisson structure for an
arbitrary H1 action.
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1. Introduction

In the study of transversal index theory, Connes and Moscovici introduced a Hopf algebra,
H1, which governs the local symmetry in calculating the index of a transversal elliptic opera-
tor. Interestingly, Connes and Moscovici [4] discovered an action of H1 on the modular Hecke
algebras.

Inspired by this action, Connes and Moscovici found many similarities between the theory
of codimension one foliations and the theory of modular forms. For example, they showed that
the Hopf cyclic version of the Godbillon–Vey cocycle gives rise to a 1-cocycle on PSL(2,Q)

with values in an Eisenstein series of weight 2, and that the Schwarzian 1-cocycle corresponds
to an inner derivation implemented by a level 1 Eisenstein series of weight 4. In particular,
inspired by Zagier’s [11] Rankin–Cohen deformation on modular forms, Connes and Moscovici
[5] constructed a universal deformation formula for an action of H1 with a projective structure.
In this paper, we aim to reconstruct this deformation formula using noncommutative Poisson
geometry as developed by the second author [9,10].

The origin of the Rankin–Cohen deformation is a work of Rankin. Rankin in 1956 described
all polynomials in the derivatives of modular forms with values again in modular forms. Based
on Rankin’s work, in 1977, Cohen defined a sequence of bilinear operations on modular forms
indexed by nonnegative integer n, which assigns to two modular forms, f of weight k and g of
weight l, a modular form of weight k + l + 2n. Their results showed that for any given integer
n � 0, there is essentially (up to a constant) only one bilinear operator mapping1 Mp ⊗ Mq

to Mp+q+2n ∀p,q ∈ Z�0. They are later called Rankin–Cohen brackets and usually denoted
by RCn. These operators were further studied and played an important role in the theory of mod-
ular forms. Zagier [11] observed that the sum of Rankin–Cohen brackets defines an associative
product on the algebra M := ∑

l�0 Ml . Zagier’s complete proof of the associativity of this
product, which involves infinitely many equalities, was rather combinatoric. Cohen, Manin, and
Zagier [3] explained this deformation using the theory of automorphic pseudo differential op-
erators. The calculation still involves many interesting and complicated combinatoric identities.
In this paper, we will first reconstruct Zagier’s Rankin–Cohen deformation using the methods of
deformation quantization of symplectic manifolds developed by Fedosov [6]. In particular, we
will show that this deformation is isomorphic to the standard Moyal product. The calculation
involved in our construction is easier and more transparent than those [3] and [11].

To reconstruct Connes–Moscovici’s Rankin–Cohen deformation for H1 action, we need to
first understand the projective structure introduced by Connes and Moscovici [5]. The notion of
a projective structure of H1 is a generalization of the projective structure on an elliptic curve
(see [3]). Our idea to understand this structure is to look at the defining action of H1 on a
groupoid algebra associated to a codimension one foliation. In this case, we discovered that
the existence of a projective structure is equivalent to the existence of a certain type of invariant
symplectic connection. This geometric explanation provides a natural connection to the results
in Tang [9], where he studied the deformation quantization of a groupoid algebra. The existence
of an invariant symplectic connection is a sufficient condition for the existence of a deforma-
tion quantization of a groupoid algebra. Therefore, in the case of a codimension one foliation,
Tang’s construction [9] implies that with a projective structure, one can construct a deformation
quantization (a star product) of the corresponding foliation groupoid algebra. Furthermore, our

1 Mp is the space of modular forms of weight p.
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calculation in Section 5 exhibits that when the symplectic connection is flat, the star product on
the groupoid algebra can be expressed by an element RC in H1 ⊗H1[[h̄]]. To obtain a universal
deformation for an H1 action with a projective structure as Connes and Moscovici [5], we con-
struct a fully injective H1 action on the union of groupoid algebras of those foliation groupoids
with a fixed type of invariant symplectic connections. Therefore, we are able to reconstruct the
universal deformation formula on H1 by pulling back the star products on the groupoid algebras.

All the above deformations, including [3,5,11], are all formal deformation, which means that
the deformation parameter t is a formal variable. It is more interesting to ask whether one can
make a deformation strict in the sense of Rieffel. This will be studied in the next paper [1].

2. Prerequisites

In this section, we review the materials needed for this paper.

2.1. Codimension one foliations and the Hopf algebra

For a constant rank foliation on M , we choose a complete flat orientable transversal X. We
look at the oriented frame bundle FX of X with the lifted holonomy foliation groupoid action,
which defines an étale groupoid G ⇒ FX. Connes and Moscovici found a Hopf algebra Hk

acting on the smooth groupoid algebra C∞
c (G), where k is the codimension of the foliation. We

exhibit this Hopf algebra in the case of k = 1.
In the case of a codimension one foliation, the complete transversal X is a flat 1-dim manifold,

and FX is isomorphic to X × R+ by fixing a flat connection on FX → X. We introduce coordi-
nates x on the X component and y on the R+ component. Let Γ be a pseudogroup associated to
the foliation acting on X. The lifted action of Γ on FX is

(x, y) �→ (
φ(x),φ′(x)y

)
, ∀φ ∈ Γ.

We look at the groupoid FX � Γ ⇒ FX. It is an étale groupoid with a natural symplectic
form ω = dx∧dy

y2 .
On FX, we consider vector fields X = y∂x and Y = y∂y . It is easy to check that Y is invariant

under the Γ action, but X is not, and has the following commutation relation,

UφXU−1
φ = X − y

φ−1′′
(x)

φ−1′
(x)

Y.

We introduce the following operators on A.

X(f Uφ) = X(f )Uφ,

Y (f Uφ) = Y(f )Uφ,

δ1(f Uφ) = μφ−1f Uφ,

δn(f Uφ) = Xn−1(μφ−1)f Uφ, (1)

where μφ−1(x, y) = y
φ−1 ′′

(x)
−1 ′ .
φ (x)
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The commutation relation among the above operators are

[Y,X] = X, [X,δn] = δn+1,

[Y, δn] = nδn, [δn, δm] = 0.

The operators X, Y , δn, n ∈ N, form an infinite dimensional Lie algebra H1, and the Hopf algebra
H1 is defined to be the universal enveloping algebra of H1.

We define the following operations on H1:

1. Product · :H1 ⊗H1 → H1 by the product on H1 as the universal enveloping algebra of H1.
2. Coproduct � :H1 →H1 ⊗H1 by

�Y = Y ⊗ 1 + 1 ⊗ Y,

�δ1 = δ1 ⊗ 1 + 1 ⊗ δ1,

�X = X ⊗ 1 + 1 ⊗ X + δ1 ⊗ Y,

�δn = [�X,�δn−1].

3. Counit ε :H1 → C by taking the value of the identity component.
4. Antipode S :H1 → H1 by

S(X) = −X + δ1Y, S(Y ) = −Y, S(δ1) = −δ1.

It is straightforward to check that (H1, · ,�,S, ε, id) defines a Hopf algebra.

2.2. Deformation quantization á la Fedosov

Fedosov’s construction of deformation quantizations of a symplectic manifold can be formu-
lated as follows.

Let (M,ω) be a 2n dimensional symplectic manifold. At each fiber TxM of the tangent bun-
dle, which is a symplectic vector space, we define a Weyl algebra Wx to be an associative algebra
over C with a unit, whose elements are of the form

a(y, h̄) =
∑

k, |α|�0

h̄kak,αyα,

where h̄ is a formal parameter and y = (y1, . . . , y2n) ∈ TxM is a tangent vector, α =
(α1, . . . , α2n) is a multi-index, yα = (y1)α1 · · · (y2n)α2n .

The product of elements a, b ∈ Wx is defined as follows:

a ◦ b = exp

(
− ih̄

2
ωij ∂

∂yi

∂

∂zj

)
a(y, h̄)b(z, h̄)

∣∣∣
z=y

=
∞∑(

− ih̄

2

)k 1

k!ω
i1j1 · · ·ωikjk

∂ka

∂yi1 · · · ∂yik

∂kb

∂yj1 · · · ∂yjk
.

k=0
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We consider the Weyl algebra bundle W over (M,ω) for which the fiber at the point x is Wx ,
and denote C∞(W) to be the algebra of smooth sections of W with pointwise multiplication ◦. To
introduce the Fedosov connection, we look at the algebra C∞(W ⊗ Λ) = ⊕2n

q=0 Γ ∞(W ⊗ Λq),
where Λq is the set of smooth q-forms.

We introduce several operations on C∞(W ⊗ Λ).

1. Commutator, i.e. [a, b] = a ◦ b − (−1)deg(a)deg(b)b ◦ a.
2. δ, δ∗ :C∞(W ⊗ Λ) → C∞(W ⊗ Λ), i.e.

δa = dxk ∧ ∂a

∂yk
, δ∗a = yki

(
∂

∂xk

)
a.

A Fedosov connection on the Weyl algebra bundle W is a connection D such that for any
section a ∈ C∞(W ⊗ Λ),

D2a = i

h̄
[Ω,a] = 0.

Fedosov in [6] showed that given a torsion free symplectic connection ∇ on M with Christof-
fel symbol Γijk , one can construct an abelian connection on W of the following form,

D = −δ + ∂ + i

h̄
[r, ·],

where ∂a := da + i
h̄
[Γ,a], with Γ = 1

2Γijky
iyj dxk , and r is a local 1-form with values in W .

We look at the subalgebra WD ⊂ C∞(W) consisting of flat sections of D. The main theorem
that we will use is the following:

Theorem 2.1. For any a0 ∈ C∞(M)[[h̄]], there exists a unique section a ∈ WD , which is denoted
by σ−1(a0), such that σ(a) = a0, where σ(a) means the projection onto the center: σ(a) =
a(x,0, h).

This implies that there is a one-to-one correspondence between WD and C∞(M)[[h̄]]. Ac-
cordingly we can define on C∞(M)[[h̄]] an associative star product

a 
 b = σ
(
σ−1(a) ◦ σ−1(b)

)
. (2)

2.3. Deformation quantization of groupoids

The second named author [9] considered deformation quantization of the groupoid algebra of
a pseudo étale groupoid and proved that one can construct star products on such groupoids. As
a special case, we have that for an étale groupoid with an invariant symplectic structure and an
invariant symplectic connection on the base, the groupoid algebra can be formally deformation
quantized. In this subsection, we recall the basic concepts and constructions from Tang [9].

Definition 1. (Block, Getzler and Xu) A Poisson structure on an associative algebra A is an
element [Π] of the Hochschild cohomology group H 2(A,A) such that the cohomology class of
the Gerstenhaber bracket [Π,Π] vanishes.
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Definition 2. Let (A, [Π]) be a noncommutative Poisson algebra, and A[[h̄]] the space of formal
power series with coefficients in A. A formal deformation quantization of (A, [Π]) (or in other
words star product) is an associative product


 :A[[h̄]] × A[[h̄]] → A[[h̄]], (a1, a2) �→ a1 
 a2 =
∞∑

k=0

h̄kck(a1, a2)

satisfying the following properties:

1. Each one of the maps ck :A[[h̄]] ⊗ A[[h̄]] → A[[h̄]] is C[[h̄]]-bilinear;
2. One has c0(a1, a2) = a1 · a2 for all a1, a2 ∈ A;
3. The relation

a1 
 a2 − c0(a1, a2) − i

2
h̄Π(a1, a2) ∈ h̄2A[[h̄]]

holds true for some representative Π ∈ Z2(A,A) of the Poisson structure and all a1, a2 ∈ A.

For an étale groupoid G with an invariant symplectic form ω and a invariant symplectic con-
nection ∇ on the base, we define a Hochschild 2-cochain on C∞(G) by

Π(a1, a2)(g) =
∑

g1g2=g

π(g)
(
da1(g1), da2(g2)

)
, g ∈ G, a1, a2 ∈ C∞(G), (3)

where da1(g1) and da2(g2) have been pulled back to g along the maps t and s, and π is the
Poisson structure associated to the symplectic form ω. This definition is legitimate because t

and s are local diffeomorphisms. It was proved [9] that this Hochschild 2-cochain gives rise to a
Poisson structure on C∞(G) if there is an invariant symplectic connection.

Tang [9] showed that the above noncommutative Poisson structure Π on the groupoid algebra
admits a formal deformation quantization. Such a deformation can be constructed as follows:
first using Fedosov’s construction [6], given an invariant symplectic connection, we construct an
invariant star product on the algebra of smooth functions on the unit space G(0). The deformation
of the groupoid algebra C∞(G) is a crossed product algebra of the above deformation on the
base C∞(G(0)) and the associated pseudogroup G action.

2.4. Rankin–Cohen deformation

It is well known that if f (z) is a modular form, 1
2πi

d
dz

f is not a modular form any more.
Following [4], we introduce a differential operator X as

X
def= 1

2πi

d

dz
− 1

12πi

d

dz
(log�) · Y,

where �(z) = (2π)12η24(z) = (2π)12q
∏∞

n=1(1 − qn)24, q = e2πz and Y(f ) = k
2f , ∀f ∈ Mk ,

the space of modular forms of weight k.
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It is straightforward to check that X and Y acts on M = ⊕
k Mk satisfying [Y,X] = X. Under

these two operators, the Rankin–Cohen bracket RCn can be written as follows, for f ∈ Mk ,
g ∈Ml

RCn(f, g) =
∑

r+s=n

(−1)r
(

n + k − 1
s

)(
n + l − 1

r

)
f (r)g(s),

where f (r) (or g(s)) is the r th (or sth) derivative of f (or g), and (α)k
def= α(α +1) · · · (α +k −1).

In [11], Zagier observed that
∑

n RCn defines an associative product on M. This product
actually defines a universal deformation formula of the Lie algebra h1, consisting of X, Y with
[Y,X] = X, since h1 acts on M injectively. It is worth mentioning that h1 is the Lie algebra of
the “ax + b” group.

Inspired by the Rankin–Cohen brackets, Connes and Moscovici [5] introduced a family of
Rankin–Cohen type elements in (H1 ⊗H1)[[h̄]] as follows.

Definition 2.2. [5] Let H1 act on an algebra A. This action is called projective if δ′
2

def= δ2
1 − 1

2δ2
is inner implemented by an element Ω ∈ A, so that

δ′
2(a) = [Ω,a], ∀a ∈ A,

and

δk(Ω) = 0, ∀k ∈ N.

Assume that the action of H1 action an algebra A is projective. Define

RC =
∞∑

n=0

h̄n
n∑

k=0

Ak

k! (2Y + k)n−k ⊗ Bn−k

(n − k)! (2Y + n − k)k,

Am+1 = S(X)Am − mΩ0
(

Y − m − 1

2

)
Am−1,

Bm+1 = XBm − mΩ

(
Y − m − 1

2

)
Bm−1, (4)

where Ω0 is the right multiplication of Ω .
Connes and Moscovici [5] proved that RC defines a universal deformation formula of a pro-

jective H1 action.

3. Universal deformation of h1

If we set all δn to be 0, the Lie algebra H1 is reduced to h1, the Lie algebra of the “ax + b”
group, and H1 becomes U(h1), the universal enveloping algebra of h1. In this case, RC defined
by (4) is simplified to the following universal deformation formula of h1,

RCn(a, b)
def=

n∑[
(−1)k

k! Xn−k(2Y + k)n−k(a)
1

k!X
n−k(2Y + n − k)k(b)

]
, (5)
k=0
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where X,Y ∈ h1 are such that [Y,X] = X, (α)k
def= α(α + 1) · · · (α + k − 1), and a, b ∈ A.

We spend this section studying this universal deformation.

3.1. Giaquinto–Zhang’s deformation of h1

A nice deformation formula for h1 has already been given by Giaquinto and Zhang [7,
Theorem 2.20]: Given two elements X,Y with [Y,X] = X, the following expression defines
a universal deformation formula (UDF) of the Hopf algebra associated to h1,

F =
∞∑

n=0

tn

n!Fn = 1 × 1 + tX ∧ Y + t2

2!
(
X2 ⊗ Y2 − 2XY1 ⊗ XY1 + Y2 ⊗ X2) + · · · ,

where Fn is defined to be Fn = ∑n
r=0(−1)r

(
n
r

)
Xn−rYr ⊗ XrYn−r .

Proposition 3.1. The above defined F can be realized by the standard Moyal product.

Proof. We consider the space R × R+ on which X and Y act as Y = −y ∂
∂y

, and X = 1
y

∂
∂x

. It is
obvious that the action of X and Y on R × R+ is injective.

With the following identity,

Yr = Y(Y + 1) · · · (Y + r − 1) = (−y)r
∂r

∂yr
,

it is straightforward to check that the above defined F in this representation is equal to the Moyal
product. �
3.2. Rankin–Cohen deformation of h1

We should point out that the above universal deformation formula of h1 is not equal to the one
induced from RC in Eq. (5). However, we will show that it is equivalent to the Giaquinto–Zhang’s
deformation.

We set (V ,ω) := (R2 = {(p, q)}, dp ∧ dq) and denote by h = h(V ,ω) := V × R the as-
sociated Heisenberg algebra. Setting g := sl2(R) = spanR{H,E,F } ([H,E] = 2E, [H,F ] =
−2F , [E,F ] = H ), we form the natural semi-direct product g̃ := g × h. The (infinitesimal)
affine linear action γ̃ → Γ (T (V )) is then strongly Hamiltonian. We let λ : g̃ → C∞(V ) de-
note the corresponding moment map. Explicitly, denoting fundamental vector fields by A


x :=
d
dt

|t=0 exp(−tA) · x, A ∈ g̃, one has

H
 = −p∂p + q∂q; E
 = −q∂p; F
 = −p∂q; P 
 = −∂p; Q
 = −∂q;

λH = pq; λE = 1

2
q2; λF = −1

2
p2; λP = q; λQ = −p.

We have that [A
,B
] = [A,B]
 and λ[A,B] = {λA,λB} where {u,v} = ∂pu∂qv − ∂pv∂qu, and
A,B ∈ g̃.

Let S := AN = exp(span{H,E}) denote the Iwasawa component in SL(2,R), which is the

“ax +b” group. We consider the open orbit O def= S · (0,1) in V , which is equal to the set [q > 0].
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Since S acts simply transitively on O, we have the identification φ :S → O :g �→ g · (1,0). We
still denote by λ : g̃ → C∞(S) the transported restricted moment map, that is:

λA := φ
(λA|O) (A ∈ g̃). (6)

Lemma 3.2. Denoting by X̃g := d
dt

|t=0g exp(tX) the left-invariant vector field associated to
X ∈ h1 = Lie(S), one has:

(i) H̃ . λX+v = (−2)λX + (−1)λv for X ∈ g and v ∈ V ;
(ii) Ẽr . λX = 0 for r � 3, for all X ∈ g;

(iii) Ẽr . λv = 0 for r � 2, for all v ∈ V .

Proof. A convenient parametrization of the group manifold S is given by:

R2 → S : (a, �) �→ exp(aH) exp(�E).

In these coordinates, the group law reads (a, �) · (a′, �′) = (a + a′, e−2a′
� + �′). We deduce the

expressions for the left-invariant vector fields:

H̃ = ∂a − 2�∂�; Ẽ = ∂�.

The corresponding chart on the orbit O � S is given by

p = ea�; q = e−a.

Note that this is a global Darboux chart on O as for da ∧ d� = ±φ
ω|O . The corresponding
(uncomplete) moment map reads as

λH = �; λE = 1

2
e−2a; λF = −1

2
�2e2a; λP = e−a; λQ = −ea�.

A straightforward computation then yields the lemma. �
From (5), for any left U(h1) action on an algebra A, the Rankin–Cohen brackets on U(h1) is

defined by,

RCn(a, b) :=
n∑

k=0

[
(−1)k

k! Xk(2Y + k)n−k(a)
1

k!X
n−k(2Y + n − k)k(b)

]
,

where X,Y ∈ h1 are such that [Y,X] = X, (α)k
def= α(α + 1) · · · (α + k − 1), and a, b ∈ A.

Since h1 acts as left invariant vector fields on S, U(h1) acts as left invariant differential op-
erators on C∞(S), and RCn, an element of U(h1) ⊗ U(h1), acts as a left invariant bidifferential
operator on C∞(S). Since [H,E] = 2E, we set

H̃ = 2Y and Ẽ = X.
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Lemma 3.3. For all A in g̃, we have

[λA,u]n def= RCn(λA,u) − RCn(u,λA) = 0 for n �= 1. (7)

Proof. For X ∈ g and v ∈ V , Lemma 3.2 implies that Xk(2Y + r)s .λX+v = (−2 + r)sX
kλX +

(−1 + r)sX
kλv = 0 if k > 2. Therefore, in the expression (5) of RCn(λX+v, u) only the first

three terms corresponding to k = 0,1,2 contribute. In each of them the following (left-hand
side) factor occurs:

• for k = 0: (−2)nλX + (−1)nλv; (8)

• for k = 1: Ẽ.
[
(−1)n−1λX + (0)n−1λv

]; (9)

• for k = 2: Ẽ2.
[
(0)n−2λX + (1)n−2λv

]
. (10)

1. The first expression (8) vanishes identically for n � 3. Indeed, (−2)n = (−2)(−2+1)(−2+
2) · · · (−2 + n − 1) is zero as soon as n − 1 � 2; and similarly for (−1)n.

2. In the same way, the second expression (9) vanishes for n − 2 � 1, i.e. n � 3.
3. At last, the third expression (10) is equal to (n − 2)!Ẽ2(λv) which is identically zero by

Lemma 3.2, item (iii). We conclude by observing that RC0 and RC2 are symmetric. �
By Lemma 3.3, the Rankin–Cohen deformation (4) defines a g̃ invariant star product on

(V ,ω). In Corollary 2, Section 2.7 of [8], Gutt showed that there is a unique g̃-invariant star
product on (V ,ω), which is the standard Moyal product. We conclude that the Rankin–Cohen
deformation on C∞(S) is identical to the Moyal product.

Proposition 3.4. The reduced Rankin–Cohen deformation realized on O ⊂ V coincides with the
restriction to O of the standard Moyal product on (V ,Ω).

To generalize the construction in Proposition 3.4, we explain its relation to Fedosov’s con-
struction of deformation quantization of symplectic manifolds.

The natural action of S � “ax + b” on R,

exp(aH + nE) · x1 := e2ax1 + nea,

lifts to T 
(R) = R2 as

exp(aH + nE) · (x1, x2) := (
e2ax1 + nea, e−2ax2

)
.

The S-orbit Õ of point õ := (0,1) = dx1|0 ∈ T 
(R2) is then naturally isomorphic as S-homo-
geneous space to O ⊂ V ; namely one has the identification:

ϕ :O → Õ :g · e2 �→ g · õ.

In (p, q)-coordinates on O, this reads:

ϕ(p,q) =
(

p
,q2

)
.

2q
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Identifying Õ with S (via ϕ ◦ φ), we obtain the expressions for the left invariant vector fields:

H̃ = −2x2∂x2; Ẽ = 1

x2
∂x1 .

In particular, we set

H̃ = 2Y and Ẽ = X.

By letting ∇O denote the restriction to O of the standard symmetric flat connection on V

(∇O
∂p

∂p = ∇O
∂q

∂p = ∇O
∂q

∂q = 0), and setting

∇Õ := ϕ
(∇O)

,

we obtain a symplectic connection on Õ,

∇Õ
∂x1

∂x1 = 0; ∇Õ
∂x1

∂x2 = 1

2x2
∂x1; ∇Õ

∂x2
∂x2 = − 1

2x2
∂x2 . (11)

We identify Õ with R × R+, and use ∇Õ to construct deformation quantization of (R × R+,

ω
def= dx ∧ dy) as described in Section 2.2.

Corollary 3.5. The reduced Rankin–Cohen deformation on Õ is identical to Fedosov’s construc-

tion of the star product on (Õ,ω) using the connection ∇Õ with the characteristic form equal
to 1

ih̄
ω.

4. Projective structures

To reconstruct Connes–Moscovici’s Rankin–Cohen deformation, we need to understand the
geometric meaning of their Definition 2.2, a projective structure.

4.1. The flat case

We look at the connection ∇Õ considered in Section 3, (11).

Proposition 4.1. The connection ∇Õ (11) is invariant under the local diffeomorphism φ :x1 �→
x̃1

def= φ(x1), x2 �→ x̃2
def= x2

φ′(x1)
if and only if δ′

2(φ) = 0. Here H1 acts on φ as in Section 2.1.

Notation. We use ∇ to replace ∇Õ in the rest of the paper.

Proof. We have the following transformation rules of vector fields.

∂

∂x̃1
= 1

φ′(x1)

∂

∂x1
+ φ′′

φ′2
x2

∂

∂x2
,

∂ = φ′ ∂
.

∂x̃2 ∂x2
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The invariance of ∇ implies that we should have

∇
φ∗( ∂

∂x1
)
φ∗

(
∂

∂x1

)
= ∇

φ′(x1)
∂

∂x̃1
− φ′′

φ′2 x2
∂

∂x̃2

(
φ′(x1)

∂

∂x̃1
− φ′′

φ′2
x2

∂

∂x̃2

)

= φ′2∇ ∂
∂x̃1

∂

∂x̃1
+ φ′ ∂

∂x̃1
(φ′) ∂

∂x̃1
− φ′′

φ′ x2∇ ∂
∂x̃1

∂

∂x̃2
− φ′ ∂

∂x̃1

(
φ′′

φ′2
x2

)
∂

∂x̃2

− φ′′

φ′ x2∇ ∂
∂x̃2

∂

∂x̃1
− φ′′

φ′2
x2

∂

∂x̃2
(φ′) ∂

∂x̃1
+

(
φ′′

φ′2
x2

)2

∇ ∂
∂x̃2

∂

∂x̃2

+ φ′′

φ′2
x2

∂

∂x̃2

(
φ′′

φ′2
x2

)
∂

∂x̃2

= φ′ 1

φ′ (φ
′′) ∂

∂x̃1
− φ′ φ′′

φ′2
x2

1

2x̃2

∂

∂x̃1

− φ′
[

1

φ′
φ′′′φ′2 − 2φ′′2φ′

(φ′2)2
x2 +

(
φ′′

φ′2

)2

x2

]
∂

∂x̃2

− φ′ φ′′

φ′2
x2

1

2x̃2

∂

∂x̃1
+ 0 +

(
φ′′

φ′2
x2

)2 1

2x̃2

∂

∂x̃2
+ φ′′

φ′2
x2φ

′ φ′′

φ′2

∂

∂x̃2

= −φ′′′φ′ − 3
2φ′′2

φ′3
x2

∂

∂x̃2
,

∇
φ∗( ∂

∂x1
)
φ∗

(
∂

∂x2

)
= ∇

φ′(x1)
∂

∂x̃1
− φ′′

φ′2 x2
∂

∂x̃2

(
1

φ′
∂

∂x̃2

)

= φ′ 1

φ′ ∇ ∂
∂x̃1

∂

∂x̃2
+ φ′ ∂

∂x̃1

(
1

φ′

)
∂

∂x̃2
− φ′′

φ′2
x2

1

φ′ ∇ ∂
∂x̃2

∂

∂x̃2

− φ′′

φ′2
x2

∂

∂x̃2

(
1

φ′

)
∂

∂x̃2

= 1

2x̃2

∂

∂x̃1
+ φ′ 1

φ′

(
− φ′′

φ′2

)
∂

∂x̃2
− φ′′

φ′2
x2

1

φ′

(
− 1

2x̃2

∂

∂x̃2

)
− 0

= 1

2x̃2

∂

∂x̃1
− 1

2

φ′′

φ′2

∂

∂x̃2
= φ∗

(
1

2x2

∂

∂x1

)
,

∇
φ∗( ∂

∂x2
)
φ∗

(
∂

∂x2

)
= ∇ 1

φ′ ∂
∂x̃2

(
1

φ′
∂

∂x̃2

)
= 1

φ′2
∇ ∂

∂x̃2

(
∂

∂x̃2

)
+ 1

φ′
∂

∂x̃2

(
1

φ′

)
∂

∂x̃2

= 1

φ′2

(
− 1

2x̃2

)
∂

∂x̃2
+ 0 = φ∗

(
− 1

2x2

∂

∂x2

)∣∣∣∣
(x̃1,x̃2)

.

We see easily that the invariance of the connection under φ is equivalent to φ′′′φ′ − 3
2φ′′2 = 0,

i.e. δ′
2(φ) = 0. �
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4.2. The general case

For the general case of nontrivial δ′
2, we look at the following connection.

∇ ∂
∂x1

∂

∂x1
= μ(x1, x2)

∂

∂x2
, ∇ ∂

∂x1

∂

∂x2
= 1

2x2

∂

∂x1
,

∇ ∂
∂x2

∂

∂x1
= 1

2x2

∂

∂x1
, ∇ ∂

∂x2

∂

∂x2
= − 1

2x2

∂

∂x2
. (12)

Here μ is a suitable function.

Theorem 4.2. Let Γ be a pseudogroup generated by local diffeomorphisms on R acting on
R × R+ by φ :x1 �→ φ(x1), x2 �→ x2

φ′(x1)
, ∀φ ∈ Γ . Assume that the dimension of the fixed point

set of each element φ ∈ Γ is strictly less than 2. The connection ∇ in (12) is invariant under Γ if
and only if the H1 action on the corresponding groupoid algebra Γ �C∞

c (R×R+) is projective.

Proof. Given a local diffeomorphism φ, we have the following quantity different from the proof
of Proposition 4.1. All the others are same.

∇
φ∗( ∂

∂x1
)
φ∗

(
∂

∂x1

)
= ∇

φ′(x1)
∂

∂x̃1
− φ′′

φ′2 x2
∂

∂x̃2

(
φ′(x1)

∂

∂x̃1
− φ′′

φ′2
x2

∂

∂x̃2

)

= φ′2∇ ∂
∂x̃1

∂

∂x̃1
+ φ′ ∂

∂x̃1
(φ′) ∂

∂x̃1
− φ′′

φ′ x2∇ ∂
∂x̃1

∂

∂x̃2

− φ′ ∂

∂x̃1

(
φ′′

φ′2
x2

)
∂

∂x̃2
− φ′′

φ′ x2∇ ∂
∂x̃2

∂

∂x̃1
− φ′′

φ′2
x2

∂

∂x̃2
(φ′) ∂

∂x̃1

+
(

φ′′

φ′2
x2

)2

∇ ∂
∂x̃2

∂

∂x̃2
+ φ′′

φ′2
x2

∂

∂x̃2

(
φ′′

φ′2
x2

)
∂

∂x̃2

= φ′2μ(x̃1, x̃2)
∂

∂x̃2
+ φ′ 1

φ′ (φ
′′) ∂

∂x̃1
− φ′ φ′′

φ′2
x2

1

2x̃2

∂

∂x̃1

− φ′
[

1

φ′
φ′′′φ′2 − 2φ′′2φ′

(φ′2)2
x2 +

(
φ′′

φ′2

)2

x2

]
∂

∂x̃2
− φ′ φ′′

φ′2
x2

1

2x̃2

∂

∂x̃1

+
(

φ′′

φ′2
x2

)2 1

2x̃2

∂

∂x̃2
+ φ′′

φ′2
x2φ

′ φ′′

φ′2

∂

∂x̃2

=
[
φ′2μ(x̃1, x̃2) − φ′′′φ′ − 3

2φ′′2

φ′3
x2

]
∂

∂x̃2
.

By the invariance of ∇ , we have

[
φ′2μ(x̃1, x̃2) − φ′′′φ′ − 3

2φ′′2

′3
x2

]
∂ = φ∗

(
μ(x1)

∂
)

= μ(x1, x2)
1
′

∂
,

φ ∂x̃2 ∂x2 φ ∂x̃2
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and

φ′′′φ′ − 3
2φ′′2

φ′3
x2 = φ′2μ

(
φ(x1),

x2

φ′

)
− 1

φ′ μ(x1, x2). (13)

By Eq. (13), we have

φ′′′φ′ − 3
2φ′′2

φ′2
x2

2 = φ′4x̃2μ

(
φ(x1),

x2

φ′

)
− x2μ(x1, x2). (14)

1. ⇒. Let φ be an element in Γ .
We introduce ν = μ(x1,x2)

x2
, and Eq. (14) is equivalent to

φ′′′φ′ − 3
2φ′′2

φ′2
= φ′2ν

(
φ(x1),

x2

φ′

)
− ν(x1, x2).

Define ω(x1, x2) = ν(x1,
1
x2

), and we have

φ′′′φ′ − 3
2φ′′2

φ′2
= φ′2ν

(
φ(x1),

x2

φ′

)
− ν(x1, x2) = φ′2ω

(
φ(x1),

φ′

x2

)
− ω

(
x1,

1

x2

)
.

Introduce y = 1
x2

, the above equation gives

φ′′′φ′ − 3
2φ′′2

φ′2
= φ′2ω

(
φ(x1),φ

′y
) − ω(x, y). (15)

Finally, letting Ω(x,y) = y2ω(x, y), x1 = x, we see that Eq. (15) implies

φ′′′φ′ − 3
2φ′′2

φ′2
y2 = φ′2y2ω

(
φ(x1),φ

′y
) − ω(x, y)y2 = (

φ−1)∗
(Ω)(x, y) − Ω(x,y).

The left-hand side of the above equation is equal to the expression of δ′
2(φ

−1). The above
equality shows that δ′

2 is inner when we consider the H1 action on the foliation groupoid FX �G
as in Section 2.1.

2. ⇐. Suppose that the H1 action on Γ � C∞
c (R × R+) is projective.

We first show that if the H1 action is projection on Γ � C∞
c (R × R+), the support of Ω has

to be on the unit space. We write Ω = ∑
α∈Γ ΩαUα and δ′

2(Uφ)Uφ = [Ω,Uφ], and have the
following observations.

(a) From δi(Ω) = 0, ∀i > 0, we know that δi(Uα)Ωα = 0, ∀α.
(b) From δi(f ) = 0 for any f ∈ C∞

c (R×R+), we have that [Ω,f ] = ∑
α∈Γ (α∗(f )−f )ΩαUα .

Therefore (α∗(f ) − f )Ωα = 0, for all α ∈ Γ .

For a given α ∈ Γ not equal to identity, we have that δi(Uα)Ωα = 0, ∀i > 0, and (α∗(f ) −
f )Ωα = 0. If there is x0 ∈ R × R+ such that Ωα(x0) �= 0, then at x0, there is a neighborhood
N of x0 on which δi(Uα) = 0. In particular δ1(Uα) = log((α−1)′)′ = 0. Solving this differential
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equation, we know that α on N must act like α : (x1, x2) �→ (ax1 + b, ax2). By the fact that
(α∗(f ) − f )Ωα(x0) = 0 on N , for any smooth function, we know that α(x0) = x0. The same
argument show that all x ∈ N has to be fixed by α, since Ωα(x) �= 0. But this contradicts our
assumption that the fixed point set of α is at most 1 dimensional. This shows that Ωα = 0.

From the above argument, we know that Ω has to be supported on the unit space. At this time,
the projective condition is equivalent to

δ′
2

(
φ−1) = y2 φ′′′φ′ − 3

2φ′′2

φ′2
Uφ = (

Ω − φ∗(Ω)
)
Uφ.

From (15) and the transformation there, we know that the existence of Ω implies the existence
of an invariant connection like (12). �
Remark 4.3. Here, for calculation convenience, we have identified the Frame bundle FR with
the cotangent bundle T ∗R by τ : (x, y) �→ (x, 1

y
). The connection ∇ is defined on T ∗R. By τ , it

is also defined on FR.

In Theorem 4.2, the assumption that the fixed point set of any element in Γ is at most one
dimensional is only used in the sufficient part of the proof. Generally, Ω is supported on the fixed
point set B(0) of Γ , i.e. {(γ, x) | γ ∈ Γ, γ (x) = x}. Γ acts on B(0), by conjugation action. The
similar result of Theorem 4.2 is extended to this general situation without any extra effort.

Theorem 4.2′. Let Γ be a pseudogroup generated by local diffeomorphisms on R and B(0) =
{(γ, x) ∈ Γ × R × R+ | γ · x = x} be the fixed point set. The projective action (ρ,Ω) of H1 on
Γ �C∞

c (R×R+) is one to one correspondent to a Γ invariant connection ∇ on R×R+ of form
(12) and a smooth function f on Γ ×R×R+, which is supported on B(0)−{(id, x) | x ∈ R×R+}
and invariant under Γ conjugation action.

5. Universal deformation formula for H1

In this section, we will use a Fedosov type construction to reconstruct the universal deforma-
tion formula of H1 originally constructed by Connes and Moscovici [5].

5.1. Zagier’s deformation

In this subsection, we discuss the influence of the above new connection (12) on the star
product (2).

Corollary 5.1. The connection ∇ (12) is flat if and only if μ(x1, x2) = x2ν(x1), where ν(x1) is
an arbitrary smooth function on R.

Proof. The curvature of ∇ can be directly calculated to be equal to

R

(
∂

∂x1
,

∂

∂x2

)(
∂

∂x1

)
=

(
μ

x2
− ∂μ

∂x2

)
∂

∂x2
,

R

(
∂

,
∂

)(
∂

)
= 0.
∂x1 ∂x2 ∂x2
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Therefore, R = 0 if and only if μ
x2

− ∂μ
∂x2

= 0. The solution of this first order differential equation
is that μ = x2ν(x1), where ν(x1) is an arbitrary smooth function on R. �

In this section, we restrict ourselves to the case that the connection (12) is flat, which means
that μ(x1, x2) = x2ν(x1). We consider the deformation quantization of (R × R+, dx1 ∧ dx2)

using this connection.

The Christoffel symbols of the connection ∇Õ are calculated as follows,

Γ 1
11 = Γ 2

12 = Γ 2
21 = Γ 1

22 = 0, Γ 2
11 = μ, Γ 1

12 = Γ 1
21 = 1

2x2
, Γ 2

22 = − 1

2x2
.

Taking the formula (5.1.8) in [6] with the same notations, we have

Γ111 = ω11Γ
1

11 + ω12Γ
2

11 = ω12μ, Γ211 = ω21Γ
1

11 + ω22Γ
2

11 = 0,

Γ112 = ω11Γ
1

12 + ω12Γ
2

12 = 0, Γ121 = ω11Γ
1

21 + ω12Γ
2

21 = 0,

Γ212 = ω21Γ
1

12 + ω22Γ
2

12 = 1

2x2
ω21, Γ221 = ω21Γ

1
21 + ω22Γ

2
21 = 1

2x2
ω21,

Γ122 = ω11Γ
1

22 + ω12Γ
2

22 = − 1

2x2
ω12, Γ222 = ω21Γ

1
22 + ω22Γ

2
22 = 0.

We have the following expression for Γ , Γ ◦ a, a ◦ Γ , and [Γ,a].

Γ = 1

2
ω21

{[
−μ

(
u1)2 + 1

2

(
2u2)2

]
dx1 + 1

2
2u1u2 dx2

}
,

and

Γ ◦ a = Γ a +
(−ih

2

)
1

1!
[
ω12

(
ω21

2

(
−μ2u1 dx1 + 1

2x2
2u2 dx2

))∑
am,n

(
u1)m

n
(
u2)n−1

+ ω21 ω21

2

1

2x2

(
2u2 dx1 + 2u1 dx2

)∑
am,nm

(
u1)m−1(

u2)n
]
,

and

i

h
[Γ,a] =

∑(
1

2
(−μ)2am,n

(
u1)m

n
(
u2)n−1 − 1

4x2
2am,nm

(
u1)m−1(

u2)n+1
)

dx1

+ 1

4x2

(
2am,n

(
u1)m

n
(
u2)n − 2am,nm

(
u1)m(

u2)n)
dx2.

It is a direct check that when μ = x1ν(x2), ∇2 and D2 are both 0. By Theorem 2.1, for each
f ∈ C∞(R × R+)[[h̄]], there is a unique solution of the equation Da = 0 with a0,0 = f . In the
following, we calculate the explicit expression of a.

The expression of Da is calculated as follows.
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Da = ∂a − δa = −δa + da + i

h
[Γ,a]

= −
∑

am,nm
(
u1)m−1(

u2)n
dx1 −

∑
am,n

(
u1)m

n
(
u2)n−1

dx2

+
∑ ∂am,n

∂x1

(
u1)m(

u2)n
dx1 +

∑ ∂am,n

∂x2

(
u1)m(

u2)n
dx2

+
[
−μ

∑
am,nn

(
u1)m+1(

u2)n−1 −
∑ am,n

2x2
m

(
u1)m−1(

u2)n+1
]

dx1

+
∑ am,n

2x2
(n − m)

(
u1)m(

u2)n
dx2.

The equation Da = 0 gives the following system of differential equations:

−am+1,n(m + 1) + ∂am,n

∂x1
− (n + 1)μam−1,n+1 − am+1,n−1

2x2
(m + 1) = 0,

and

−am,n+1(n + 1) + ∂am,n

∂x2
+ am,n

2x2
(n − m) = 0.

Given a0,0 = f , we solve the system of equations by induction.

am,0 = 1

m

(
∂am−1,0

∂x1
− μam−2,1

)
= 1

m

(
∂am−1,0

∂x1
− μ

(
∂

∂x2
− m − 2

2x2

)
am−2,0

)
,

am,n = 1

n!
(

∂

∂x2
− m

2x2

)
· · ·

(
∂

∂x2
+ n − m − 1

2x2

)
am,0.

If we set

X = 1

x2

∂

∂x1
,

Y = −x2
∂

∂x2
,

it is a direct check that

Am+1 = −XAm − m
μ

x3
2

(
Y − m − 1

2

)
Am−1,

Bm+1 = XBm − m
μ

x3
2

(
Y − m − 1

2

)
Bm−1,

am,n = xm−n
2

n!
Am

m! (2Y + m) · · · (2Y + m + n − 1)a,

bn,m = xn−m
2 Bn

(2Y + n) · · · (2Y + m + n − 1)b.

m! n!
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The above expression of Am,Bm is exactly identical to the recurrence relation as described in
(2.9) of [3] of Connes and Moscovici with S(X) = −X, and Ω = μ

x3
2

= ν

x2
2

. The star product

constructed in this way defines the Zagier’s deformation [11] for h1 constructed from Rankin–
Cohen brackets on modular forms with a fourth degree element.

Remark 5.2. For computation reasons, we have chosen that a special form of connections defined
by Eq. (12), which is flat. Because of the flatness, the calculation is quite simple and transparent.
When the connection is not flat, Fedosov’s construction still works, but the calculation is much
more complicated. However, the star product should be able to be expressed by the same formula.

Remark 5.3. As explained in Remark 4.3, the connection and the star product discussed in this
subsection are both on the cotangent bundle T ∗R. However, all these constructions can be pulled
back to the frame bundle by τ (see Remark 4.3) without any difficulty.

5.2. Full injectivity

We have shown in the last subsection that the deformation quantization of the standard sym-
plectic structure on the upper half plane using the connection (12) with μ(x1, x2) = x2ν(x1) gives
rise to Zagier’s deformation formula on modular forms. To generalize this deformation to a uni-
versal deformation formula of a projective H1 action, we adapt the method used by Connes and
Moscovici [5, Section 3] to our situation. We briefly recall their construction in the following,
and refer to [5] for the detail.

Firstly, we introduce a free abelian algebra P with a set of generators indexed by Z�0,
Z0,Z1, . . . ,Zn, . . . . On P , we define a H1 action as follows,

Y(Zj )
def= (j + 2)Zj , X(Zj )

def= Zj+1, δk(p) = 0, ∀p ∈ P, j � 0.

Secondly, we consider the crossed product algebra H̃1
def= P � H1 � P , which is equal to

P ⊗H1 ⊗P as a vector space. Denote this algebra by H̃1. Connes and Moscovici defines on H̃1
an Hopf algebra structure over P , with α,β :P → H̃1 defined by

α(p) = p � 1 � 1, β(q) = 1 � 1 � q, ∀p,q ∈ P.

Thirdly, to deal with the projective structure, we define δ̃′
2

def= δ2 − 1
2δ2 − α(Z0) + β(Z0),

H̃s as the quotient of H̃1 by the ideal generated by δ̃′
2. H̃s is still a Hopf algebra over P because

�(δ̃′
2) = δ̃′

2 ⊗ 1 + 1 ⊗ δ̃′
2.

Fixing a function μ(x1, x2), we consider a pseudogroup Γ action on R whose lifting onto
T ∗R preserves the connection ∇ (12) defined by μ. By Theorem 4.2, the H1 action on the

corresponding groupoid algebra Aμ,Γ
def= Γ � C∞

c (R × R+) is projective with Ω defined in the
proof.

We define ρμ,Γ :P → Aμ,Γ by ρ(Zk) = Xk(Ω) and make Aμ,Γ into a module algebra over
H̃1|P by

χμ,Γ (p � h � q)(Uγ f )
def= ρμ,Γ (p)h(Uγ f )ρμ,Γ (q).
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One easily checks that Aμ,Γ becomes a module algebra over H̃s |P because when the H1

action is projective, δ̃′
2 acts as 0.

We define action χn
μ,Γ ,

χ
(n)
μ,Γ : H̃s ⊗P · · · ⊗ H̃s︸ ︷︷ ︸

n

→ L(Aμ,Γ ⊗ · · ·Aμ,Γ︸ ︷︷ ︸
n

,Aμ,Γ )

by means of acting on each components, where L means the set of linear maps.
We fix μ = x1ν(x1), and have the following proposition analogous to [5, Proposition 12].

Proposition 5.4. For each n ∈ N,
⋂

ν(x1),Γ
Kerχ(n)

x2ν(x1),Γ
= 0.

Proof. There is no difference between the proofs for different n. Therefore, for simplicity, we
only prove the proposition for n = 1.

Following the proof of [5, Proposition 12], an arbitrary element of H̃s can be written uniquely
as a finite sum of the form

H =
∑

j,k,l,m

α(pjklm)β(qjklm)δ
j

1XkY l,

where p,q ∈ P .
Let χx2ν(x1),Γ (H) = 0, for arbitrary ν(x1) and pseudogroup Γ preserving the connection de-

fined by x2ν(x1). From the proof of Theorem 4.2, we know that in this case, Ω = x2
2ν(x1).

If Uγ f ∈Ax2ν(x2),Γ , then

∑
j,k,l,m

ρx1ν(x2),Γ (pjklm)γ ∗(ρx1ν(x2)(qjklm)
)
δ1(γ )jXkY l(f ) = 0.

We notice that f can be arbitrary smooth function on R×R+, and XkY l = xm+l
2

dk

dxm
1

dl

dxl
2
. This

implies that

∑
j,m

ρx1ν(x2),Γ (pjklm)γ ∗(ρx1ν(x2)(qjklm)
)
δ1(γ )j = 0,

for any l,m.
To prove the proposition, we consider the following family of algebras, Ax2ν(x2),Γ .
Fix a diffeomorphism φO1,O2 from an open set O1 ⊂ R to the other open set O2 ⊂ R, with

O1 disjoint from O2. The disjointness between O1 and O2 makes the set Γφ
def= {id|R, id|O1 ,

id|O2 , φ, φ−1} into a pseudogroup. Starting with any connection ∇1 of the form (12) with μ =
x2ν(x1) on O1, we first push forward this connection to O2 by φ, and then extend the connection
defined on O1 and O2 to a global connection ∇̃ on R × R+. The extension of the connection is
well defined because O1 is disjoint from O2, and is Γφ invariant by its definition. According to
our construction, we have that H̃s act on the corresponding groupoid algebra A

φO1,O2 ,∇̃ .

Now at any x ∈ R, we fix O1 containing x, and let O2, φ, ∇1 vary. It is not hard to see that if
H vanishes on this family of algebra Aφ ,∇̃ , we must have that H vanishes at x, because H
O1,O2
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has only finite number of terms but this family of algebras has infinitely many freedoms. Hence
H has to be equal to 0. �
5.3. Universal deformation H1 with a projective structure

We consider the groupoid algebra Ax2ν(x1),Γ . Because the connection defined by x1ν(x1) in
(12) is Γ invariant, the results in Section 2.3 implies that the symplectic form dx∧dy

y2 on R × R+,

which is invariant under any Γ , defines a noncommutative Poisson structure on Γ � C∞
c (R ×

R+). Furthermore, we extend this Poisson structure to a deformation of Γ � C∞
c (R × R+). This

deformation can be realized by the crossed product of the star product constructed in Section 5.1
with Γ .

In Section 5.1, the 
 product is expressed as follows: for f,g ∈ C∞
c (R × R+),

f 
 g =
∞∑

n=0

h̄n

n∑
k=0

Ak

k! (2Y + k)n−k(a)
Bn−k

(n − k)! (2Y + n − k)k(b),

Am+1 = XAm − mx2μ

(
Y − m − 1

2

)
Am−1 = XAm − mΩ

(
Y − m − 1

2

)
Am−1,

Bm+1 = XBm − mx2μ

(
Y − m − 1

2

)
Bm−1 = XBm − mΩ

(
Y − m − 1

2

)
Bm−1.

The crossed product of 
 with Γ is written as Uγ fγ ∗ Uβgβ
def= Uγββ∗(fγ ) 
 gβ defines a defor-

mation quantization of Γ � C∞
c (R × R+).

According to the formulas of 
 and the Γ crossed product, the deformed product ∗ on Γ �

C∞
c (R × R+) can be expressed by H̃s as follows,

RC =
∞∑

n=0

h̄n
n∑

k=0

Ak

k! (2Y + k)n−k ⊗ Bn−k

(n − k)! (2Y + n − k)k,

Am+1 = S(X)Am − mΩ0
(

Y − m − 1

2

)
Am−1,

Bm+1 = XBm − mΩ

(
Y − m − 1

2

)
Bm−1,

where Ω0 is the right multiplication of Ω .
By Proposition 5.4, we conclude RC can be pulled back to H̃s and defines an associative

universal deformation for any projective H1 actions.

6. Deformation without projective structures—Noncommutative Poisson structure

In the above deformation (4), we have assumed the action to be projective. One can ask
whether one can go beyond this. Recently, a construction of Bressler, Gorokhovsky, Nest, and
Tsygan [2] strongly suggests that this general RC deformation may still exist.

In this section, we look at the first order approximation of the general deformation. We prove
that RC1 generally defines a noncommutative Poisson structure without any assumptions.
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Proposition 6.1. For an H1 action on an A, RC1 = −X ⊗ 2Y + 2Y ⊗ X + δ1Y ⊗ 2Y defines a
noncommutative Poisson structure on A.

Proof. The proof of this proposition is a calculation. We need to find an element B in H1 ⊗H1,
such that for any a, b, c ∈ A,

aB(b, c) − B(ab, c) + B(a, bc) − B(a, b)c = RC1
(
RC1(a, b), c

) − RC1
(
a,RC1(b, c)

)
.

In order to find such a B , we first look at the special case where the Hopf algebra action
is projective. In this case, the associativity of the Connes–Moscovici’s universal deformation
formula of H1 implies that RC2 is a right choice of B .

For a general H1 action, we first look at the following term

B ′ = S(X)2 ⊗ Y(2Y + 1) + S(X)(2Y + 1) ⊗ X(2Y + 1) + Y(2Y + 1) ⊗ X2

+ 2δ′
2Y ⊗ Y 2 + δ′

2Y ⊗ Y.

We calculate the difference between the Hochschild coboundary of B ′ and [RC1,RC1].
(
b(B ′) − [RC1,RC1]

)
(a, b, c)

= 4δ′
2YaYbYc + 4Yaδ′

2YbYc + 2Y 2aδ′
2bYc − 2δ′

2aYbY 2c + Yaδ′
2bYc − δ′

2aYbYc

= −2
[
aδ′

2Y
2bYc − δ′

2Y
2(ab)Yc + δ′

2Y
2aY (bc) − δ′

2Y
2a(Yb)c

] − 2δ′
2aY 2bYc

− 2δ′
2aYbY 2c + Yaδ′

2bYc − δ′
2aYbYc

= −2
[
aδ′

2Y
2bYc − δ′

2Y
2(ab)Yc + δ′

2Y
2aY (bc) − δ′

2Y
2a(Yb)c

]
− 2

3

[
aδ′

2bY 3c − δ′
2(ab)Y 3c + δ′

2aY 3(bc) − δ′
2a

(
Y 3b

)
c
] + Yaδ′

2bYc − δ′
2aYbYc

= −2
[
aδ′

2Y
2bYc − δ′

2Y
2(ab)Yc + δ′

2Y
2aY (bc) − δ′

2Y
2a(Yb)c

]
− 2

3

[
aδ′

2bY 3c − δ′
2(ab)Y 3c + δ′

2aY 3(bc) − δ′
2a

(
Y 3b

)
c
]

− [
aδ′

2YbYc − δ′
2Y(ab)Yc + δ′

2YaY (bc) − δ′
2Ya(Yb)c

]
− 2δ′

2aYbYc

= −2
[
aδ′

2Y
2bYc − δ′

2Y
2(ab)Yc + δ′

2Y
2aY (bc) − δ′

2Y
2a(Yb)c

]
− 2

3

[
aδ′

2bY 3c − δ′
2(ab)Y 3c + δ′

2aY 3(bc) − δ′
2a

(
Y 3b

)
c
]

− [
aδ′

2YbYc − δ′
2Y(ab)Yc + δ′

2YaY (bc) − δ′
2Ya(Yb)c

]
− [

aδ′
2bY 2c − δ′

2(ab)Y 2c + δ′
2aY 2(bc) − δ′

2aY 2bc
]
,

where b(B ′) is the Hochschild coboundary of B ′ and δ′
2 = δ2 − 1

2δ2
1 .

It is straightforward to check the following identities.
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b
(
δ′

2Y
2 ⊗ Y

)
(a, b, c) = aδ′

2Y
2bYc − δ′

2Y
2(ab)Yc + δ′

2Y
2aY (bc) − δ′

2Y
2a(Yb)c,

b
(
δ′

2 ⊗ Y 3)(a, b, c) = aδ′
2bY 3c − δ′

2(ab)Y 3c + δ′
2aY 3(bc) − δ′

2a
(
Y 3b

)
c,

b
(
δ′

2Y ⊗ Y
)
(a, b, c) = aδ′

2YbYc − δ′
2Y(ab)Yc + δ′

2YaY (bc) − δ′
2Ya(Yb)c,

b
(
δ′

2 ⊗ Y 2)(a, b, c) = aδ′
2bY 2c − δ′

2(ab)Y 2c + δ′
2aY 2(bc) − δ′

2aY 2bc.

Therefore, the calculation suggests the introduction of B ′′ = +2δ′
2Y

2 ⊗Y + 2
3δ′

2 ⊗Y 3 +δ′
2Y ⊗

Y + δ′
2 ⊗ Y 2 and B = B ′ + B ′′. And we have b(B) = b(B ′ + B ′′) = [RC1,RC1]. �
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