
Discrete Mathematics 108 (1992) 343-364 

North-Holland 

343 

On the complexity of finding iso- 
and other morphisms for partial 
k-trees 

Jii-i MatouSek 
Department of Computer Science, Charles University, Malostranske’ ncim. 25, 11800 Praha 1, 
Czechoslovakia 

Robin Thomas* 
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA 

Received 4 January 1991 

Abstract 

MatouSek, J. and R. Thomas, On the complexity of finding iso- and other morphisms for 

partial k-trees. Discrete Mathematics 108 (1992) 343-364. 

The problems to decide whether H c G for input graphs H, G where c is ‘isomorphic to a 

subgraph’, ‘isomorphic to an induced subgraphs’, ‘isomorphic to a subdivision’, ‘isomorphic to 

a contraction’ or their combination, are NP-complete. We discuss the complexity of these 

problems when G is restricted to be a partial k-tree (in other terminology: to have tree-width 

Sk, to be k-decomposable, to have dimension Sk). Under this restriction the problems are 
still NP-complete in general, but there are polynomial algorithms under some natural 

restrictions imposed on H, for example when H has bounded degrees. 

We also give a polynomial time algorithm for the n disjoint connecting paths problem 

restricted to partial k-trees (with n part of input). 

1. Introduction 

In this paper graphs are finite, without loops and multiple edges. We need to 

consider many graph-theoretic inclusions and it is convenient to have a consistent 

notation for them. We propose the following one. We write Hc, G if G is 

isomorphic to a graph that can be obtained from H by subdividing its edges and 

H<,,, G if H is isomorphic to a graph that can be obtained from G by contracting 

edges and deleting loops and multiple edges thus produced (here h stands for 

homeomorphic and m for minor embedding). We write H = G if H is isomorphic 

to G, H c G if H is isomorphic to a subgraph of G and H si G if H is isomorphic 

to an induced subgraph of G. Finally, we define Hz, G (Hc_~,, G, Hz,, G, 

*This research was carried out at Department of Mathematical Analysis, Charles University, 
Sokolovska 83, 186 00 Praha 8, Czechoslovakia. 

0012-365X/92/$05.00 0 1992 - Elsevier Science Publishers B.V. All rights reserved 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82566024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


344 J. MatouZek, R. Thomas 

HE~,,,G, resp.) if there is a graph G’ such that H<,,G’GG (H<,G’L~G, 
Hs, G’ c G, Hc, G’ zi G, resp.). 

Let s be any of the above defined relations. We introduce the following. 

Problem 1.1 (s-decision problem). 
Instance: Graphs H, G. 
Question: Is H c G? 

As this is easily seen to be NP-complete (or isomorphism-complete for 
‘6’ = ‘ = ‘) . m g eneral, we introduce the following restriction on G. We say that G 

is a partial k-tree if G is a subgraph of a chordal graph which contains no Kk+2, 

the complete graph on k + 2 vertices. Our results concern the case when the 

graph H is connected and the graph G is constrained to be a partial k-tree. 

It turns out that the isomorphism of partial k-trees is decidable in polynomial 

time, while for all the remaining relations the problem remains NP-complete. We 

investigate further conditions implying polynomial-time solvability. One such 

condition is very natural-bounding the maximum degree of the graph H by a 

constant. Another (maybe surprising) restriction is the requirement that H be 

(vertex) k-connected (and, as before, G be a partial k-tree). This limits the form 

of possible embeddings and yields a polynomial solvability for all relations except 

for the minor embeddability (the intuitive reason why minor embedding behaves 

differently is that there are too many possibilities how to blow up a vertex of high 

degree in H). 
The results are summarized in Table 1. The entries contain the complexity 

result (P stands for polynomial time solvable) and the location in this paper where 

we state and prove that result (and also the references to results known before, 

modulo our knowledge). 

The problem indicated by ‘?’ leads to a matching-type problem whose 

complexity is unknown (only probabilistic polynomial-time algorithms for such 

type of problems were given by Lovasz). The isomorphism for general graphs of 

bounded degree was solved by Luks [7]. The polynomial-time test for subgraph 

relation among trees has been known [4]. A polynomial algorithm for the 

Table 1 
<-decision when H is connected and G is a partial k-tree 

A(H) bounded k-connected arbitrary 

= P [7], (6.14) P (6.14) P (6.14) 

G ore, P (5.14) P (6.13), (6.14) P for k = 1 [4], (6.14) 
NP-complete k > 1 (4.4) 

%I P (5.14) P (6.14) P (6.14) 

%I P (5.14) NP-complete (4.3) NP-complete (4.1) 

ch or c,~ P (5.14) P for k = 1,2 (6.14) P for k = 1 
? fork>2 NP-complete k > 1 (4.4) 

c_ or G,_ P (5.14) NP-complete (4.3) NP-complete (4.2) 



On the complexity of findng morphisms for partial k-trees 345 

c -decision problem when H is connected, A(H) < const and G is a partial k-tree 

was independently found by Bodlaender [3]. We suspect that also other results 

might have been known, but so far we could not find any references. Let us also 

mention that the situation changes drastically if the graph H is fixed. Polynomial 

time algorithms in this case (without any restriction on G) were recently 

produced by Robertson and Seymour [lo]. 

In the next section we introduce another definition of a partial k-tree, more 

convenient from the algorithmic point of view. In Section 3 we give a basic 

algorithm which, roughly speaking, computes some specified information about 

the whole partial k-tree G by a knowledge of this information on smaller pieces 

of G. We also illustrate the use of this algorithm. 

Section 4 contains all our NP-completeness results, while in Sections 5 and 6 we 

use the basic algorithm to obtain polynomial time algorithms for the results 

indicated in Table 1. 

Our methods also imply a polynomial time algorithm to solve the following 

problem, widely discussed in the literature for various classes of graphs: 

Problem 1.2 (Disjoint connecting paths problem for partial k-trees). 

Znstance: Graph G, which is a partial k-tree and vertices s,, t,, . . . , s,, t,, of G. 

Question: Do there exists IZ vertex disjoint paths P,, . . . , P,, in G in such a way 

that P: connects si and ti (i = 1, . . . , n)? 

The algorithm is given in Section 7. If we drop the partial k-tree assumption, 

then this problem turns out to be NP-complete [6], but a polynomial algorithm 

exists when II is fixed (without any restriction on G) [lo]. 

Let us introduce some terminology. Throughout the paper, w, A will be 

arbitrary but fixed integers. If A is a set, then IAl denotes the cardinality of A and 

2A the set of all subsets of A. A graph is a pair G = (V, E), where V, the set of 

vertices, is a finite set and E, the set of edges, is a collection of two-element 

subsets of V. We write V(G) = V and E(G) = E. If {u, V} E E(G) is an edge, we 

say that u, v are its endpoints. If A, B are disjoint subsets of V(G) we say that A, 

B are adjacent if there is an edge {a, b} E E(G) such that a E A and b E B. We say 

that u, ZJ E V(G) are adjacent if {u, V} E E(G) (i.e., if {u}, {v} are adjacent). If 

A s V(G), then G 1 A denotes the graph induced (or spanned) by the set A and 

G\A denotes the graph resulting from removing all vertices from A and all edges 

with at least one endpoint in A. The degree of a vertex v in a graph G, denoted, 

by deg,(v), is the number of other vertices adjacent to it. For a graph G, A(G) 

denotes the maximal degree of G, i.e., the maximum of degrees of its vertices. 

Let G be a graph and Z E V(G). A Z-separation is a pair (G,, G,) of induced 

subgraphs of G such that V(G,) II V(G,) c 2, V(G,) U V(G2) U Z = V(G) and 

E(G,) U E(G,) U E(G ( Z) = E(G). A partial Z-separation is a pair (H,, Hz) such 

that there exists a Z-separation (G,, G2) such that V(H,) = V(Gi), (i = 1, 2) and 

E(H,) U E(&) = E(G,) U E(G,). A Z-component of G is a connected component 



346 J. Matouiek, R. Thomas 

C of G\Z together with all edges from C to 2 and all ends of these edges. The 

ends of these edges are called vertices of attachment of the Z-component. If A is 

the set of vertices of attachment of a Z-component C, we say that C is attached at 

A and that C has order [Al. 
If H and G are graphs and V E V(H) fl V(G), we say that H is V-isomorphic 

to G if there exists an isomorphism between H and G whose restriction to V is the 

identity map. 

Definition 1.3. If G is a graph then G* denotes the graph obtained from G by 

subdividing every edge exactly once. 

Lemma 1.4. Let H, G be graphs, let s be any of G, ch, E,,, and let =s~ be its 
induced counterpart, i.e., Ei, sib or Cim, respectively. Then H s G if and only if 
H*siG*. 

Proof. The proof is elementary and is left to the reader. 0 

2. Tree-decompositions 

Definition 2.1. A tree-decomposition of a graph G is a pair (T, X), where T is a 

tree and X = (Xt 1 t E V(T)) is such that: 

(a) Lw-) X = V(G), 
(b) for every edge {u, V} of G there exists t E V(T) such that U, t_~ E X,, and 

(c) whenever t’ is on the path between t and t” in T, then X, tl X,. s X,.. 

The width of a tree decomposition (T, X) is. 

The tree-width of a graph G is the least integer w such that G admits a 

tree-decomposition of width SW. 

The following two well-known results summarize some of the properties of 

tree-width. 

Theorem 2.2. Let G be a graph and k un integer. Then G is a partial k-tree if and 

only if it has tree-width Sk. 

Proof. (Sketch) ( + ) Let H be the graph obtained from G by adding all edges 

{u, V} such that U, Y E X, for some t E V(T). Then H is chordal and contains no 

K kc2. 

(3) Let G be a subgraph of a chordal graph H, which contains no Kk+2. 
Every chordal graph contains a vertex whose neighbors induce a complete 



On the complexity of findng morphiwns for partial k-trees 347 

subgraph. By successive elimination of such vertices we can construct the desired 

tree-decomposition (T, X). It also follows that this tree-decomposition satisfies 

IV(T)1 =z IV(G)l. q 

Proposition 2.3. (i) G has tree-width ~1 iff G is a forest. 
(ii) G has tree-width 62 iff G is series-parallel. 

(iii) The complete graph K,, has tree-width II - 1. 

(iv) If HG,G, th en the tree-width of H is at most the tree-width of G. 

(v) The tree-width of the adjacency graph of the n x n chessboard is n. 

Proof. We shall use only (iii) and (iv), and these are easily seen. 0 

Since we shall assume that input graphs come already equipped with their 

tree-decomposition, it is worth mentioning how such a tree-decomposition can be 

found. 

Theorem 2.4. Let w be fied. 

(i) There is an O(]V(G)]“‘“) algorithm which, for an input graph G, decides 
whether its tree-width is SW, and if yes, it also constructs a corresponding 

tree-decomposition, [l]. 

(ii) There is an 0(]V(G)12) algorithm which for an input graph G eitherfinds a 
tree-decomposition of tree-width <3w or finds out that the tree-width of G is aw, 

[lOI. 
(iii) There exists an O(] V(G)]‘) algorithm which decides whether the tree-width 

of G is SW (but does not construct the tree-decomposition if so), [lo]. (This is just 
an existence statement and its proof gives no hint how to construct such an 
algorithm.) 

(iv) There is an 0( I V(G)] log2 IV(G)] probabilistic algorithm which for the 
input graph G either finds a tree-decomposition of width 6w or finds out that the 
tree-width of G is aw, [S]. 

(v) There is a linear algorithm for the problem described in (i) if w d 3, [8]. 
(vi) If w rS variable part of the input instance, then the problem to decide if 

tree-width of G is cw is NP-complete, [l]. 

Definition 2.5. Let G be a graph. We say that a tree-decomposition (T, X) of G 

is standard, if every vertex of T has degree either 1 or 3 and IV(T)] s 2]V(G)J. 

Theorem 2.6. Every graph G admits a standard tree-decomposition. 

Proof. It is clear that the tree-decomposition (T, X) obtained in the proof of 

Theorem 2.2 satisfies IV(T)] c IV(G)]. By adding some vertices t with X, = 0 we 

can arrange that T has no vertices of degree 2. By ‘splitting’ vertices of degree >3 

we can arrange that every vertex has degree 3 or 1. Cl 



348 J. Matouiek, R. Thomas 

One can also show that an arbitrary tree-decomposition can be modified to a 

standard one in linear time, and hence there is no harm in supposing that all 

tree-decompositions are standard. 

3. The basic algorithm 

This section gives a generic form of an algorithm computing on a graph G 

equipped with a tree-decomposition of bounded width. We formulate it as the 

computation of some function of the whole graph, provided that certain 

assumptions on computability and behavior of this function on subgraphs of G 

hold. 

Definition 3.1. A transition function is a function P assigning a set P(G, Z) to 

each pair (G, Z), where G is a graph and Z s V(G) is such that lZ1 d w + 1 

(recall that w is a fixed integer). 

Definition 3.2. A transition function P is called feasible if there are functions ?;,, 

TR, TM of IV(G)l, such that for every G and every Z E V(G), lZ1 =S w + 1 the 

following holds: 

(a) P(G, Z) can be determined in time T;, for every G such that IV(G)1 s 
w+ 1. 

(b) For Z 2 Z’, P(G, Z’) can be determined by a knowledge of P(G, Z) in 

time TR. 
(c) If (G,, GJ is a Z-separation of G, then P(G, Z) can be determined by a 

knowledge of P(Gj, Z fl V(Gj)) (j = 1, 2) in time TM. 

Let a feasible transition function P be given. 

Algorithm 3.3 
Input: A graph G and its standard tree-decomposition (T, X) of width =SW. 

Output: P(G, 0). 
Description. We use the ideas of [2], which appear in [lo, Algorithm (4.1)]. Let 

r be a leaf of T, and number the vertices of T as t,, . . . , t,,, = r, where 

m = IV(T)I, so that the numbers on every path leaving r are decreasing. For 

i=l . . , m let Bi be the set of all vertices t of T such that ti lies on the path 

between t and r in T and let Gi be the graph spanned by the set lJ {X, ( t E Bi}. 

Let also Zi =X,. Note that G,,, = G. We shall compute P(G,, Zj) for each i by 

recursion as follows. At the start of the ith iteration, P(G,, Zj) has been 

determined for 1 s j < i. 
(a) If i <m and t, has degree 1, then V(G,) = Zi = X,, and we use Definition 

3.2(a). 

(b) If ti has degree > 1, let j, k < i be such that {t,, tj} E E(T), {ti, tk} E E(T). 
Using Definition 3.2(b) we can determine P(G,, Z, fl Z;) = P(G,, V(G,) fl Zi) and 



On the complexity of jindng morphisms for partial k-trees 349 

P(G, Z,c n Zi) = P(G, V(G) n Zi), and since (Gi, G,) is a Z,-separation of Gi 

(this is a basic property of tree-decompositions-see e.g. [lo]), we can use 

Definition 3.2(c) to determine P(G,, Zi). 

(c) If i = m then (G,,_l, empty graph) is a Z,-separation of G,,, and so having 

determined P(G,_l, Z, fl V(G,_,)) using Definition 3.2(b) we can use Defini- 

tion 3.2(c) to determine P(G,, Z,). Finally, we use Definition 3.2(b) to 

determine P(G, 0) = P(G,, 0) from P(G,, Z,). 

Theorem 3.4. The worst-case running time of the above algorithm is 

O(G + TR + TM) - IV(W 

Proof. There are IV(T)/ = O(lV(G)l) steps to be done and each takes time at 

most To + T, + TM. 0 

We end this section by a list of examples which illustrate the use of Algorithm 

3.3. 

Example 3.5. Let P(G, Z) consist of one element, namely the mapping 

f :2=+ (0, 1, 2,. . .} 

defined by saying that for V c Z, f(V) is the size of maximum independent set M 

in G such that M f~ Z = V (if such a M exists; otherwise the value is irrelevant and 

we may set it e.g. to 0). Then from P(G, 0) we can read off the maximum 

independent set size of G. 

Example 3.6 [2]. Let (Zlz be the set of all functions Z-+ (ZI. Let P(G, Z) 

consist of one element, namely the mapping 

f:IZ+{O, 1, 2 )... }, 

which to each r E lZlz assigns the least rz such that there is a coloring of G by n 

colors, which extends r. Then from P(G, 0) we can read off the chromatic 

number of G. 

The last example assumes familiarity with [lo]: 

Example 3.7 [lo]. Let X c V(G) be given. With 

P(G, Z) = the &folio of G relative to Z U X, 

Algorithm 3.3 reduces to Algorithm (4.1) of [lo]. This can be used to solve the 

z,-decision problem for fixed H or the disjoint paths problem for fixed n 

(provided that G has bounded tree-width). 



350 

4. NP-completeness 

J. Matouiek, R. Thomas 

Theorem 4.1. The <,-decision problem is NP-complete even if we impose one of 
the following restrictions on G and H: 

(i) H and G are trees of bounded diameter, 
(ii) H and G are trees all whose vertices but one have degree ~5. 

(By a somewhat more complicated construction we 

(ii).) 

could have degrees ~3 in 

Proof. We proceed by reduction from a 3-matching problem of the following 

form [4]: X = {x,, . . . , x3,} is a set and Y = {tl, . . . , t,} is a set of triples of 

points of X (we may assume m > n + l), and we ask whether all points of X can 

be covered by a collection of n disjoint triples of .Y. We construct trees H and G 

such that Hs,,, G iff (X, 9) has a solution. 

Let rl, . . . , r3n be pairwise <,-incomparable rooted trees, i.e., trees with a 

specified vertex of degree 1, called the root for which the s,-relation is defined 

with the additional requirement that root is contracted onto root. Such a family of 

trees is easy to construct; moreover, we may assume that none of the r, is a path. 

The height of a rooted tree is the length of the longest path starting from the 

root. Let h be the maximum of the heights of rl, . . . , t3,. Let H arise by gluing 

rt> r2, . ’ . > r3n (by their roots) and (m -n) paths of length h + 2 (by their 

endpoints), see Fig. 1. Let G arise by gluing trees T,, . . . , T, by the root, where 

q is obtained by gluing a path of length h + 1, r,,, r,,, rjx and an extra edge ej, 

see Fig. 2. Here i,, iz, i3 are such that tj = {xi,, xi2, xi?}. 

Suppose that Hs, G. Then the root of H must be mapped onto the root of G, 

since they are both unique middle points on a longest path in H and G. Now at 

most n of the edges e,, . . . , e, may be contracted since H contains m - n paths 

of length h + 2 starting from the root. These contracted edges define a solution to 

m--n 

I I 

i !I . . . 

H= 

Fig. 1. 



On the complexity of findng morphism for partial k-trees 351 

Tj = 

Fig. 2. 

(X, Y), because each rj in H must be embedded onto the r; of G by the 

incomparability of the ri. 

Conversely it is easy to see that a solution of (X, 9) gives rise to a contraction 

of G isomorphic to H. Now the trees r,, . . . , t3, can be chosen to have either 

bounded height (then we get (i)) or all degrees S3 (and we get (ii)). 0 

Theorem 4.2. The E,,- and ci,,,-decision problems are also NP-complete under 
either of the restrictions of Theorem (4.1). 

Proof. The relations Sm, &m and Eim coincide on the set of trees. Thus the 

theorem follows from Theorem 4.1. Cl 

Theorem 4.3. For every fixed k, the c-decision problem is NP-complete for 

SE {%, srn, cim} if we restrict G on partial k-trees and H on k-connected 

graphs. 

Proof. For k = 1 the theorem holds by Theorems 4.1, 4.2. If k > 1, we use the 

following simple reduction to the case k = 1: Take the trees G, H constructed in 

the reduction from the given 3-matching problem. To both these trees, add k - 1 

new vertices, each joined by an edge to all the vertices of the original tree and 

also to all of the other new vertices. Now one can prove that the new graphs are 

in the 6 relation iff the old ones were (for all the meaning of s ). We omit this 

proof. 0 

Theorem 4.4. For s E {ch, sit,, C, Ci}, the s -decision problem is NP-complete 
even if we impose the following two restrictions on H and G: 

(i) H is a tree all whose vertices but one have degree ~3, 
(ii) G has tree-width 2 and all vertices but one have degree ~3. 

Proof. We shall assume that =S E { ch, c}, since the other two cases follow from 
Lemma 1.4. Consider a 3-matching problem (X, Y), where X = R u S u T, 
R={r,,.. .,r,}, S={s, ,..., s,}, T={t, ,..., t,,} and .Y_cRxSxT. We 



352 J. Matouiek, R. Thomas 

where rk,, = 

l if{n,sp,tl}E70rj#q 
where crkPs = I otherwise 

Fig. 3. 

construct H and G in such a way that H c G if and only if (X, 9) has a solution. 

Let H arise by identifying roots of the trees HI, . . . , H,, and Hi, . . _ , HA, where 

Hj and Hi are depicted in Fig. 3. Let G arise by identification of the roots of 

G,,..., G,, where Gi is depicted in Fig. 4. 

Now if H E G or Hzh G then the root of H must go onto the root of G, every 

G, must contain some HP and some HA, and the ‘horizontal’ paths must be 

mapped bijectively. If HP and HA are embedded into Gi, then {r;, s,,, tq} E .T since 

otherwise both HP and Hi would contain a tail at position (i, p, q), which is 

impossible since they are embedded into G,. Hence the assignment i-(p, q) 

d(i - 1) n2 nyn - i) 

Fig. 4. 



On the complexity of findng morphisms for partial k-trees 353 

where H,, and Hi are embedded into G,, defines a solution 

{{ri, sp, t,}: i = 1, . . . ) n} E 9 

of (X, Y). 

Conversely, it is easy to see that every solution to (X, 9) gives rise to a 

subgraph of G isomorphic to H in a similar way. Cl 

5. Expansions 

Let k be a fixed integer. In this section we shall deal with the following. 

Problem 5.1. ((A, k)-restricted =hfecision problem). 
Instance: Graphs H, G, here H is connected and A(H) c A, and a standard 

tree-decomposition (T, X) of G of width Sk. 
Question: Is H s G? 

We shall describe the algorithm in full detail for the induced minor embedding 

case. The case of induced subgraph relation will be a trivial simplification of the 

induced minor embedding case. The homeomorphic embedding is slightly more 

different, and we shall sketch the approach at the end of this section. 

Let us describe the idea of the algorithm first. It turns out that H c G is 

equivalent to the existence of a mapping 91: V(H)+ 2V(G) with certain properties, 

which we call an expansion. If such an expansion is chosen, Z is a (small) cutset 

of V(G), and (G,, G2) is a Z-separation of G, then this turns out to induce a 

cutset W E V(H), such that each component of H\ W is mapped either into G1 or 

into G2. Conversely, if we have an expansion (p, of some collection of 

W-components of H into G, and an expansion q2 of some collection of 

W-components of H into G2, we may ask whether these expansions can be 

merged into an expansion Q, of the union of both collections of W-components. It 

turns out that for this decision we need not know the whole expansions q1 and 

q2, but only some bounded size information how these behave on W. 
Of course, there are many ways how to choose this information; we have 

attempted to select one which is easy to describe. For every pair (Gj, Z,) 

occurring in the computation of the basic algorithm (of Section 3) we will 

compute a suitable description of all possible partial embeddings Q, of H into G, 

‘relative to’ Zj: this information describes the behavior of the embedding on 2, 

exactly, and specifies which components of H\q-‘(2,) are embedded into G, 

(and also the components of Gj\Zj they are embedded into). This is essentially 

how the algorithm works for induced subgraph embeddings; for the minor case 

we must add the description how the vertices of I-’ are ‘blown up’. Here 

again we cannot afford to describe the whole subgraph of Gj corresponding to 

such a vertex exactly (we would get too many possibilities), but we give only the 



354 J. Matouiek, R. Thomas 

vertices belonging to Zj and the way these are connected in Gj. To make all this 

precise, we must introduce several technical definitions. 

Definition 5.2. Let H be a graph and W E V(H). A full W-subgraph of H is an 

induced subgraph K of H such that W E V(K) and for every U, Y E V(H) \ W, if 

U, v belong to the same component of H\ W and u E V(K), then u E V(K). 
A W-subgraph of H is any subgraph of H which can be obtained from a full 

W-subgraph of H by (possibly) deleting some edges of H with both endpoints 

in W. 

Since there are at most A(H) . 1 W 1 components of H \ W, there are at most 

2AVOIWI 

full W-subgraphs of H and thus at most 

2A(HM’I . 2”y’) 

W-subgraphs of H. 

Definition 5.3. Let H, G be graphs. A mapping Q, : V(H)-+ 2”(o) is called an 

abstract expansion of H into G if 

(El) q(v) n q(v’) = 0 for distinct U, u’ E V(H), and 

(E2) for any u, u E V(H), u, ‘u are adjacent in H if and only if q(u), q)(v) are 

adjacent in G. 

We denote by q(H) the graph induced by lJveVCH) q(v) in G. An abstract 

expansion q is said to be surjective if q(H) = G. 

Definition 5.4. Let H, G be graphs, W G V(H), Z E V(G) and let 111: W-, 
2z\ {O} be a mapping. We say that an abstract expansion (p of H into G is a 

(minor) extension of r@ if: 

(Ml) q(u) n Z = 111(v) f or u E W, v,(v) fl Z = 0 for v E V(H)\W, 
(M2) G 1 Q)(U) is connected for u E V(H)\W, 
(M3) each component of G ) q(v) intersects v(v) for u E W. 

We say that Q, is a (minor) expansion if Q, is an extension of the empty map. 

Observation 5.5. Let H, G be graphs. There exists an expansion of H into G if 
and only if H c,,,; G. 

We reformulate Problem 5.1 for the induced minor relation as follows. 

Problem 5.6. Instance: Graphs H, G, where H is connected and A(H) c A, and 

a standard tree-decomposition (T, X) of G of width Sk. 
Question: Does there exist an expansion of H into G? 



On the complexity of findng morphisms for partial k-trees 355 

Definition 5.7. Let G be a graph and let 2, V c V(G). A Z-model of V in G is 

an equivalence relation on Z II V: two vertices are equivalent iff they belong to 

the same component of G 1 V. 

Definition 5.8. Let H, G be graphs and Z E V(G). A partial expansion of H into 
G relative to Z is a quadruple (W, q, K, M) such that W E V(H), q : W+ 
2z\{0} satisfies (El), K is a W-subgraph of H and M = (M(v) 1 v E W), where 

each M(v) is an equivalence relation on r/~(v) (such that each components of 

G 1 I/I(V) is in a single class). 

Let us bound the number of all partial expansions of H into G relative to Z: 

There are at most IV(H)l’“’ ways to choose W, then (by Definition (5.2)) at most 

2AVO.lZl . $f’) 

W-subgraphs of H. The choice of ly can be viewed as coloring of Z by I W I + 1 

colors (thus at most (IZl + l)lz’ ways), and finally the choices of the equivalences 

M(v) can be viewed as choosing a single equivalence relation on Z, thus at most 

(ZJ’Z’ ways. The essential point for us is that if the size of Z is bounded by a 

constant k, then there are at most O((V(H)lk) partial expansions of H into G 

relative to Z. 

A partial expansion 8 = (W, ?j~,, K, (M(v) ( v E W)) is called feasible if there 

exists an expansion p7 of K into G, called a feasible extension of E’, which is an 

extension of I/J such that, for IJ E W, 

M(v) is a q(v)-model of q(v) in q(K). (*) 

Conversely, given Z E V(G) and an expansion rp of K into G we can produce a 

partial expansion 8 = (W, I+!J, K, (M(v) I v E W)), called the saturation of 47 at Z, 

by the rules 

W={w~V(H)lq(w)nZ+0}, 

T/J(W) = p(w) fl Z for w E W, 

and M(v) is defined by (*). By definition, the saturation of Q, at Z is always 

feasible, namely Q, is its feasible extension. 

Definition 5.9. The set of all feasible partial expansions of H into G relative to Z 

will be denoted by P,(G, Z). Then PH is a transition function in the sense of 

(3.1). To apply the basic algorithm we must show that it is feasible. To this end, 

we need two technical lemmas. The first one gives the conditions allowing us to 

recognize, given a potential member of Z’,(G, Z), whether it is feasible, using the 

knowledge of P,(G, Z’) (where Z c Z’). 

Lemma 5.10. Let ‘8 = (W, q, K, (M(v) I v E W)) be a partial expansion of H into 
G relative to Z and let Z s Z’. Then 8 is feasible if and only if there exists a 



356 J. MatouZek, R. Thomas 

feasible partial expansion (W’, $J’, K’, (M’(v) 1 v E W)) of H into G relative to Z’ 

such that: 
(a) W={wEW’)~‘(w)flZ#0}, 

(b) q(v) = q’(w) fl Z for w E W, 

(c) K = K’, 

(d) each class of M’(v) intersects q(v) (v E W), 

(e) M(v) is equal to M’(v) restricted on v(v), (v E W), 

(f) M’(v) has a single class for v E W’\ W. 

Proof. ( + ) Let Q, be a feasible extension of 8, let K’ = K and let 8’ = 

(W’, V’, K’, (M’(v) I v E W)) be the saturation of Q, at Z’. Then 8’ is a partial 

expansion and Q, is its feasible extension. We must verify (a)-(f). 

To prove (a) and (b) we have by (Ml) 

tj~‘(~)fIZ=q(w)nZ=~(v) forwEW, 

qf(W)nz=q(W)nz=0 for w E W’\W. 

Conditions (c), (e) are clear. The violation of (d) would mean that q(v) has a 

component not intersecting Z, contradicting (M3), and similarly for (f). 

(+) Let 8’ = (W’, I#‘, K’, (M’(v) I v E W’)) be a feasible partial expansion of 

H into G relative to Z’ satisfying (a)-(f) and let cp be its feasible extension. We 

claim that ~1 is a feasible extension of 8. To this end, we must verify that M(v) 

satisfies (*) and that Q, satisfies (Ml)-(M3). 

Condition (*) follows from (e). To prove (Ml) we have for v E W’ 

V(V) n z = q,(v) n z’ n z = V’(V) n z, 

which gives the result by (a) and (b). Condition (M2) is clear for v E V(H)\W’ 

and for W’\ W follows from (f), condition (M3) follows from (d). Cl 

The next lemma lists the conditions for the merging step of the basic algorithm. 

Lemma 5.11. Let 8= (W, q, K, (M(v) 1 v E W)) be a partial expansion of H into 
G relative to Z and let (G,, G2) be a Z-separation of G. Then 8 is feasible if and 

only if there are feasible partial expansions 

gi = (Wp vi, Ki, (Mi(v) I V E K)) 

of H into G, relative to Z fl V(G,) (i = 1, 2) such that: 
(a) K = {W E W 1 ~/J(V) fl V(Gi) #0}. 

(b) +i(w) = q(w) n V(Gt), 
(c) (K,, K2) is a partial W-separation of K such that W = V(K,) fl W and 

E(K) = E(K,) U E(K,) U {{ u, v} E (y’, q(u) and q(v) are adjacent in G I Z}, 

(d) M(v) is the equivalence hull of the relation consisting of the following pairs 

of vertices: those related by M,(v), those related by M,(v) and the pairs (u, u’), u, 

u’ E I/I(V), such that (u, u’) is an edge of G I Z. 



On the complexity of jindng morphisms for partial k-trees 357 

The proof of this lemma (similarly as for the previous one) is mainly an 

untangling of definitions and we leave it to the reader. 

We now turn to the algorithmic use of the previous lemmas. 

Algorithm 5.12 

Input: Grpahs H, G, where H is connected and A(H) s A, and a standard 

tree-decomposition (T, X) of G of width sk. 

Output: P,(G, O), 
Description: We check if IV(H)1 > IV(G)1 and if yes, we return 0. Otherwise 

we proceed as follows. First we preprocess the graph H: for each W E V(H), 
I WI s k + 1 we compute the components of H \ W, represent each component 

e.g., by its first vertex (in some ordering of V(H)) and prepare a table specifying 

how the components are inherited when W is replaced by some W’ L W. This can 

be done in time O(IV(H)lk’2) = O(lV(H)Jk+‘. IV(G)I). Then we can treat the 

W-subgraphs of H as objects with bounded size representation (a list of 

components of H \ W) and perform all necessary operations on them in constant 

time. 

A set P,(G, Z) will be represented by an array indexed by all possible partial 

expansions of H into G relative to Z with Boolean entries specifying the 

feasibility. Then PH obviously satisfies Definition 3.2(a). 

Lemma 5.10 shows that for Z E Z’, P,(G, Z) can be obtained from P,(G, Z’) 

in time O(lV(H)lk+‘) since for each member of P,(G, Z’) we can test in constant 

time if it gives rise to some member of P&G, Z). Hence PH satisfies Definition 

3.2(b) with TR = O(lV(H)I”“). 
Given a Z-separation (G, , G2) of G and a partial expansion 8 of H into G 

relative to Z there is only a bounded number of possibilities how 8 can be 

partitioned into partial expansions of H into G, relative to Z fl V(G,) and into G2 

relative to Z O V(G,); to having PH(G1, Z fl V(G,)) and P,(G,, Z II V(G,)) we 
can test using Lemma 5.11 in constant time whether 8 E P,(G, Z). Hence PH 
satisfies Definition 3.2(c) with TM = O(lV(H)I”“). 

Since pH satisfies Definition 3.2(a)-(e), we can use Algorithm 3.3. 

Theorem 5.13. The worst-case running time of the above algorithm is 

WW41k+’ . IV(W. 

Proof. This follows immediately from the above description and Theorem 

3.4. 0 

The above algorithm solves the induced minor case and (via Lemma 1.4) the 

minor case. It is easy to simplify this for the (induced) subgraph case (basically by 

requiring Iv(v)1 = 1 for every u E V in the definition of expansion). The case of 

homeomorphic embedding is slightly different. Either we can handle it in the 

spirit of the minor case, adding more conditions to the definition of expansions 



358 J. Matouiek, R. Thomas 

and adding more information to Z-models, or (more naturally) we can treat the 

homeomorphic embedding as blowing up the edges of H into paths in G, and 

developing a similar machinery for this kind of expansions as we did for the minor 

ones. This treatment contains no significantly new ideas, and we omit it. Also, all 

the above work can also be carried out for surjective expansions. We summarize 

the results in the following. 

Theorem 5.14. For fixed A, k there is an O((V(H)lk+’ - IV(G)l) algorithm to 
solve the (A, k)-restricted s-decision problem for s E {si, sib, sim, S, sh, E,,, 

sh, %,, >. 0 

6. Embeddings 

This section gives a polynomial algorithm for the S-decision problem for the 

induced subgraph case, when G is a partial k-tree and H is k-connected. In the 

sequel we shall deal with induced subgraph embeddings only, so it is not 

necessary to use the machinery of expansions. 

Definition 6.1. A mapping Q,: V(H)+ V(G) . 1s called an embedding of H into G 
if it induces an isomorphism between H and G I q(H). Thus there exists an 

embedding of H into G iff H Ci G. 

Problem 6.2. (k-connected ci-problem). 
Instance: A k-connected graph H, graph G and a standard tree-decomposition 

(T, X) of G of width Sk. 
Question: is H pi G? 

We shall describe a polynomially bounded algorithm to solve this problem. We 

shall use the basic algorithm, this time verifying Definition 3.2(a)-(e) only for 

those pairs (r, Z) for which P(I’, Z) is actually computed during execution of the 

basic algorithm. 

Definition 6.3. Let G be a graph. By V(G) we denote the set of pairs (r, Z) such 

that the value of the transition function is evaluated at (r, Z) during some 

execution of the basic algorithm on the graph G. We have included the word 

‘some’ because there might be several ways of execution depending on the choice 

of a tree-decomposition (T, X) of G and of a leaf of T. (We could also fix a 

particular tree-decomposition (T, X) and a leaf of T.) 

Lemma 6.4. Let (r, Z) E ‘Y(G) and let r’ be the graph obtained from r by joining 
all pairs of vertices from Z by an edge. Then r is a full Z-subgraph of G and the 
tree-width of r’ ti SW. 



On the complexity of jindng morphbrns for partial k-trees 359 

Proof. The first assertion follows from Definition 2.1(c). For the second, let 

(T, X) = (T, X, I t E V(T))) b e a tree-decomposition of G of width ok such that 

(F, 2) appears when executing ‘according to (T, X)‘. Then 2 c X, for some 

t E V(T) and it follows that (57, (Xr n V(P) 1 t E V(T))) is a tree-decomposition of 

F’ of width <k. Cl 

The following is a basic observation which makes the algorithm work for a 

w-connected graph H. 

Lemma 6.5. Let H be a k-connected graph and let G be a graph of tree-width Sk. 
Let (r, Z) E ‘Y(G), W c V(H) and let Q, be an embedding of some full 
W-subgraph K of H into Tsuch that W = q-‘(Z). Then each component of T\Z 
contains at most one component of q(K) \Z. 

Proof. Let a component C of T\Z contain components C, and C2 of r.p(K)\Z. 
Let Z’ s Z be the set of vertices which are joined to C by an edge. It follows from 

the k-connectivity of H that (Z’I 3 k (hence IZ’I = k) and that both C, and C2 are 

joined to every vertex of Z’. There is a path P between C, and C2 in C (since C is 

connected). Now let r’ be as in Lemma 6.4; contracting C1 to a vertex c, , Cz to a 

vertex c2 and the path P to an edge with endpoints cl, c2 we find that r’ can be 

contracted to Kk+2- contrary to Lemma 6.4, and Proposition 2.3(iii)-(iv). 0 

Before applying the basic algorithm we need a definition and two lemmas, 

Definition 6.6. Let H, G be graphs and (r, Z) E Y”(G). A component injective 

embedding (CIE) scheme for H, r relative to Z is a triple (W, I&, B), where 

W c V(H), q is an embedding of H ( W into r 1 Z and B is a bipartite graph 

defined as follows: 

(i) the vertices of the first (second) partite are components of H\ W (T\Z, 

req.), 
(ii) an edge {C, K} E E(B) iff there is an embedding Q?=,~ of H ) (W U V(C)) 

into r 1 (Z U V(K)) which extends q. 

A CIE scheme is fully determined by the choice of W and q, and hence there 

are 

O(lV(H)I’2’ . lZl’z’) 

CIE schemes for H, P relative to Z. 

NOW for (I’, Z) E “Y-(G) we define P,(r, Z) to be the set of all CIE schemes of 

H, rrelative to Z and we wish to apply the basic algorithm. 

Observation 6.7. H ci G if and only if (0,0, B) . 1s a CIE scheme for H, G relative 
to 0 with E(B) # 0. 



360 J. MatollSek, R. Thomas 

Lemma 6.8. Let (T, Z), (I’, Z’) E Y’(G), let Z E Z’ and let (W, q9, B) be a CZE 
scheme for H, T relative to Z. Then {C, K} E E(B) ifs there exists a CZE scheme 
(W’, $r’, B’) for H, Trelative to Z’ with W E W’ and 11, = I&’ 1 Wand there exists 
a matching of size n in B’ n ({C,, . . . , C,} x {K,, . . . , K,}), where C1, . . . , C,, 
are all the components of H\ W’ meeting C and K1, . . . , K, are all the 
components of T\Z’ meeting K. 

Proof. We observe that a component of H\W’(T\Z’) is either contained in or 

disjoint from a component of H\ W (T\Z, resp.). 

(+) Suppose that {C, K} E E(B) and let cp = Q),-~ be the corresponding 

embedding. Let W’ = q.-‘(Z’) and 111’ = Q, 1 W’, now W’ and q’ determine the 

CIE scheme (W’, I/J’, B’) for 

{C,, . . . , C,} of components 

components of T\Z’ and this 

{K,, . . . , Kn)). 

(+) Having (W’, 3’, B’) 1 

, . . . 2 n} c E(B’) we define 

Q)C,K = lgl Q’c,, Km 

H, rrelative to Z’. By Lemma 6.5 v maps the set 

of H\ W’ injectively into the set {K,, . . . , K,} of 

gives the desired matching in B’ n {Cl, . . . , C,} X 

as in the Lemma and matching {{C;, Kpcij} ( i = 

where vC,, K,,(,) is the embedding corresponding to {C,, K,,,,}. Then qc,K is an 

embedding of H 1 (W U V(C)) into r 1 (Z U V(K)) witnessing {C, K} E E(B). 0 

Lemma 6.9. Let (I’, Z) E Y(G), and let (G, T,) be a Z-separation of P. Then 
(W, q, B) is a CZE scheme for H, P relative to Z if and only if II, is an embedding 
of H ) W into T I Z and there are CZE schemes (W, qi, Bj) for H, Ti relative to 
Zj = Z rl V(c), where Wj = q-‘(ZJ, I/J, = 3 I M( (i = 1,2) and B = B, U B,. 

Proof. Straightforward. 0 

Definition 6.10. Let b’ be such that the maximum matching in a bipartite graph 

on n vertices can be found in time O(n”‘). By [5], b’ s 2. We put b = max(b’, 2). 

Algorithm 6.11. 
Input: Graphs H, G such that H is w-connected and a standard tree- 

decomposition (T, X) of G of width Sk. 
Output: P,(G, 0) 

Description: Similarly as in Algorithm 5.12, we assume a suitable preprocessing 

of components of H \ W and a suitable bookkeeping of components of the already 

processed parts of G. 



On the complexity of findng morphisms for partial k-trees 361 

Again, we would like to apply the basic algorithm for PH. Condition Definition 

3.2(a) is obviously satisfied with ‘I;, = O((V(H)lk+‘), for Definition 3.2(b) it is 

sufficient to solve O(IV(H)lkt’) bipartite matching problems with ~2lV(G)l 

vertices each. Thus TR = O(lV(H)I”” . IV(G)l”‘). Finally, for Definition 3.2(c) 

we can, given Wand t/~, compute B from the knowledge of PH(&, 2 f~ V(G)) and 

PH(&, Z fI V(G)) in time O(JE(B)I + IV(B)I) = O(lV(H)I . IV(G)l), and hence 

TM = O(lV(H)lk+’ . IV(G)(*). 

So we may apply the basic algorithm. 

Theorem 6.12. The worst-case running time of the above algorithm is 

O(jV(H)j”+‘. jV(G)l’+*). 

Proof. Immediate from the description and Theorem 3.4. 0 

Theorem 6.13. For fixed k, there is an O(lV(H)lk+’ . IV(G)lb”) algorithm to 

solve 6.2. 

Proof. Immediate from Observation 6.7, Algorithm 6.11 and Theorem 6.12). Cl 

Remarks 6.14. (i) The above algorithm can be easily adapted to the c relation. 

(ii) A similar algorithm can be used for deciding an isomorphism of graphs of 

bounded tree-width (but the bipartite graphs in the corresponding embedding 

schemes have a very special form-they are disjoint unions of complete bipartite 

graphs, and so the procedure is faster). We get complexity 

O(lV(H)lk” * IV(G)l”) in this case. 

(iii) By a minor modification we can obtain polynomial algorithms for the c,- 

and c ,-decision problems where H is 2-connected and G has tree-width ~2 and 

for the s,,-decision problem when G has bounded tree-width (and no restriction 

on H). 

We shall not give the proofs here because they are straightforward modifica- 

tions of the presented one. 

The condition that the connectivity of H is k was basically needed to guarantee 

the statement of Lemma 6.5. If we insist on [(k + 1)/2]-connectivity of H only, 

then sometimes more components of q(K)\Z (in the situation of Lemma 6.5) 

can be embedded into a single component of T\Z, but all such components but 

one must have a bounded size, which gives some hope for a polynomial 

algorithm. 

Open Problem 6.15. What is the complexity of the G, E; and c,-decision 

problems under the following restriction: 

H is [(k + 1)/2]- connected and G has tree-width Sk. 



362 J. Matotiek. R. Thomas 

7. The disjoint connecting paths problem 

Problem 7.1. Instance: Graph G, a standard tree-decomposition (T, X) of G of 

tree-width Sk and n-tuples (sr, . . . 2 &), (6, . . . , t,,) of distinct vertices of G. 

Question: Do there exist disjoint paths P,, . . . , P,, in G such that Pi connects si 

and ti? 

We shall solve an apparently more general problem, which is easier to handle. 

Definition 7.2. A terminated graph is a triple (G, V, E), where G and (V, E) are 

graphs and V c V(G). We say that (G, V, E) is feasible if there are paths (Pe)ecE 
in G such that e = {v,, u2} E E, V(Pe) fl V = {v,, vz} and ul, v2 are endpoints of 

P,, and for e #e’ E E, P, and PCS are vertex-disjoint unless 0 fe tl e’, say 

{v} =efle’, in which case {v} = V(Pe) fl V(Pe.). The system of paths (Pe)eeE is 

called a path-representation of (V, E) in G and (V, E) is said to be represented by 

(Pe)eeE- 
Let (G, V, E) be a terminated graph and 2 c V(G). A transition scheme of 

(G, V, E) relative to Z is a set 

such that: 

(a) F n ( y) G 6 

(b) degcVUz,&u) = degC,&u) for u E V, 
(c) degCvuz.F,(v) s 2 for v E Z\ V. 
A transition scheme F is called feasible if (V U Z, F) has a path-representation 

in G such that every edge of F with both endpoints in Z is represented by a path 

vertex disjoint from Z except for its endpoints. 

The point of transition schemes is that there are at most a polynomial number 

(namely at most 

(3 . [El + l)‘=l . ‘9)) 

transition schemes of (G, V, E) relative to Z. 

Note that E is a transition scheme of (G, V, E) relative to 0, and that E is a 

feasible transition scheme if and only if the terminated graph (G, V, E) is 

feasible. 

Problem 7.3. Instance: Terminated graph 

decomposition (T, X) of G of width Sk. 
Question: Is (G, V, E) feasible? 

(G, V, E) and a standard tree- 



On the complexity of findng morphisms for partial k-trees 363 

Lemma 7.4. Let F be a transition scheme of (G, V, E) relative to Z and let 
Z E Z’. Then F is feasible if and only if there exists a feasible transition scheme F’ 
of (G, V, E) relative to Z’ such that the graph (V U Z, F) is obtained from 
(V U Z’, F’) by contracting edges not belonging to (“i “). 

Proof. (*) Let (pfjfEF be a path-representation of (V U Z, F) in G and consider 

the graph G’ on vertex set V(G) whose edges are precisely all1 edges from Pr 
(f E F). Contracting all edges not belonging to (” “2”‘) and removing vertices 

other than those in V U Z’ we get a graph (VU Z’, F’). Clearly F’ satisfies 

Definition 7.2(a)-(c) and (V U Z’, F’) is represented by a certain system of 

subpaths of (Pf)rer. Hence F’ is feasible and a contraction of (V U Z’, F’) yields 

(V U Z, F). 

(* ) Let (P;)feF, be a path-representation of (V U Z’, F’), let f = {v,, 2r2} E F 
be obtained by contracting a set fi c F’. Clearly there are edges f,, , . . , fn E F, 
forming a path from 2rl to v2, let fi, . . . , fn be the order in which they appear on 

this path. Then 

P;, u . . . u P;n 

is a path realizing f. Thus F is feasible. 0 

The straightforward proof of the following lemma is left to the reader. 

Lemma 7.5. Let F be a transition scheme of (G, V, E) relative to Z and let 
(G,, G,) be a Z-separation of G. Then F is feasible if and only if there exist sets F, , 

F2 such that 

&G 
V(Gi) ( 1 2 ’ 

F = FI U F2 U E(G 1 Z), and F is a feasible transition scheme of 

Gi, V n V(Gi), En 
V fl V(Gi) 

2 

relative to Z n V(G,). 

Theorem 7.6. There is an O(lEl”” . I V(G)I) algorithm to solve Problem 7.3. 

Proof. Let P(,,,(G, Z) be the set of all feasible transition schemes of (G, V, E) 
relative to Z. Then Definition 3.2(a) is clearly satisfied with To = O(1) and by 

Lemmas 7.4 and 7.5, (b) and (c) in Definition on 3.2 are satisfied with TR = 

O(IE(‘+‘), TM = O(ll$‘+‘). (Th ere are O(lElk+‘) transition schemes to be tested 

and each can be done in constant time.) The result follows by Algorithm 3.3 and 

Theorem 3.4, since PCV,Ej(G, 0) = {E} if and only if (G, V, E) is feasible. 0 

Corollary 7.7. Problem 7.1 can be solved in time O(nk+’ I V(G)I). 



364 J. Matouiek, R. Thomas 

Added in proof. Recently B. Reed found an algorithm which, for every fixed k, 

finds a tree-decomposition of width k of a given n-vertex graph, provided that 

one exists, in O(n log n) time [announced at AMS Summer Research Conference 

on Graph Minors, Seattle, WA, June 19911. 

References 

[l] S. Amborg, D.G. Corneil and A. Proskurowski, Complexity of finding embeddings in a k-tree, 

SIAM J. Algebraic Discrete Methods 8 (1987) 277-287. 

[2] S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems on graphs 

embedded in k-trees, Discrete Appl. Math. 23 (1989) 1 l-24. 

[3] H.L. Bodlaender, Polynomial algorithm for graph is isomorphism and chromatic index on partial 

k-trees, Technical Report, University of Utrecht, Utrecht, 1988. 

[4] M.R. Carey and D.S. Johnson, Computers and Intractability (Freeman, San Francisco, CA, 

1979). 

[S] J.E. Hopcroft and R.E. Karp, An O(n”“) algorithm for maximum matching in bipartite graphs, 

SIAM J. Comput. 2 (1973) 225-231. 

[6] M. Karp, On the complexity of combinatorial problems, Networks 5 (1975) 45-68. 

(71 E. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time, in: Proc. 

21st IEEE Symp. on Foundations of Computer Science (1980) 42-49. 

(81 J. MatouSek and R. Thomas, Algorithms finding tree-decomposition of graphs, J. Algorithms 12 

(1991) l-22. 

[9] N. Robertson and P.D. Seymour, Graph minors II. Algorithmic aspects of tree-width, J. 

Algorithms 7 (1986) 309-322. 

[lo] N. Robertson and P.D. Seymour, Graph minors XIII. The disjoint paths problem, Manuscript. 


