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EDITORIAL COMMENT

New Insights Into
Ventricular Interactions During
Cardiac Resynchronization*
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Raphael P. Martins, MDyzx
Rennes, France

Cardiac resynchronization therapy (CRT) improves hemo-
dynamics in patients with drug-resistant heart failure, and
its efficacy has been clearly demonstrated in large-scale
studies in which our group was directly involved (1–3).
The initial rationale leading to the development of CRT was
the correction of dyssynchrony often present in patients with
systolic heart failure. The criterion currently recommended
to assess dyssynchrony and select patients eligible for CRT
is the electrical dyssynchrony by QRS width, reflecting the
ventricular conduction time and QRS morphology (4). But
the selection of CRT candidates on this sole criterion is not
optimal, given the high rate of nonresponders, consistently
approximating 30% in most of the studies. Therefore, criteria
assessing mechanical dyssynchrony by echocardiography
were initially thought to improve patients’ selection, but
failed to demonstrate their usefulness in large prospective
clinical trials (5).
See page 2395
Electrical and mechanical activations are closely related.
However, patients with wide QRS may exhibit synchronous
left ventricular (LV) activation, and those with narrow
QRS may have dyssynchrony. The causes underlying such
discrepancies are still unknown, and more specific echocar-
diographic parameters or imaging modalities evaluating
dyssynchrony are desperately needed. Many efforts have
been made in this field, and the determination of repro-
ducible echocardiographic parameters to approach the results
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obtained with the electrocardiogram is currently
not achieved. In a recently published study, Ploux et al.
(6) demonstrated that the 12-lead electrocardiogram was
only a general overview of ventricular electrical activation
abnormalities, and they used noninvasive electrical mapping
to evaluate right ventricular (RV) and LV total activation
times and ventricular electrical uncoupling. They demon-
strated that, whether patients had left bundle branch block
or intraventricular conduction delay, ventricular electrical
uncoupling predicted clinical CRT response better than
the usual QRS duration criterion with excellent sensitivity
and specificity (6).

The “missing link” explaining electrical and mechanical
discrepancies is unknown. In this issue of the Journal,
Lumens et al. (7) bring a potential explanation based
on ventricular interactions and particularly on the contri-
bution of the RV on LV function. The authors compared
animal, clinical, and computational data to analyze the
hemodynamic and electromechanical consequences of
left ventricular pacing (LVP) and biventricular pacing
(BiVP). Hemodynamic response (LV maximal rate of
pressure rise [dP/dtmax] changes) and electrical activation
(using contact mapping in dogs and a novel noninvasive
multielectrode electrocardiographic mapping technique
in patients) in response to LVP and BiVP were studied. A
similar acute hemodynamic response for LVP and BiVP
was found, although only BiVP significantly decreased
electrical dyssynchrony. The simulations evidenced that
the RV, through ventricular interaction, substantially
contributed to the improvement in LV function induced
by CRT, especially during LVP. These novel and inter-
esting findings highlight the importance of RV–LV
interactions on the electromechanical correlations in-
duced by CRT.

The RV and LV myocardial functions are closely linked.
Anatomically, the RV shares oblique fibers in the inter-
ventricular septum with the LV. This RV–LV relation
through the interventricular septum was demonstrated
in ST-segment elevation myocardial infarction patients
with septal infarction, in which a decreased RV reserve
was demonstrated compared with ST-segment elevation
myocardial infarction patients without septal involvement
(8). Therefore, a systolic ventricular interaction exists
between both chambers such that LV contraction increases
RV contraction. An increase in RV afterload will result in
increased RV performance through the recruitment of
these specific oblique fibers. Conversely, if LV afterload
increases and LV dysfunction occurs, RV function will
be impaired in parallel to reduced systolic ventricular
interaction. Anatomically, such RV dysfunction results in a
reduction in the oblique nature of RV septal fibers,
impairing further RV function; this is a vicious cycle
leading to clinical impairment. Similarly, a diastolic
ventricular interaction exists such that RV diastolic
impairment increases RV diastolic pressure and decreases
LV diastolic filling through pericardial constrain (9).
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Both RV systolic and diastolic dysfunctions frequently
coexist with LV dysfunction, highlighting the importance of
RV function in patients with heart failure. The involvement
of RV function in CRT response is not new and has been
studied previously. In a swine model of biventricular pacing,
Quinn et al. (10) demonstrated that CRT optimization
improved cardiac output by increasing RV contractility. This
effect was hypothesized to be a consequence of the trans-
mission of LV pressure across the interventricular septum, as
a consequence of systolic ventricular interaction. One would
think that RV function would, therefore, be a good reflection
of CRT efficacy. However, this assumption was contested in
a small hemodynamic study analyzing the RV dP/dtmax in
response to different VV intervals (11). The RV dP/dtmax

failed to identify the optimal VV interval when compared
with LV dP/dtmax, and the authors concluded that this
criterion was not useful for VV optimization in CRT patients.
Lumens et al. (7) used a mixed electrical and mechanical
approach to evaluate systolic ventricular interactions. The
simulations performed demonstrated that the improvement
of myocardial work was similar in both conditions, although
their local distribution was different: in LV pacing, LV work
was not increased, but RV work increased significantly;
conversely, BiVP resulted in increased work in both ventricles
through interventricular dependencies. The correction of
mechanical asynchrony and the recruitment of RVmyocardial
fibers induced by LV stimulation can explain the positive
hemodynamic results despite the absence of correction of
electrical dyssynchrony in LV pacing (12).

This study raises further questions about systolic ven-
tricular interactions. The mechanistic insight provided
by Lumens et al. (7) potentially explains the electrome-
chanical gap currently observed between electrical and
mechanical dyssynchrony and highlights the role of the RV
myocardium during CRT. Should RV function in response
to CRT be assessed routinely, specifically in nonresponders?
Can these simulations be reproduced in humans? And more
importantly, could this increased amount of RV myocardial
work as a result of LV pacing be responsible in the long-
term for a progressive RV dysfunction? These questions
will require further study to better characterize RV–LV
interactions in response to CRT.
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