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1. INTRODUCTION

In this paper we consider the Cauchy problem for the recently derived
shallow water equation (see [3])

{ut&utxx+3uux=2uxuxx+uuxxx ,
u(0, x)=u0(x),

t>0, x # R,
x # R,

where u describes the free surface of the water above a flat bottom. Unlike
the Korteweg-de Vries equation (which is an approximation to the equa-
tions of motion, cf. [17]), this model is obtained by approximating directly
in the Hamiltonian for Euler's equations in the shallow water regime, cf. [4].

With m=u&uxx , the equation can be written as

{mt=&2mux&mxu,
m(0)=,,

t>0, x # R,
x # R,

(1)

and this is the form of the equation with which we are going to work.
For more than 15 years, Eq. (1) was known, being derived by

Fuchssteiner and Fokas, cf. [8, 9], as a bi-Hamiltonian generalization of
the Korteweg-de Vries equation. Actually, in the Fuchssteiner-Fokas
derivation there is a computational error: going through it again, one
comes up with the exact form of (1), see [10]. As noted in [15], the
novelty of Camassa and Holm's work was that they gave a physical deriva-
tion of Eq. (1) and found that the solitary waves interact like solitons. The
existence of solitons and various other types of special solutions to Eq. (1)
is studied extensively (see [1, 2, 7]). For related problems we also refer to
[11, 14] and the citations therein.

We are interested in the periodic problem for (1), that is, we look for
solutions of (1) which are spatially of period 1. We will prove a local
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existence theorem for (1) in the Sobolev space H 2 of functions with period
1, denoted H 2

p , using Kato's method for abstract quasi-linear equations
[12, 13].

To obtain global results from the local ones is in general a matter of a
priori estimates. Although (1) is known to have an abundance of conserva-
tion laws, cf. [3, 4], we will see that the nature of the conservation laws
helps us only partially in the search for a priori estimates. There are two
main problems that we encounter: one is that we do not even control by
conservation laws the H 2

p-norm of u as time varies and the other problem
is of a technical nature: in the computation of (d�dt) &m&2

H2
p

we need that
m is smoother than H2 for fixed t>0.

If the initial data , # H 2
p does not change sign (,�0 or ,�0), we over-

come both difficulties and we prove that (1) is globally well-posed in H 2
p .

We also show that for a large class of initial data , # H 2
p taking both

strictly positive and strictly negative values, the solution of (1) blows-up in
finite time.

2. THE LOCAL PROBLEM IN H 2
P

In this section we will prove that the Cauchy problem for (1) is locally
well-posed in the space H 2

p . To obtain the local existence and uniqueness
result we apply Kato's method [12, 13], for the Cauchy problem for
abstract quasi-linear equations of evolution. For convenience we state the
relevant theorem in the simplest form sufficient for the present purposes.

Consider the Cauchy problem for the quasi-linear equation of evolution

{
dv
dt

+A(v)v= f (v), t>0,
(2)

v(0)=,.

Let X, Y be reflexive Banach spaces with Y continuously and densely
imbedded in X. Let S be an isomorphism (bi-continuous linear map) of Y
onto X. Assume that the function A, defined on Y, satisfies the following
conditions:

(i) A( y) is a linear operator in X; it is quasi-m-accretive, uniformly
for &y&Y bounded. In other words, for every M>0 there is a real number
; such that for every y # Y with &y&Y�M, [&A( y)] generates a C0-semi-
group [e&tA( y)]t�0 with

&e&tA( y)&X � X�e;t, t�0;
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(ii) A( y) is a bounded linear operator from Y to X for every y # Y
and

&(A( y)&A(z))w&X�+A &y&z&X &w&Y , y, z, w # Y,

for some constant +A depending only on max[&y&Y , &z&Y];

(iii) for any M>0, the inequality

&(SA( y)&A( y)S)S&1w&X�+1(M) &w&X , y # Y, &y&Y�M

holds for all w # Y (here +1(M)>0 is a constant);

(iv) for each M>0, f is a bounded function from [ y # Y : &y&Y�M]
to Y. Also, we have

& f ( y)& f (z)&X�+2 &y&z&X , y, z # Y,

and

& f ( y)& f (z)&Y�+3 &y&z&Y , y, z # Y,

for some constants +2 and +3 depending only on max[&y&x , &z&x] and
max[&y&Y , &z&Y], respectively.

Theorem 1 [12]. Assume conditions (i), (ii), (iii) and (iv). For any
, # Y there is a T>0, depending only on &,&Y , and a unique solution v to
(2) such that

v # C([0, T]; Y) & C1([0, T]; X ).

Moreover, v(t) depends continuously on ,=v(0) in the Y-norm.

Remark. By the fact that T depends only on &,&Y it is understood that
for any M>0 there is a T(M)>0 for all , # Y with &,&Y�M. The
appearance of a closed interval [0, T] in the statement of Theorem 1 is
unnatural since the solution v exists on a larger interval [0, T+=) but it is
convenient in the formulation of the continuous dependence (the solution
exists on the same interval when , is changed slightly).

Theorem 2. If , # H 2
p , there is a T>0, depending only on &,&H2

p
, such

that (1) has a unique solution

m # C([0, T]; H 2
p) & C1([0, T] ; L2[0, 1])

and m(t) depends continuously on , in the H 2
p-norm.
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Proof. To prove Theorem 2 we have to check that the hypotheses (i),
(ii), (iii) and (iv) above hold for the case of Eq. (1) with , # H 2

p . In order
to simplify notation, from now on all integrals are considered with respect
to the spatial variable.

Let X=L2[0, 1], Y=H 2
p . As an isometric isomorphism of Y onto X we

choose S=Id&D2, D=(D�dx) (we take the usual norm on L2[0, 1] and
let &y&2

Y=&Sy&2
X=&y&2

X+2 &yx&2
X+&yxx&2

X for y # Y ). We denote by
c>0 a generic constant.

Write (1) in the form

{
dm
dt

=&2m(S&1m)x&mx(S &1m),

m(0)=,.

We choose

A( y)=(S&1y)D, f ( y)=&2y(S &1y)x , y # Y.

To verify condition (i), fix M>0 and let y # Y, &y&Y�M. We have

S&1y # Y, (S&1y)xx=(S&1y)& y.

Observe that (S&1y)(0)=(S &1y)(1). Thus, there is an ! # (0, 1) with
(S&1y)x (!)=0. For x # [!, !+1] we therefore have

|(S&1y)x(x)| 2=2 |
x

!
(S&1y)xx (S &1y)x=2 |

x

!
((S &1y)(S &1y)x& y(S&1y)x)

�2 &S&1y&X &(S &1y)x&X+2 &y&X &(S&1y)x&X

by Schwarz's inequality. Since &y&X�&y&Y�M and

&S&1y&X+&(S &1y)x &X�2 &S &1y&Y=2 &y&X�2 &y&Y�2M,

we find

sup
x # [0, 1]

|(S &1y)x (x)| 2�12M2

thus (see [12], p. 38) A( y) is quasi-m-accretive with the corresponding ;
equal to - 3 M.
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It is easy to check that for any y # Y, A( y) is a bounded linear operator
from Y to X: if v # Y,

&A( y)v&2
X=|

1

0
v2

x(S&1y)2�&vx&2
L� &S&1y&2

X

�&vx&2
L�[0, 1] &S &1y&2

Y=&vx&2
L�[0, 1] &y&2

X�c &v&2
Y &y&2

Y

taking into account the Sobolev inequality corresponding to the inclusion
H 1

p /L�[0, 1].
To complete the checking of (ii), let y, z, w # Y. We have

&(A( y)&A(z))w&2
X=|

1

0
w2

x(S &1y&S&1z)2

�&wx&2
L�[0, 1] &S &1( y&z)&2

X�c &w&2
Y &y&z&2

X .

Let us now verify (iii). For v=S&1w with w # X, we compute

SA( y)v&A( y) Sv=&2vxx(S&1y)x&vx(S &1y)xx

and recall the formulas

(S&1w)xx=(S &1w)&w, (S &1y)xx=(S&1y)& y.

Therefore

&(SA( y)&A( y)S) S&1w&X=&2(S &1w)(S &1y)x&2w(S &1y)x

+(S&1w)x (S &1y)&(S&1w)xy&X

�2 &(S&1y)x&L�[0, 1] (&S&1w&X+&w&X)

+&(S&1w)x&X (&S &1y&L�[0, 1]+&y&L�[0, 1]).

In view of the relations (recall c stands for a generic constant)

&(S&1w)x&X�&S &1w&Y=&w&X , &S &1w&X�&S &1w&Y=&w&X ,

&(S&1y)x&L�[0, 1]+&S&1y&L�[0, 1]�c &S &1y&Y=c &y&x�c &y&Y ,

&y&L�[0, 1]�c &y&Y ,

we obtain

&(SA( y)&A( y)S) S &1w&X�6c &w&X &y&Y

and condition (iii) is satisfied.
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The same type of estimates as above can also be used to check condition
(iv). The proof is completed. K

3. SOME ESTIMATES

It is known (see [3, 4]) that (1) has an abundance of conservation laws,
among which

I1=|
1

0
u=|

1

0
m, I2=|

1

0
(u2+u2

x).

The next conservation laws (see [5]) are not useful for our purposes since
they do not give much more information about the H 2

p-norm of a solution
to (1) than the first two do. Actually, the blow-up result in the last section
shows that in general one can not expect to control the H 2

p -norm of u.
Therefore some restrictions on the initial data have to be placed in order
to get global solutions.

Let , # H 2
p with &,&2

H2
p
=M. As long as the solution m(t) # H 2

p exists, the
following estimates hold:

} |
1

0
u }= } |

1

0
m }= } |

1

0
, }�\|

1

0
,2+

1�2

�&,&H2
p
=- M,

|
1

0
(u2+u2

x)=|
1

0
(,2+,2

x)�&,&2
H2

p
=M.

Observe that

u2(x)&u2( y)=2 |
y

x
uux�|

1

0
(u2+u2

x)�M, x, y # [0, 1].

The inequality �1
0 u2��1

0 (u2+u2
x)�M implies

min
x # [0, 1]

u2(x)�M.

Combining this with the above estimates, we obtain

u2(x)�2M, x # [0, 1],

as long as the solution m(t) # H 2
p exists.

If we obtain a constant K>0 (depending on M) such that

&m(t)&2
H2

p
�&,&2

H2
p
eKt
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as long as the solution m(t) # H 2
p exists, we would have global existence of

the solution in the space H 2
p .

It is not hard to check that as long as the solution m(t) # H 2
p exists,

d
dt |

1

0
m2=&3 |

1

0
m2ux , (3)

and (recall m=u&uxx)

d
dt |

1

0
m2

x=&4 |
1

0
mmxu&6 |

1

0
m2

xux&2 |
1

0
mxmxx u. (4)

We have (formally)

d
dt |

1

0
m2

xx=&4 |
1

0
mmxxuxxx&10 |

1

0
mxmxxuxx

&8 |
1

0
m2

xxux&2 |
1

0
mxx mxxxu, (5)

but to justify this we need to know that m is smoother than H2 (m # H3

would be fine). Moreover, trying to get from (3), (4) and (5) that

d
dt

&m(t)&2
H2

p
�K &m(t)&2

H2
p

appears not at all obvious.
The rest of the paper is devoted to the proof that in the case when , does

not change sign these difficulties can be overcome.
A key point in our arguments is the fact that if we consider the spectral

problem

f "= 1
4 f +*mf, 0�x�1, (6)

(here t is a parameter and we look for those values of * for which this
equation has a nontrivial periodic or anti-periodic solution on [0,1]), then
the periodic and anti-periodic spectrum of (6)��with m(t) # H 2

p solution of
(1) and t as the time parameter��are integrals of motion of (1): they do not
depend on the parameter t, see [3].

If we consider (6) with some m # C(R) of period 1, m�0, we have the
following:

Lemma [6]. If m�0 (m�0), then the periodic and anti-periodic spec-
trum of (6) are formed by infinitely many strictly negative (respectively
strictly positive) numbers. If m takes both strictly positive and strictly
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negative values, we have infinitely many elements of the periodic and
anti-periodic spectrum of (6) on both sides of *=0 on the real axis.

As a consequence, observe that if ,�0 (or ,�0) on [0, 1], then, as
long as the solution m(t) # H 2

P to (1) with initial data m(0)=, exists, we
have m�0 (respectively m�0).

If , # H 2
p satisfies ,�0, let ! # (0, 1) be such that ux(!)=0 (we have

u(0)=u(1)). Since m(t)�0 as long as the solution exists in H 2
p , we have

|
x

!
m=&ux(x)+|

x

!
u�|

!+1

!
m=|

1

0
m, x # [!, !+1],

A simple application of the maximum principle shows that u�0 if m�0,
so that we get

&ux(x)�|
1

0
m�- M, x # [0, 1],

where &,&2
H2

p
=M. Using (3), we find

d
dt |

1

0
m2�3 - M |

1

0
m2, (7)

as long as the solution to (1) exists in H 2
p .

If , # H 2
p satisfies ,�0, let ! # (0, 1) be such that ux(!)=0. Then (we

have that m(t)�0 and u(t)�0 as long as the solution exists in H 2
p),

0�|
!

x
m=\|

!

x
u+&ux(x), x # [!&1, !],

thus

&ux(x)�|
1

0
|u|�- M, x # [0, 1],

where &,&2
H2

p
=M, and by (3) we get again (7).

From (7) we obtain by Gronwall's inequality that

|
1

0
m2�e3t - M |

1

0
,2, (8)

as long as the solution m(t) # H 2
p with initial data m(0)=, exists.
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4. A SPECIAL CASE

Let us now prove the following

Theorem 3. Assume that , # C�(R) is of period 1 and has no zeros.
Then there is a unique global solution m(t) # H 2

p to (1) with m(0)=, and for
any fixed t�0, m(t) # C�(R).

Proof. Assume that ,>0 (the other case is similar).
Let T>0 (given by Theorem 2) be such that (1) has a unique solution

m(t) # H 2
p for t # [0, T]. We intend to prove first that m(t)>0 for

t # [0, T]; by the discussion in the previous section we only know that
m(t)�0 for t # [0, T].

Assume that for some t # [0, T] we have that m(t) has a zero. Since
m # C([0, T]; H 2

p), we deduce that there is a smallest such t, denoted t0 .
Clearly t0>0. For t # [0, t0), the quantities

I&1=|
1

0
- m, I&2=|

1

0 \
m2

x

4m5�2+
1

- m+ ,

are conserved in time (see [5]).
For t # (0, t0) we have (using (1) and the periodicity)

d
dt |

1

0

1
m

=&|
1

0

mt

m2=|
1

0

mxu
m2 +2 |

1

0

ux

m

=&|
1

0
u \ 1

m+x
+2 |

1

0

ux

m
=3 |

1

0

ux

m
.

Since m # C([0, t0] ; H 2
p) and m=u&uxx , it is easy to see that there is a

constant L>0 such that

|ux |L�[0, 1]�L, t # [0, t0].

Recall m(t)>0 on [0, t0). Combining the above estimates, we find

d
dt |

1

0

1
m

�3L |
1

0

1
m

, t # (0, t0),

and Gronwall's inequality implies that (m(0)=,)

|
1

0

1
m

�\|
1

0

1
,+ e3Lt, t # [0, t0].
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A simple application of Schwarz's inequality therefore yields

|
1

0

1

- m
�\|

1

0

1
m+

1�2

�\|
1

0

1
,+

1�2

e (3�2)Lt, t # [0, t0].

As long as t # [0, t0), we have for 0� y�x�1,

\ 1
m(x)+

1�4

&\ 1
m( y)+

1�4

=&
1
4 |

y

x

mx

m5�4�
1
4 \|

1

0

m2
x

m5�2+
1�2

�
1
2 } |

1

0 \
m2

x

4m5�2+
1

- m+}
1�2

�- I&2 , t # [0, t0),

thus for every t # [0, t0), we have

max
x # [0, 1] \

1
m(x)+

1�4

& min
x # [0, 1] \

1
m(x)+

1�4

�- I&2.

On the other hand, we have that for every t # [0, t0),

min
x # [0, 1] \

1
m(x)+

1�4

�\|
1

0

1

- m+
1�2

�\|
1

0

1
,+

1�4

e(3�4)Lt,

and, combining the two last inequalities, we find that for every t # [0, t0),

max
x # [0, 1] \

1
m(x)+

1�4

�- I&2 +\|
1

0

1
,+

1�4

e(3�4)Lt.

We proved therefore the existence of an =>0 such that

m(t, x)�=, x # [0, 1], t # [0, t0).

Since

lim
t A t0

( max
x # [0, 1]

|m(t, x)&m(t0 , x)| )=0

we find it impossible that m(t0) has a zero.
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The previous argument shows that as long as the solution m(t) # H 2
p

exists, we have m(t)>0 on [0, 1]. Therefore the Liouville substitution

z(r)=(m(x))1�4y(x), where r=
|

x

0
- m

|
1

0
- m

is perfectly valid and transforms (6) into

d 2z
dr2 =\*+

1
4m(x)

+
mxx(x)
4m2(x)

&
5m2

x(x)
16m3(x)+\|

1

0
- m+

2

z. (9)

Equation (9) is a Hill's equation and we know (see [16]) that the spec-
trum is formed by a periodic ground state *0 preceded alternately by anti-
periodic and periodic pairs of simple or double eigenvalues

} } } <*4�*3<*2�*1<*0

accumulating at &�.
At t=0 we have m(0)=, # C�(R) of period 1 and therefore (see [16])

|*2n&*2n&1 |=O(n&p) as n � �, (10)

for every p=1, 2, ... . But, as m(t) # H 2
p satisfies (1), the periodic and anti-

periodic spectrum do not change (recall I&1 is a constant of motion) so
that (10) will hold at any time t # [0, T] and since (10) is a necessary and
sufficient condition for the potential to be in C�(R) with period 1, cf. [16],
we find that for any fixed t # [0, T],

1
4m(x)

+
mxx(x)
4m2(x)

&
5m2

x(x)
16m3(x)

# C�(R)

which implies that m(t) # C�(R) with period 1 for any t # [0, T].
Assume now that the maximal interval of existence of the solution

m(t) # H 2
p of (1) with m(0)=, is [0, T0) for some T0 # R. Then, as we saw,

m(t) # C�(R) with period 1 and m(t)>0 for any t # [0, T0). Therefore (see
the previous section)

|
1

0
m2�e3t - M |

1

0
,2, t # [0, T0),
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where M=&,&2
H2

p
. Also, the expressions (4) and (5) take the more pleasant

form

d
dt |

1

0
m2

x=&4 |
1

0
mmxu&5 |

1

0
m2

xux , (11)

d
dt |

1

0
m2

xx=&4 |
1

0
mmxxuxxx&10 |

1

0
mxmxxuxx&7 |

1

0
m2

xxux . (12)

It is not hard to see (repeat the arguments from the beginning of the pre-
vious section) that the boundedness of m(t) on [0, T0) in the L2[0, 1]-
norm implies the existence of a constant :>0 (depending on M and T0)
such that for all t # [0, T0),

u2(x)+u2
x(x)�:2, x # [0, 1].

From (11) we therefore get,

d
dt |

1

0
m2

x�2: |
1

0
(m2+m2

x)+5: |
1

0
m2

x , t # [0, T0).

Combining this with (3), we obtain

d
dt |

1

0
(m2+m2

x)�7: |
1

0
(m2+m2

x), t # (0, T0). (13)

An application of Gronwall's inequality yields

|
1

0
(m2+m2

x)�e7:t |
1

0
(,2+,2

x), t # [0, T0).

We may now repeat the method: we find a constant #>: (depending on
M and T0) such that for all t # [0, T0),

u2(x)+u2
x(x)+u2

xx(x)�#2, x # [0, 1].

Since m=u&uxx , we have

&|
1

0
mmxxuxxx=|

1

0
mmxxmx&|

1

0
mmxxux

=|
1

0
umxx mx&|

1

0
uxxmxx mx&|

1

0
mmxxux
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and, using (12) and (13), we find that on (0, T0),

d
dt |

1

0
(m2+2m2

x+m2
xx)�37# |

1

0
(m2+2m2

x+m2
xx), (14)

since if f # L�[0, 1], g, h # L2[0, 1], we have

2 } |
1

0
fgh }�& f &L�[0, 1] |

1

0
(g2+h2).

An application of Gronwall's inequality to (14) yields

&m&2
H2

p
�e37#t &,&2

H2
p
, t # [0, T0),

and, since [0, T0) was supposed to be the maximal interval of existence of
the solution m(t) # H 2

p , we obtain a contradiction (we assumed T0 # R).
This proves that the maximal interval of existence of the solution

m(t) # H 2
p with initial data m(0)=, is [0, �). K

5. MAIN RESULT

We have now all the necessary means to prove

Theorem 4. Assume that , # H 2
p does not change sign (,�0 or ,�0 on

[0, 1]). Then Eq. (1) is globally well-posed in H 2
p .

Proof. Let us consider the case ,�0 (the other case is similar).
Choose ,n # C �(R) of period 1 such that ,n(t)>0, n�1, and

lim
n � �

&,n&,&H2
p
=0.

By Theorem 3 we know that the solution mn(t) # H 2
p of (l) with initial data

mn(0)=,n exists for all t>0 and mn(t) # C�(R) of period 1, mn(t)>0 for
every t�0, n�1.

Assume that the solution m(t) # H 2
p of (1) with initial data m(0)=, is

defined on a maximal interval [0, T0) with T0 # R. We would have

lim
t A T0

&m(t)&H2
p
=�

in view of Theorem 2.
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A closer look at the proof of Theorem 3 enables us to say that there is
a constant K1>0 (depending only on &,&H2

p
and T0) such that

max
0�t�T0

&mn(t)&2
H2

p
�K1 . (15)

Let T # (0, T0) be such that

&m(T )&2
H2

p
>K1+1. (16)

Since limn � � &,n&,&H2
p
=0 we deduce by the continuous dependence on

intial data (see Theorem 2) that

lim
n � �

&mn(T)&m(T )&H2
p
=0

which is impossible in view of (15) and (16).
The contradiction that we obtained proves that the solution m(t) # H 2

p of
(1) with m(0)=, is global. K

We will prove that there are smooth initial data for which the corres-
ponding solution to (1) does not exist globally. It is worth to note that
neither the smoothness nor the size of the initial data influence the life-span
but the shape of the initial data. In particular, there are smooth initial data
with arbitrary support for which the resulting solution does not exist
globally.

Let us first derive a useful identity satisfied by a solution to (1).
The operator S&1 can be represented as the following convolution

operator:

S&1f (x)=|
1

0
G(x& y) f ( y) dy, f # L2[0, 1],

where G is the Green's function

G(x)=
ch(x&[x]&(1�2))

2 sh(1�2)
, x # R.

Given , # H 2
p , let u0 # H 4

p be such that u0&u0, xx=,. If

m # C([0, T ) ; H 2
p) & C1([0, T) ; L2[0, 1])

is the solution of (1) with initial data ,, define for every t # [0, T) the func-
tion u(t) # H 4

p such that u(t)&u(t)xx=m(t). Using Eq. (1) it is not difficult
to verify that

S(ut+uux)=&2uux&uxuxx=&�x(u2+ 1
2u2

x).
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Hence

ut+uux=&�x(G V (u2+ 1
2 u2

x)) in C([0, T ) ; H 3
p),

where V stands for the convolution with respect to the spatial variable.
Differentiating with respect to x,

utx+u2
x+uuxx=&�2

x(G V (u2+ 1
2u2

x))

=(S&Id )(G V (u2+ 1
2u2

x))

=u2+ 1
2u2

x&G V (u2+ 1
2u2

x),

and therefore we have

utx+uuxx=u2& 1
2u2

x&G V (u2+ 1
2u2

x) (17)

in the space C([0, T ) ; H 2
p).

Theorem 5. Assume that u0 # H 4
p is odd, u0 �0. Then the solution of (1)

with initial data ,=u0&u0, xx does not exist globally.

Proof. Let [0, T ) be the maximal interval of existence of the solution
m # C([0, T) ; H 2

p) & C1([0, T) ; L2[0, 1]) of (1) with initial data m(0)=,.
As before, we define u # H 4

p by u&uxx=m at any time t # [0, T ). Note that
m(t) and u(t) are equivalent pieces of information and we can regard

u # C([0, T ) ; H 4
p) & C1([0, T ) ; H 2

p)

as a solution to the Camassa-Holm equation in the original form

{ut&utxx+3uux=2uxuxx+uuxxx ,
u(0, x)=u0(x),

t>0, x # R,
x # R.

(18)

As one can check, the function

v(t, x) :=&u(t, &x), t # [0, T ), x # R,

is also a solution of (18) in C([0, T ) ; H 4
p) & C1([0, T ) ; H 2

p) with initial
data u0 . By uniqueness we conclude that v#u and therefore u(t, } ) is odd
for any t # [0, T ). In particular, by continuity with respect to the spatial
variable of u and uxx , we get

u(t, 0)=uxx(t, 0)=0 for t # [0, T ). (19)
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Define g(t) :=ux(t, 0) for t # [0, T ) and note that g # C1([0, T), R).
From (17) and (19) we get

dg
dt

(t)=&
1
2

g2(t)&|
1

0
G(x& y) \u2+

1
2

u2
x+ dy

� &
1
2

g2(t), t # (0, T ). (19)

Consequently,

1
g(t)

�
1

g(0)
+

t
2

, t # [0, T ).

If g(0)<0 we obtain T<&(2�g(0)) and the solution does not exist
globally.

If g(0)=0, note that

dg
dt

(t)�&|
1

0
G(x& y) \u2+

1
2

u2
x+ dy<0, t # (0, T).

Indeed, since G V (u2+ 1
2 u2

x) having zeros for some time t0 # (0, T ) would
imply that we would have u(t0)#0, thus m(t0)#0. However, backward
uniqueness holds for the equation (it is just a repetition of the arguments
in Section 2) and u0 �0. The previous relation shows that g(t) is strictly
decreasing and therefore it becomes negative immediately after time zero
and we fall in the previously considered case.

To prove the theorem, we have to consider the case g(0)>0.
Assume g(0)>0 and suppose that the solution m(t) to (1) with the

corresponding initial data exists globally in H 2
p .

We have

1
2 sh(1�2)

�G(x), x # [0, 1],

so that, in view of (19) and recalling the constants of motion from
Section 3,

dg
dt

(t)�&
1

2 sh(1�2) |
1

0 \u2+
1
2

u2
x+

�&
1

4 sh(1�2) |
1

0
(u2+u2

x)=&
I2

4 sh(1�2)
, t>0.
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Integration yields

g(t)� g(0)&
I2

4 sh(1�2)
t, t>0,

and therefore at some instant t0>0 we will have g(t0)<0. As above, the
inequality

dg
dt

(t)�&
1
2

g2(t), t>t0 ,

holds and therefore g(t) must blow-up in finite time. This contradiction
settles the case g(0)>0 and the proof is complete. K
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