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Abstract

In this paper, we present global existence results for the following problem

{gop(u/(t))/ +Ah@) f(u(t)) =0, ae.in(0,1), Py)
u(0) = u(1) =0, *
where ¢, (x) = |x|? —2y, p > 1, A a positive parameter and & a nonnegative measurable function on (0, 1)
which may be singular at r = 0 and/or t =1, and f € C(R4+,R4) with Ry = [0, co). By applying the
global bifurcation theorem and figuring the shape of unbounded subcontinua of solutions, we obtain many
different types of global existence results of positive solutions. We also obtain existence results of sign-
changing solutions for (P, ) when f is an odd symmetric function.
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1. Introduction

In this paper, we present global existence results with respect to given parameter A for the
following problem
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@p' () +2h(@®) fu() =0 ae.(0,1), P,)
w(0) = u(1) =0, -

where ¢, (x) = |x|? —2x, p > 1, A a positive parameter and /s a nonnegative measurable function
on (0, 1) which may be singular at # =0 and/or t = 1, and f € C(R4, Ry ) with Ry = [0, 00).

The study of existence of positive solutions for problem (P,) was initiated by Wang [14].
When A =1 and 7 satisfies

1/2 s

1/2 1
/w;l(/h(r)dr> ds+f¢;1(/h(r)dr> ds < 00,
0

s 1/2 1/2

he proved that if f satisfies either fo =0, foo = 00 or fi = 00, foo =0, then (P,) has at least
one positive solution, here we denote
S (u)

fo2 lim L5 and £ 2 tim fw)

u—0+ uP— u—o0 yP=1"

Kong and Wang [7] studied other types of conditions on f. When A = 1 and & satisfies the
following condition:

1
h # 0 on any compact subinterval in (0, 1) with 0 < / h(s)ds < oo,
0

under some additional restrictions on f, they proved that if f satisfies either fi = 00, foo = 00
or fo =0, foo =0, then (P,) has at least two positive solutions.

Our main concern on the condition of f in this paper is when f satisfies 0 < fo < 0o so let
us give the following assumptions first:

(A1) 0< fo<oo,
(A2) foo =0,
(A3) foo = 00.

Recently, Agarwal et al. [1] studied this case. Under the same condition on 4 given in [14] and

some additional conditions on f, they proved that if (A1) and (A3) are satisfied then (P, ) has at

least one positive solution for A € (0, m) and if (A1) and (A,) are satisfied then (P, ) has at
Jo®p

least one positive solution for A € (m, 00), where constants «; are given from the integral
P

condition of 4. Sanchez [12] also showed similar result when £ satisfies the same condition
given in Kong and Wang. He proved that if (A1) and (A3) are satisfied, then (P,) has at least one

positive solution for A € (0, W). Although the above results give good information on
0 Jo h(s)ds
parametric constants for existence, they are local with respect to the parameter. Thus it appears

important to extend the local existence results to global ones, that is, the existence, multiplicity
and non-existence results according to A varying on R and this is the main goal of this paper.

We will do the global analysis not only for positive solutions but also for sign-changing solu-
tions when f is an odd function so that we confine our indefinite weight / as follows:

(H) h(r) e L'(0,1), h >0 a.e., with f] h(s)ds > 0 for any compact subinterval / in (0, 1).
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Proofs of previous results mainly make use of upper and lower solutions method, fixed point
theorem and fixed point index theory on cones. For results in this paper, we employ bifurcation
argument mainly making use of one of Rabinowitz type global bifurcation theorems [11].

For this purpose, we need to deal with a method called a homotopy along p which was devel-
oped by [4] for continuous scalar ODE case and then extended to PDE case by [9] and to vector
ODE case by [5]. Thus in this paper, the method will be extended to singular scalar ODE case.
By applying the global bifurcation theorem and figuring the shape of unbounded subcontinua of
solutions, we obtain many different types of global existence results, for example, Theorems 3.5,
3.6,3.10, 3.14, 3.15 and 3.18 for positive solutions of (P, ) and Theorems 4.3, 4.6 and Corollaries
4.7, 4.8 for sign-changing solutions of (P, ).

This paper is organized as follows: In Section 2, we establish a sequence {{x(p)} of eigen-
values of (P,) under the assumption (H) on 4 and f(u) = ¢, (). And we show the alternatives
of subcontinuum which is bifurcating from (u(p), 0) in the sense of Rabinowitz. Furthermore,
we obtain the unboundedness is the only possibility. In Sections 3 and 4, we apply the results in
Section 2 to figure the shape of subcontinuum of positive solutions and sign-changing solutions
with help of the generalized Picone-type identity. Finally, we conclude Section 4 applying to the
radial solutions of quasilinear elliptic problems defined on annuli or exterior domains.

2. Existence of unbounded continuum

In this section, we prove the existence of unbounded subcontinuum for the following problem:

{ 0, (1)) + Mh(t) @, (u(t)) + rg(t, u(t)) =0 ae.in (0, 1), G

u(0) =u(l) =0.

Let us denote A= {g € L'(0,1): ¢ >0 a.e. and fl q(s)ds > 0, for any compact interval [ in
(0, 1)}. Throughout this paper, we assume h € A without any further mention. Moreover, we
assume the following hypotheses:

(Hy) there exist 8 € A and ¢ € C(R,R;) such that |g(t,u)| < B(t)¢p(u) for all (¢,u) €
0,1) xR,

(Hz) ¢ ) =o(julP~!) asu — 0,

(H3) g, —u) =—g(t, u).

We first state the main theorem in this section.

Theorem 2.1. Assume (Hy), (Hy) and (H3). Then for each k € N, there exists an unbounded
subcontinuum Cy in S bifurcating from (ug(p),0) where S is the closure of set of nontrivial
solutions for (G,) and i (p) is the kth eigenvalue of the problem

{ 0, (1)) + 2@, () =0 ae. in (0, 1),
u(0) = u(1) =0.

We introduce the equivalent integral operator form. Consider the problem

{ @p' (1)) =h ae.in (0, 1), (AP)

u(0)=u(l) =0.
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By a solution of problem (AP), we understand a function u € C 110, 1] with gop(u’ ) absolutely
continuous which satisfies (AP). Problem (AP) is equivalently written as

1 N

u(t) =G p(h)(1) é/q);‘ (a(h)—i—/h(r)dr) ds,

0 0

where a: L' (0, 1) — R is a continuous function satisfying

1 s

/w;l(a(h)—i—/h(t)dr) dt =0. @2.1)

0 0

It is known that G, : LY, 1) — Cé [0, 1] is continuous and maps equi-integrable sets of L' (0, 1)
into relatively compact sets of Cé [0, 1]. One may refer to Manasevich and Mawhin [9,10] and
Garcia-Huidobro et al. [5] for more details.

The following lemma is known as the generalized Picone identity. Let us consider the follow-
ing two operators:

y1=(0p() + b1 (e (), (2.2)
Lplzl = (pp()) + b2(Dep (2). 23)
Lemma 2.2. [8, p. 382] Let by, by € L'(I), I an interval and if y and z are functions such that

¥, 2, 9p(y"), and ¢, (z') are differentiable on I and z(t) # 0 for t € I. Then we have the following
identity:

d [IylPep) ,
E{W —yep(y )} 2.4)
= (b1 = b)|y|? (2.5)
a2 /
= [|y/|”+<p— 1)‘% —p%(y)y/wp(%)} 2.6)
[yI?
—ylp,(y)+ mLP(Z)' 2.7

Remark 2.3. By Young’s inequality, we get

vz’
Y17+ (p — 1)‘7

p Z/
= per(M)Y 0p (;) >0,

and the equality holds if and only if sgn y’ = sgnz’ and |y7/|P = |Z?/|P.
Since the bifurcation points of (G,) is related to the eigenvalues of the problem
0p (' (1) + 2h(t),(u(t)) =0 ae.in (0, 1), (ED)

u(0) = 0=u(l). (D)
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We summarize the eigenvalue property of problem (Ef ) + (D). Define the operator Tf :
CJ10, 11— €0, 1] by

t N

TV () (1) = G p(—rhep ) (1) =/¢p‘(a(—xh¢,,(u)) —/Ah(r)wp(u(r)) dr) ds

0 0
Then T)f7 is completely continuous and problem (Ei7 ) + (D) is equivalent to
u= TAp (u).
When p = 2, the eigenvalues of problem (Ei) + (D) is known as follows:
Proposition 2.4. [2] Let h € A. Then

(1) the set of all eigenvalues of (Ei) + (D) is a countable set {ju;(2) | k € N} satisfying 0 <
p1(2) < pu2(2) <+ < p(2) <+ — 00,
(i1) for each k,Ker(I — T2 (2)) isa subspace ofC [0, 1] and its dimension is 1,
(iii) let uy be a correspondmg eigenfunction to (i (2), then the number of interior zeros of uy is
k—1.

It is well known that Tf is completely continuous in C'[0, 1]. Thus the Leray—Schauder
degree dps(1 — Tf, B, (0), 0) is well defined for arbitrary r-ball B,(0) and A # ug, k € N,

Lemma 2.5. Forr > 0, we have

1, ifa<pi(2),

2 —
dLS([ — T)» s Br(())7 0) = { (_1)](’ lf)\. c (Mk(z)a //Lk—i—l(z))'

Proof. Since Tf is compact and linear, by Theorem 8.10 [3] and Proposition 2.4(ii),
dis(I =77, Br(0),0) = (=1)"¥ = (=1)¥,

where m(}) is the sum of algebraic multiplicity of the eigenvalues u satisfying £ ~'A > 1 and
the proof is done. O

We now introduce the eigenvalue problem for (Ef ) + (D) when p > 1. We first notice that all
eigenvalues of (Ef ) + (D) are positive. Indeed, let u be the corresponding eigenfunction to w.
Multiplying by u both sides in (E)l: ) and integrating, we get

1 1

f 0p (U () u(s)ds = ¢, (' (©))u()|§ — / op (' (9))u'(s)ds
0 0
1 1

—f |u’(s)|pds=—M/h(s)g0p(u(s))u(s)ds.

0 0
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Therefore, we have

o )1 ds
) ) rds

If u =0, then u/(r) =0 a.e. Thus by the uniqueness of initial value problem u(r) = 0. This
contradiction implies u > 0.

Combining results of [15,16], we have the following property for the eigenvalues of
(Ef\7 ) + (D). Proof of (i) is proved in [16], but we give a rough sketch of the proof for read-
er’s convenience.

Proposition 2.6. Assume h € A. Then we have

(1) the set of all eigenvalues of (Ef) + (D) is a countable set {j;(p) | k € N} satisfying 0 <

(ii) for each k, Ker(I — Tlfk(P)) is a subspace ofC1 [0, 1] and its dimension is 1,

(iii) let uy be a corresponding eigenfunction to ui(p), then the number of interior zeros of uy is
k—1.

Proof. Assume . > 0. Let ¢, (u') = —1"4v in (E}), where % + % = 1. Then (E}) is equivalent
to the system:

w = —2Pg,(v), v =2Ph(t)g, ). (2.8)

Let (Cp(t), S, (1)) be a unique solution of the following initial value problem

{ M/ = _(Pq (U), U/ = (pp(u)» (29)
w0 =1,  v(0)=0.
Then introducing the polar coordinates
u=r"7C,0) and v=r"45,(),
(EY) is equivalently written as
' = pAP(h(t) — 1)p(Cp©)) ey (Sp@))r £ R(2,6,1;5 1), (2.10)
0' = pr P (p~ ()| Cr@)|" +q7S, @) £ O, 05 1). (2.11)

For fixed initial data 6y € R, Eq. (2.11) has a unique solution 6 (z; 8y, A) satisfying 6 (0; 6y, 1) = 69
and it can be extended on [0, 1], since

1
0< O(,0; 1) <A? max{h(r), 1},

for all t € [0, 1]. By [16, Lemma 2.2], we see that if A; > Ay > 0 then 0(¢; 6y, L1) = 0(¢; 6p, 12)
for all ¢ € [0, 1] and all 6y. Furthermore,

0(1; 6o, A1) > O(1; 60, A2). (2.12)
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In order to consider solutions of (Ef ) 4+ (D), it is enough to consider solutions (u, v) of (2.8)
satisfying (#(0), v(0)) = (0, 1). Thus u is an eigenvalue of problem (Ef ) + (D) if and only if
such solution (u, v) satisfying u(1) = 0. Since u(t) = r(t)l/l’Cp(Q(t; Tp/2,A)), u(1) =0if and
only if

O;mp/2,0) =mp /2 + kmp, (2.13)
_pi/p . o .
for some k € N, where ), = % By using the continuity of # with respect to A and the

inequalities

1 1
60+A1/p/h_(s)ds <0(1; 60, M) <90+A1/p/h+(s)ds
0 0

for all §p € R and A > 0, where A_(f) £ min{1, h(r)} and h (t) £ max{1, h(r)}, we get

lim 6(1; 2,0) = 2, lim 6(1; 2,M) = .
g, OS2 0 =g 2 i 6(linp/2,3) = +00

By (2.12), the function 6(1; 7, /2, A) is strictly increasing with respect to A and thus, for each
k € N, (2.13) has a unique solution, say, ui(p). This gives an eigenvalue of (E){’ ) + (D) and
completes the proof of (i).

Since 6(0; /2, uk(p)) =mp/2and 0(1; 7 /2, ur(p)) =mp/2+kmp and 0(t; 7wy /2, wi(p))
is strictly increasing with respect to #, Cp, (0(t; /2, ur(p))) has exactly k — 1 interior zeros.
Therefore the corresponding eigenfunction uy of (p) also has exactly k — 1 interior zeros and
this completes the proof of (iii).

The eigenfunctions are of Ccl0, 1], since h € L1(0, 1). Suppose that u; and u, are two
eigenfunctions corresponding to the same eigenvalue wui(p). Without loss of generality we
may assume that there exists an interval (c,d) C (0, 1), such that u;(c) = u1(d) =0, and
uy,uz > 0 on (c,d). Integrating the generalized Picone identity on (c,d) with y = u1,z = us
and by = by = ur(p)h(t), we get

d

d
uul
=/|”3|p+(”‘1)‘—u22 -

lur|P@p(us) ,
_[ op(102) _””””(“1)]

p /
, u
- p<pp(u1)u1<pp(—> dt.

c

The left-hand side of the equality is O from u(c) =0 = u(d). Since the integrand of the right-
hand side is bigger than 0 by Young’s inequality, it should be 0 and thus by Remark 2.3, sgnu; =

sgnuy and |z—:|p = |Z—§|P. This implies Z—} = :—; on (¢, d). Thus (Z—;)/ =0and u; = puy on (¢, d)
for some u € R. Since uy,up € C110,1] and u; and (uy share the same initial condition at ¢

and d, we can extend the identity u; = uuy up to the interval (0, 1) by the uniqueness of the
initial value problem and this completes the proof of (ii). O

Since T)Lp is completely continuous, from Proposition 2.6, the Leray—Schauder degree
dis(I — Tkp, B, (0),0) is well defined for all r > 0, and for A # ux(p), k € N. But the opera-
tor Tkp is not linear and thus we cannot employ the same argument as in the proof of Lemma 2.5
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for the computation of dps(/ — T)Lp , B-(0), 0). We rather use a homotopy along p. The following
lemma is essential to define our homotopy.

Lemma 2.7. For each k € N, ux(p) as a function of p € (1, 00) is continuous.

Proof. As we see in the proof of Proposition 2.6, ux(p) is defined by the equation

9(1; Tp/2, /Lk(p)) =7,/2+kmp.

. . . . . . . Y .
Since 0(1;m,/2,A) is continuous and strictly increasing in A and 7, = %, wr(p) is

continuous in p. O
Now, we compute dis(I — T, B,(0), 0).
Lemma 2.8. For fixed p > 1 and all r > 0, we have

1, ifr<pr(p),

_TP =
des(7 TA’Bf(O)’O)_{(_l)k, i x € (uk(p), it 1(p)).

Proof. We give the proof for the case p > 2. Proof for the case 1 < p < 2 is similar. We also as-
sume A € (uk(p), k+1(p)) and leave the case A < w1(p) to the reader. By Lemma 2.7, the map
q — [k (q) is continuous. Thus we define a continuous function y : [2, p] - R with y(g) = A.
We denote that

mi(q) <y (q) < pi+1(q)- (2.14)

Define

T(g,u)=u— T ) =u—Gy(—y (@hpg () 2 u— G(g,u).

Then from the obvious modification of Proposition 2.4 [5], we see that G is completely con-
tinuous and 7 is a compact perturbation of the identity. If there exists u € 3 B,(0) such that
T (q,u) =0 for some g € [2, p], then u # 0 and u satisfies

{ @q (' () +y(@h(t)pqu()) =0 ae.in (0, 1),
u(0) = u(1) =0.

This implies that u is an eigenvalue of (EZ) + (D) with the corresponding eigenvalue y (g). This
contradicts to (2.14) and thus dy s(7 (g, -), B»(0), 0) is well defined. By the property of homotopy
invariance and Lemma 2.5,

dLS(I - T)\pv Br(o)’ O) = dLS(I - T}f)(P)’ Br(())’ O) = dLS(T(p7 ')1 BV(O)v O)

=dis(7(2, ), Br(0),0) = dis(7 = Ty(a), B-(0),0) = (=D,

since ¥ (2) € (ur(2), k+1(2)). This completes the proof. O

For the existence of bifurcation branches for problem (G, ), we will make use of the following
well-known theorem.
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Theorem 2.9. [13] Let F:R x E — E be completely continuous such that F()\,0) =0 for all
A € R. Suppose that there exist constants p,n € R, with p < n, such that (p,0) and (n,0) are
not bifurcation points for the equation

u—F,u)=0. (2.15)
Furthermore, assume that
dLS(I - F(IO7 ‘)’ Br(0)9 0) # dLS(I - F(’], ')7 Br(o)’ O)’

where B, (0) ={u € E: |u||g <r} is an isolating neighborhood of the trivial solution for both
constants p and 1. Let

S= {(A, u): (A, u) is a solution of (2.15) with u # O} U ([p, n] x {O}),
and let C be the component of S containing [p, n] x {0}. Then either

(i) C is unbounded in R x E, or
(i) CN[@R\[p, nD x {0}] # ¥.

Define the Nemitskii operators H; : R x Cé [0,1]— L0, 1) by
H (o, u)(1) 2 =2 h(0)gp(u(®)) and  Hy(,u) () £ —ag(t,u()),

respectively. Then H;, i = 1, 2, are continuous operators which send bounded sets of (0, co) x
Cé [0, 1] into equi-integrable sets of L0, 1) and problem (G; ) can be equivalently written as

u=Gp,o(H + H)(\ u)= F(hu).
F is completely continuous in R x C(l) [0,1] — C(]) [0,1]and F(A,0) =0, VA eR.

Theorem 2.10. Assume (Hy), (H2) and (H3). Then for p > 1, each (i (p), 0) is a bifurcation
point of (Gy.) and the associated bifurcation branch Cy, satisfies the alternatives in Theorem 2.9.

Proof. Let p > 1 be given. Take p = ui(p) — & and n = ug(p) + & with sufficiently small

8x > 0 so that p and 7 are not eigenvalues of (Ei7 ) + (D). We shall prove that O is an isolated
solution of (G, ) with A = p, n and for sufficiently small » > 0,

dis(I — F(p, ), Br(0),0) =dis(I — T/, B(0),0), (2.16)
dis(I — F(n,-), B-(0),0) =dis(I — TV, B;(0),0). 2.17)

To show this, specially (2.16) here, we only need to show that there exists » > 0, such that, for
all 7 € [0, 1], the equation

u=J(,u) £ TP (w)+ (1 —1)F(p,u), (2.18)
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has no nontrivial solution in B, (0). Indeed, suppose on the contrary that there exist sequences
{un} € C}10, 11 and {z,} C [0, 1] such that [Ju, | — 0 as

up = J (T, Up).

Then

t s
un(t)=7,1/¢;1<an +/ph(f)<ﬂp(un(f)) dr) ds
0 0
Tn)/ ( /ph(f)fpp(un(f))-i-/?g(f un(f))df)

where a, = a(ph,(uy,)), by = a(phe,(u,) + pg(-, uy)), and the function a:L'0,1) > Ris

given at the beginning of this section. Assume 1, — 10 € [0, 1] and let v, £ ”u ” , then we get
t N
vn(t)=rn/¢,,l(fanrfph(r)sop(vn(r)) dr) ds
0 0
\ [ (7, 4 (1))
_1if» g(t,uy(t
+ (- Tn)/wp ! (bn + / ph(f)wp(vn(f)) + % T) ds,
) J lanl]
where a, = W and b, = HZJIT Since the function a is homogeneous, it is interesting to
Up Up
notice
. a a(phep(uy)) op(un)
i =—"g = C =al ph——" ) = a(phep (). (2.19)
”un”] ”Mn”] ””n”]
Similarly,
(a }’l)
bn = al phop(a) + p=—="7 1) (220)
Up

Now we have

t
CAGES A (an + / Ph($)pp (va(s)) ds)
0

t
+ —rn)so;‘(én+fph(s)¢,,(vn(s>)+ W s).
Un

0

Since all {t,;}, {a.}, {5,,} are bounded, {v,}, {u,} are uniformly bounded, from (H;) and (Hj),
we conclude that {v},} is also uniformly bounded. Thus by Arzela-Ascoli theorem, {v,} has a
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uniformly convergent subsequence in C[0, 1]. Let v, — v. By (H»), (2.19) and (2.20) imply

lim &, =a(phg,(v)) = lim b,.
n—0o0 n—>0oo

By using the Lebesgue dominated convergence theorem,

t N

v(t) :/wgl(a(,ohwp(v)) +/,oh(r)g0p(v(1)) d‘L’) ds.

0 0

This implies that p is an eigenvalue of (Ef ) + (D). This contradiction shows that there
exists r > 0, such that (2.18) has only trivial solution in m, for all T € [0, 1]. Thus
dps(I — J(z,-), Br(0),0) is well defined for all T € [0, 1] and by the property of homotopy
invariance, we get

dis(I — T/, B-(0),0) =dis(/ — J(1, ), B,(0),0) =drs(I — J(0, ), B,(0),0)
=dis(I — F(p,-), B-(0),0). (2.21)
Furthermore we know by Lemma 2.8 that
dis(1 = TJ. B:(0).0) = (=D, for p = u(p) — 8.

Similar equality in (2.21) holds for A = n with the same ball B, (0). Since n = ux(p) + &k, again
by Lemma 2.8, we get

dis(I = T, B(0),0) = (—D*.
Therefore
dis(I = F(p.), B,(0),0) #dis(I — F(n, ), B, (0),0),
and the theorem is a consequence of Theorem 2.9. 0O

We finally prove that the first choice of the alternative of Theorem 2.9 is the only possibility.
Let us denote N,j' ={ue Cé [0, 1]: u has exactly kK — 1 simple zeros in (0, 1), # > 0 near 0 and

all zeros of u in [0, 1] are simple} and let N, = —N,:r and Ny =N, U Nk+.

Lemma 2.11. If (i, u) is a solution of (G,) and u has a double zero (i.e., u(t) =0=u'(t) for
some t € [0, 1]), then u = 0.

Proof. Let u be a solution of (G,) and ¢* € [0, 1] be a double zero. Then

t* r*

u(t) =f¢;l (—A/h(r)[gop(u(t)) +g(r, u(r))]dr) ds. (2.22)
t

s

By (Hj), we may choose Cy , > 0 such that

¢ () < Cyulv|P71, (2.23)
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for all |v| € [0, ||u||so + 1]. First, we consider ¢ € (0, t*). If

t*

u(s) <o)’ (—Afh(t)[(pp(u(r)) —l—g(t,u(t))]dt),

N

then from (2.23) and (H;), we obtain

t*
op(|u]) <1 /[hm + Cpuh(D)]gp(|u(0)]) dr.

By Gronwell’s inequality, we get u = 0 on [0, #*]. Otherwise, we get

t*
|u(t)| < / |u(s)|ds.
t
Again by Gronwell’s inequality, we get u = 0 on [0, #*]. Similarly, we can get u =0 on [¢*, 1]
and the proof is complete. O
By the similar arguments in Lemma 3.2 [6], we get the following lemma.

Lemma 2.12. Let Cy be a subcontinuum of solutions for (G,,) bifurcating from (i, 0). Then
Ci VR x {0} C U2, {1 O

Lemma 2.13. For each k > 0, there is a neighborhood Oy, of (ux, 0) such that (., u) € Oy NS
and u # 0 implies u € Ni.

Proof. If not, then there would be a sequence {(A,,u,)} € S such that u, # 0,u, ¢ Ny and
(An, tty) = (g, 0). Thus we have

t s
u, () = /(p;l <bn + An /[h(r)(p[,(un(r)) + g(t un ()] dl’) ds.
0 0
Let v, £ H;nnlh . Then v,, satisfies
t s
w = [ ¢’ <z;n [ [h<r)gop(vn<r)) + %} d‘l.’) ds.
u
0 0 mi

Hence, as in the proof of Theorem 2.10, {v, } contains a uniformly convergent subsequence which
relabel as the original sequence. Let limv,, = v, with ||v||; = 1. Then we obtain

1 S

v =[ o' (a(ukhgopw)) e [ h(r)wp(v(r))dr> ds.

0 0
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Consequently, v is a kth eigenfunction corresponding to ux. Hence, v € Ny. Since N is open,
there is 0 < ip < k such that v, € N;, for all n. Consequently, v, € N;;, Vn,v € Ng, igp < k and
v, — v. This is impossible and the proof is complete. O

Proof of Theorem 2.1. Since we proved the existence of the alternatives of subcontinuum,
it remains to show that Cj is unbounded. If we show Cr C (R x Ny) U {(ux, 0)}, then Cy is
unbounded by Lemma 2.13, Theorem 2.10 and by the fact N; N Ny = @, for j # k. Sup-
pose Cr & (R x Ni) U {(ug,0)}. Then there exists (&, u) € Cx N (R x dNg) such that (&, u) #
(ur,0),u ¢ Ni, and (A, u,) — (A, u) with (A,,u,) € Cx N (R x Ng). Since u € dNg, by
Lemma 2.11, u = 0. Thus by Lemma 2.12, A =, j # k, and this contradicts to Lemma 2.13,
since (A, uy,) — (A, u) with (A, u,) €Ci N (R x Ni). O

3. The shape of subcontinuum C;

In this section, we sketch the shape of unbounded subcontinuum C; of positive solutions for
the following problem which is known to exist in Theorem 2.1:

{wp(u’(t))’ +Ah(t) f()) =0 ae.in (0, 1), P))
w(0) = u(1) =0, *
where A is a positive real parameter, f € C(R;, Ry) and & € A. Assume
(A1) 0 < fo <o0,
(A3) foo =00.
Let us define k: R — R by
[ f@. w0,
K= { —f(~u). u <0,
and consider the following problem:
@p W' (1)) + Afoh(®)pp u(t)) + Ah()[k(u(t)) — fopp()]=0 ae.in (0, 1),
(Hx)
u(0)=u(1)=0.

It is obvious that a positive solution of problem (H,) is a positive solution of problem (P;).
Assume (A1). Then problem (H; ) satisfies conditions (H;)—-(H3) with h(¢t) = foh(¢), B(t) = h(t)
and ¢ (u) = k(u) — foep(u). Thus by Theorem 2.1, (H;) has an unbounded subcontinuum Cy
bifurcating from (u(p), 0), where ui(p) is the kth eigenvalue of problem:

{(pp(u/(t))’ + Afoh(®)@pu(t)) =0 ae.in (0, 1), E)
u(0) = u(1) =0. g

We need the following lemmas to get various existence results.
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Lemma 3.1. If u is a positive solution of (P,.), then u is concave.

Proof. Let u be a positive solution of (P), then ¢, (u’) < 0. This implies ¢(u’) is decreasing,
and thus u’ is also decreasing. It follows that u is concave. O

Lemma 3.2. Let b; (1) > 0 fort € (0, 1) and y, z € C'[0, 1] satisfy the following inequalities:

0p (V) +b1(Dgp(y) =0, (3.1)
@p(2) +ba()g,(2) 0. (3.2)

If y(0) =z(0) =0=y(1) =z(1), and y(t),z(t) > 0,t € (0, 1), then

1
/{ |y|p¢”(“} dt =0. (3.3)
5 ¥p(2)

Proof. We compute that

1
/{ e } dt = lim —|y(t)|p(pp(z/(t)_) — lim —|y(t)|p¢)p(z/(t)) 2 H, — Hy.
J ©p(2) t=1— @p(z(1)) =0+ @p(z(1))

We prove H; = Hy = 0. By uniqueness and concavity, z'(1) < 0. By L’Hospital’s rule, we have

ly®)17¢p (' (1)) P (Y)Y )@@ (1)) = ba()y)1Ppp (2(1))

H; = lim > lim

Sl ) Tl (p = DIz0)]P=22/ (1)
> fim P20 Oep@®) _ pl/DIP2YD) L ep (1)
== (p= D02 (p=1 1=z

Since H; < 0,if 1 < p <2, then H) =0. If 2 < p < 3, then we apply L"Hospital’s rule again
and we obtain
ep(®) _ L (= DIyOIPY' @O (p-Dy'®) Ly
im ———— = lim = - lim .
1—>1- |z()|P 1=1=(p = Dpp2)2' () (p—2)2'(1) i=1- @p_2(2(1))

This implies that H; = 0. If k < p < k + 1, then we continue this process k times to obtain
H; =0.
Similarly, since z/(0) > 0, we have

YOIPepE @) _ . Pep(YD)Y (1)epE (1)) = by D1 ¢p(z(1))

Hyp= lim

=0+ @pa() 10+ (p = DIz®)P~22 (1)
< lim PO Dep @) _ plOIPO) L ep (1)
=0+ (p— D@ (p=1) =0+

Since Hp > 0, if 1 < p < 2, then Hy = 0. The repeated process completes the proof. O

From the assumption (Az), we know that there exists L s > 0 such that

fw) <Lyp,(u), Yu>0.
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Lemma 3.3. Assume (A1) and (A2). Let u be a positive solution of (P,). Then A > %’})ﬁ) e Af,
where w1 (p) is the first eigenvalue of (E,).

Proof. Assume (A;) and (A). Then there exists Ly > 0 such that f(u) < Lyg,(u), for all
u > 0. Let u be a positive solution of (P;). Then

0=gp(u' ) +1h(t) f (u(®) < @p (' @) + AL ph(0)gp (u(t)).
Let ¢ be an eigenfunction corresponding to the first eigenvalue 1 (p) of (E;) with ¢ > 0 on

(0,1). Taking y =u, b1(t) = AL ¢h(t) and z = ¢, by (¢) = 1(p) foh(t) in Lemma 2.2 and inte-
grating (2.4)—(2.7), we have

1
/(Ml(P)foh(l) — AL th(t))|u(®)|” dt <0.
0

Hence we have

mi(p) fo— ALy <0,
that is,

> Ml(P)fO’
Ly

The following lemma is a priori estimate of positive solutions in || - || for (P,). It is interesting

to notice that the boundedness in || - || implies the boundedness in || - ||; when A € J, where J
is a compact interval, in fact, if u is a positive solution of (P, ), for any ¢ € [0, 1], we get

¢
(i () = / Ah(s) £ (u(s)) ds.
y

where u’'(y) =0,1 € J.

Lemma 3.4. Assume (A1) and (Az). Let J be a compact interval in (0, 00). Then for all . € J,
there exists M j > 0 such that all possible positive solutions u of (P;) satisfy ||ullco < M.

Proof. Suppose on the contrary that there exists a sequence {u,} of positive solutions of (P;)
with {A,} C J = [a, b] and ||u, ||cc — 00 as n — oo. Let

2—p

1
= (O, m), where y, = max{1,27-T}, Q:wljl(()/h(s)ds).

Then by (A;), there exists u, > 0 such that u > u,, implies f(u) < au?~!.
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Let my = maxyejo.u,] f () and let A, = {t € [0,1]: u,(t) < ug} and B, £ {t € [0, 1]:
un(t) > uq}. Put u, (8,) = max,cpo,1yu,(¢t). Then we have, for 0 < s < 6,

Sn Sn Sn Sn
0= [ ¢! (An [ 11 wo) dr) as< [ ¢! (An [ 11 (w0 dr) ds
0 s 0 0

dn
<9y () / ¢;1< [ h(o) f (un(0)) d + / h(o) f (un (1) dr) ds
0 Ay By

n

<(ppl()hn)/(ppl(ma/h(T)dT—i—/h(‘c)f(un(r))dr) ds
0

An B,

Thus

8

/[qo,,l(ma)Q _1</h(r)f(un(f)) >:|ds
o 77 e T '
0 B

n

On B, u,(s) > u, implies f(LS_),) < L) o Thus

p—1
letn oo , ()

1 o (ma)0 }
< + .
0y () y”[ lanlloo 27 @€

—— >
Pp (An) Pp )

I o\ m)0 ]
< + :
R0 y”[ linloe T Pr @€

Since 0 < a < A, < b for all n, we have for all n and thus

By the fact ||u, || = 00 as n — 0o, we get

—1 —1 1 l
<19, @0 <yp, [ )0 < ——

> (b) bey(vp Q) o, (b))

This contradiction completes the proof. O
Now we have the first existence result for the case (Aj).

Theorem 3.5. Assume (A1) and (Ay). Then there exist \* > Ay > 0 such that (Py) has at least
one positive solution for A > A* and no positive solution for A < A.

Under the assumptions (A;) and (Ajy), it is hard to know whether A* = A, or not which means
the existence result of Theorem 3.5 is local. But if we add more conditions on f, then we may
get some global existence results. For this purpose, we consider the following two cases for f:

(D1) f) < fouP~", Vu >0,
(D>) there exists i > 0 such that f(u) > fou?~!, Vu € (0, ).
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Theorem 3.6. Assume (A1), (Az) and (D). Then (Py) has at least one positive solution for
A > w1 (p) and no positive solution for A < 1(p).

Proof. Assume (A1), (A2) and (D1). Then using the generalized Picone identity with y = u,
bi(t) = Afoh(t) and z = ¢, b2 (t) = 1 (p) foh(t), we can prove that (P,) has no positive solution
forA < pi(p). O

For the case (D3), we assume f(u«) > 0, Vu > 0.

Lemma 3.7. Assume (A1), (Ay) and (Dy). If u is a positive solution of (Py) with ||u|ls < u, then
A < pr(p).

Proof. Using the generalized Picone identity with z = u, by(t) = AL ¢h(t) and y = ¢, b1 (t) =
w1(p) foh(t), where Ly > fj, we get the conclusion. O

Since C; is unbounded, the situation (A,u;) € C; and A — oo should be occurred by
Lemma 3.4.

Lemma 3.8. Assume (A1), (A) and (D2). If (A, u) € C1 with A — 00, then ||u] oo — 00.

Proof. Suppose on the contrary that there exists a sequence {(Ay, u,)} € C; such that A, — co
and ||u, |l uniformly bounded. It is enough to consider the following two cases: ||y |lco — O
and ||u,]lcc = d > 0.

First, we assume ||u,, ||coc — 0. Then by (A1), there exists 0 < € < 2 such that |u| € implies
fu) > J;‘)ul’ 1 Also by the property of solutions of (P;) [12], for any u, () > € ||un |loo for all
t € [e, 1 —€]. We will get a contradiction with

A~ . |1 infé,
€ = miny —, ,
8 2

where u,(8,) £ max;e(o,1] 4 (). Without loss of generality, we may assume inf§,, > 0, other-
wise we can analyze exactly the same way on [§,, 1].

8 Sn 2¢ 2¢
u,,((Sn):/¢;1<Anfh(t)f(un(r))dr> ds>/<p;1<kn/h(t)f(un(r))dr) ds
0 N € s

3 3
>¢;1<An>/<p;1</h<r>f° P 1<r>dr> ds
2¢e 2¢
-1 -1 ﬁ 2(p-1) p—1
ze, ) | ¢, 7€ lunlloo h(z)d7 | ds
€ N

2e 2¢

> ¢, (O )¢‘1<];) 2= 1)>/<p;1</h(f)dr> ds |t o-

€ N
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Therefore we have

_ — 0 —
1 P ‘pp ! ()‘n)wp ! (%62([) 1))Ch,

where Cj, = min;¢[e,1—¢] feze @p ! (ffé h(t)drt)ds. This is a contradiction since A,, — 00.

Finally, we assume ||u,||coc — d > 0. First, assume 8, — § € (0, 1). For those large n with
|| > % and §,, > %, consider the triangle with vertices (0, 0), (%3, %) and (1, 0). Then un(%) >
1d_0 and by the concavity of u, and |lu,| — d, we have 1‘1—0 Su,(t)y<2d,te [%, %] (this is true
whether %8 < 1 or not). Thus we have

8 8 8/2 §/2
un(an):/¢;1<)Ln/h(r)f(un(r))dr> ds>/¢;1(An/h(r)f(un(r))dr> ds
0 s 8/4 s
82 8/2
>¢;1<cd>f¢;1<fh(r>dr) ds gy Gun).
5/4 5

where C; = min & <ugad f(u). This is a contradiction. Next, assume 6 = 0 (the proof for the case
oXUx

of § = 1 is similar). Then for those large n with ||u, |0 > % and 6, < %, we get 1‘1—6 Su,(t) <2,

te [%, %], by using the triangle with vertices (0, 0), (0, %) and (1, 0). Thus

n S 7/8 7/8
n (8n) = / so;l(xn / h(r)f(un<r>)dr> ds > / w;l(xn / h(r)f(un(r))dr> ds
0 s 3/4 s
7/8 7/8
>w;1<6d>/¢;1</h(r)dr) ds ¢, ().
3/4 s

where a] =ming ., o, f (). This contradiction completes the proof. O
16 SUS

It is interesting to notice that the shape of C; is not effected by the shape of f once f satis-
fies (A»).

Lemma 3.9. Assume (A1), (Az) and (D>). I)_‘ (P3) has a positive solution for some x>0, then
(Py) also has a positive solution for all . € (A, 00).

Proof. It is enough to show that (P,) has a positive solution for A € (O, A%) by Theorem 3.5.
Let A € (A, A*) and u; be a positive solution of (P;). Then obviously u; is a lower solution
of (P;). Since uj is positive, concave and of clo, 1], we may assume u’X(OJr) =a > 0, and
u%(l_) = b < 0. Then we can choose N big enough so that N > A and ||uy |« > max{a, —b}
by Lemma 3.8 and we get upy (t) > u(t), Vt € (0, 1) by comparing two triangles with vertices
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(0,0), (8, llu3llso), (1,0) and (0,0), (=5, =22, (1,0), respectively. Obviously, u is an upper
solution of (P, ) and the proof is done. O

Theorem 3.10. Assume (A1), (Ay) and (D3). Then there exist g < \* < w1 (p) such that (P))
has at least two positive solutions for . € (\*, i1 (p)), one positive solution for A € (1 (p), co)U
[Ao, A*], and no positive solutions for A € (0, Lg).

Proof. Let Ao £ inf{A > 0: (P;) hasa positive solution}. Then A* > A¢ > % by Lemma 3.3.

If 1* = Ag, then the proof is done. If Ay < A*, then by Lemma 3.9, we know that (P, ) has at least
one positive solution for all A > Ag. We complete the proof by showing the existence of positive
solution at Ag. Once again, by Lemma 3.9, there exist a sequence {A, } and {u, } such that A, — Ao
and u, which is a corresponding solution to A, of (P,) satisfies u, = G, (A, hf (u,)). It follows
from Lemma 3.4 that {u,} is bounded. Since G, is compact, {u,} has convergent subsequence
and we may suppose that converges to ug. Since G, is continuous, we have ug = G, (Aohf (up)).
This completes the proof. O

Now we consider the case that f satisfies (A3). In what is to follow, we assume f (1) > 0, for
all u > 0.

Lemma 3.11. Assume (A1) and (A3). Let u be a positive solution of (P,). Then A < A for some
Ax = (1 (p).

Proof. From the conditions on f, we may choose 0 < Zf < fo such that f(u) > qup —1 for
all u > 0. Let u be a positive solution of (P,). Then

0=gp(u' ) +20(0) f (u(®) = 0p (' @) + AL ph(0)gp (u(t)).
Once again, let ¢ be an eigenfunction corresponding to the first eigenvalue 111 (p) of (E;) with

¢ >0on (0,1). Taking y = ¢, b1 (t) = u1(p) foh(¢) and z =u, by(t) = AL ph(t) in Lemma 3.2
and integrating (2.4)—(2.7), we have

1
f (AL ph(0) = 1 (p) foh (1) [u(t)|” dr <.
0

Hence we have
ALp — 1 (p) fo <O,

that is,

Ly

Since fy > Zf, A« = 1 (p) and this completes the proof. O

Lemma 3.12. Assume (A1) and (A3). Let J be a compact interval in (0, 00). Then for all A € J,
there exists by > 0 such that all possible positive solutions u of (P,) satisfy ||u|lco < by.
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Proof. Suppose on the contrary that there exists a sequence {u,} of positive solutions for (Py, )
with {X,} C J and ||uy|lcc — 00. By property (b) of Lemma 1 in [12], for any 0 < € < %,
Un(t) = €*||unlloo for all £ € [€, 1 — €]. Choose

. . [1 infs,
€ =miny —, 5
8 2

where u,(8,) £ max;e[0,1] 4n(¢). As in the proof of Lemma 3.8, we may suppose infd, > 0.
Then from (Az), we may choose R; > 0 such that f(u) > nup_l, for u > Ry and for some

n >0 and ¢, (g, (1e*P~D)C), where C, = minsefe 1] 2 0, ( J2€ h(z)dr)ds. Since

luplloo — 00, lunlleo > % for sufficiently large n. Thus u, (1) = €[|up|loo > Ry, fort € [, 1 —¢]
and we get for 0 < s < &y,

(Sn b‘n 2e 2e

w60 = [ ' (An [ 1 () dr) as> [ o' (An [ 1 () dr) ds
0 s € s
3 2e
>, (02?70 / vy ( / h(r)dr) ds - llunloo-

Therefore we have
1>, Oy (ne?P=V)Co
This is a contradiction to the choice of . O
Remark 3.13. Assume (A1) and (A3). Then (A, u,,) € C; with ||u,|l o0 — 00 implies A, — 0.

We have obtained the shape of subcontinuum C; from Lemmas 3.11 and 3.12, and Re-
mark 3.13.

Theorem 3.14. Assume (A1) and (A3). Then there exist Ay > L* > 0 such that (Py) has at least
one positive solution for A < A* and no positive solution for A > A.

For some global existence results, we consider the following two cases on f:

(S1) fu) > fouP™' Vu >0,
(S») there exists it > 0 such that f(u) < fou?~',Yu € (0, t).

Theorem 3.15. Assume (A1), (Az) and (S1). Then Ay = A* = w1 (p) in Theorem 3.14. More
precisely, (P;) has at least one positive solution for A € (0, u1(p)) and no positive solution for
A€ [p1(p), 00).

Proof. Using the generalized Picone identity with y = ¢, b1(¢) = u1(p) foh(t) and z = u,
by (t) = Afoh(t), we get the conclusion. O
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Lemma 3.16. Assume (A1), (A3) and (S2). If (Py) has a positive solution with ||u||c < U, then
A > pi(p).

Proof. Ugng the genera}lized Picone identity with y = ¢, b1(t) = n1(p) foh(t) and z = u,
by(t) = AL ¢h(t), where Ly < fy, we get the conclusion. O

Lemma 3.17. Assume (A1), (A3), and (S2). If (P3) has a positive solution for some X > 0. Then
(Py) has a positive solution for all ) € (0, A).

Proof. For fixed 1 € (A4, 1), it is enough to show that (Py,) has a positive solution. Obvi-
ously, u3 is an upper solution of (P;). We will find a lower solution of (P;) less than u3. By
Lemma 3.16, we may consider a positive solution u;, of (P;) such that ||u) ||cc = 0, as A — p1.
Let u%(O“') =a>0and u%(l_) =b < 0. Then for A, the maximum point of u; on [0, 1], we
get

Ay, 1
u&(z)=w;1<k/h(s)f(ux(s))ds> <¢;‘<kfh(s>ds~||foux||oo>,
t 0

forO0<t < A,,,

and u, (1) > —w;l(kfol h(s)ds - || fouylleo), for Ay, <t < 1. Since |lu;]loo small enough for A
near i1(p) and f continuous with f(0) =0, u} (0%) < a, and u (17) > b, for A close enough
to i1 (p). Thus by the continuity of u} and u%, we get

u (t) <uz(t), forte(0,61]U[1—=41,1). (3.4)
Since |luy]lco — 0 as A — u1(p), we may choose u; sufficiently small so that
u, (t) <ui(t), onl[d,1—51]. 3.5

Choosing A close enough to p1(p) at which the solution u, satisfying both (3.4) and (3.5), we
get a lower solution of (Py,) such that u; < uj and the proof is done. O

Theorem 3.18. Assume (A1) and (A3z). Also assume (Sy) then there exist Ao = \* = 1 (p) such
that (P;) has at least two positive solutions for , € (u1(p), A™), one positive solution for )\ €
(0, w1 (P)IU[A*, o), and no positive solutions for A € (Ag, 00).

Proof. Let Ay £ sup{A > 0: (P,) has a positive solution}. Then A* < Ay < ﬂ%’?ﬁ by

Lemma 3.11. If A* = Aq, then the proof is done. If 19 > A*, then by Lemma 3.16, we know
that (P;) has at least one positive solution for all A < Ag. The remaining part of proof is the same
as in the proof of Theorem 3.10. O

Remark 3.19. The results in Theorems 3.10 and 3.18 are partial, we leave a question when
A*=Ag.
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4. The shape of subcontinuum Cy, k > 2

In this section, we sketch the shape of unbounded subcontinuum C; which was guaranteed to
exist in Section 2 of the solutions for the following problem:

{(pp(u/(t))’ +AR(t) f(u(t))=0 ae.in (0, 1), Q)

u(0)=u(1)=0,

where X is a positive real parameter, f € C(R, R) and f is an odd function with f(«#) > O for all
u>0andh € A. Assume

(A1) 0 < fo<oo,
(A2) foo =0,
(A3) foo = 00.

Changing the problem (Q, ), we have

{ op ' ) + Afoh(®)ppw(®)) + Ah(OLf () — fopp@®)]=0 ae.in (0, 1),

w(0) = u(1) = 0. (R

Assume (A1). Then problem (R;) satisfies conditions (H1)—(H3) with k() = foh(z), B(¢) =
h(t) and ¢ (u) = f(u) — fopp(u). Thus by Theorem 2.1 (H;) has an unbounded subcontinuum
Cx bifurcating from (ux(p),0), where ug(p) is the kth eigenvalue of problem (E;). From as-
sumption (Az), we know that there exists L s > 0 such that

f)<LpuP™', Yu>0.

Lemma 4.1. Assume (A}) and (Az). Let uy be a solution in Cy of (Q,). Then A > %’?ﬂ’ for
each k > 2.

Proof. Let uj be a solution in C of (Q,) and ¢y be an eigenfunction corresponding to the kth
eigenvalue u(p) of (Ey). And let t;‘ and #; be the first zero of ¢ and uy, with ¢y > 0 in (0, ti‘)
and u; > 01in (0, 1), and ’1:11 and #;_1 be the last zero of ¢ and uy, respectively.

Case (1), k = 2. Suppose #; < t{'. Then it is easy to show these equalities:

I3} 1
PPy
/{M} dt=0 and /—{uzu’g"“}/dt:o.

(p—1)
0 2 0

Since

0=, (Us()) +1h (1) f (u2(t)) < 0p(uy()) + AL ph(t)gp (u2(r)) ae.in (0,71), and

0=0,(#20) + 12(p) foh ()gp($2(1)) ae.in (0, 1),
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if we take y=uy, bi1(t) = )\Lfg(l‘) and z = ¢y, by(t) = Mz(p)fog(t) and integrate (2.4)—(2.7)
from O to 71, as in the proof of Lemma 3.3, then we obtain
m2(p) fo— ALy <0, thatis,

> Mz(p)fo'
Ly

A

Suppose #{ < t1. Then it is easy to show

1 1

p /(p=1) yr
/{M} di=0 and f—{uzu’g”‘”}’dtzo.

-1
¢§1’ )

131 n

Since

0=, (1) + 1h(0) f(2(D) = @p (s @) + AL sh(1)pp (u2(1))  ace.in (11, 1),
0=, (05®)) + Afoh()ep(¢2(1)), ae.in(r,1), and
—u2[@p (uh (1) + AL th(1)pp (u2(1))] <O ae.in (11, 1),

in (2.7), if we take y = u2,b1(t) = AL rg(t) and z = ¢, b (t) = p2(p) fog(t) and integrate
(2.4)—(2.7) from 11 to 1, then we obtain

> Mz(ﬂ)fol

Ly

Case (1), k > 3. If t; <t} or t_| < tx—1, then we obtain A > %’?ﬁ’ by the same process as
in case (I). If #{' <t and 74— < #{_,, then there exists an interval (4, t;+1) C (¢, ¢, ;) for some
i,1 <i <k, and we have

lit1

PP IRY

/{7| d (f_kl) —uzu’gp 1)} dt =0.
o

ti

Either uy > 0in (#;, tj+1) or ux <O0in (¢, tj+1), we have

—u[@p (U (D) + AL th (D) (ur(1))] <O.

Thus following the argument in case (I), we get

A

> uk(p)fo_ 0

Ly

Lemma 4.2. Assume (A1) and (Ay). Let J = [a, b] be a compact interval in (0, 00). Then for all
A € J, there exists My > O such that all possible solutions u in Cy of (Qy) satisfy ||ullco < M.
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Proof. Suppose on the contrary that there exists a sequence {un} of solutions of (Q;) with {An} C

2—
J =la,b] and ||uy||coc — 00 as n — oo. Let o € (0 Q)) where y, = max{l, 27T 1} 0=

> byp (V
<p;1(f01 h(s)ds). Then by (A3), there exists u, > 0 such that u > uy implies f(u) < qu?™ L

Letmg £ maxye[o,u,] S () andletzy ,,, 22,4, ..., Zk—1,n denote the zeros of u,, in (0, 1) and let
Ay 2t €[0,1]: un(t) <ug)and B, £ {t € [0, 1]: uy(t) > ug}. Put u, (8,) = maxyeo,1j un(t)
(8, may not be unique). Then we can choose [z 5, zj+1,n] 3 6, for some j € {0,1,...,k — 1}
and f(u([zjn,zj+1,n])) 2 0.Forz;, <s <4,, we have

8}1 871 87! 8”

(o0 = [ qo;l(xn / h(r)f(une))dr) as< | qo;l(xn / h(r)f(une))dr) ds

Zj.n s Zj.n Zjn

<@, O )/q)p (fh(r)f un(r))dr+/h<r)f(un(r>)dr)

Zjn An B,

l()\.n)/ ( /h(r)dt+/h(r)f(un(r))dr>ds.

By

Thus

S
1 O (w; 1(ma)Q> / MO (o)
— < £ "7 )4+ _— ds.
op' () V”/w” ol )7 Sl ’

jn n

On By, un(s) > ug implies f 2 < <L Ll <o Thus
Up n s

L p[go;l(mwg

~1

1]l 0o

Since 0 < a < A, < b for all n, we have for all n and thus

—— > 1
Pp (An) Pp )

1 @;l(ma)Q
<
S (b) y”[ litn oo

+sop‘<a)Q].
By the fact ||u, |0 = 00 as n — 0o, we get

_ _ 1 1
< )/pfﬂpl(a)Q < Vp@pl<W>Q < m

L (b)

This contradiction completes the proof. O

Now we have the first existence result of problem (Qj,).
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Theorem 4.3. Assume (A1) and (A3). Then there exists A* with 0 < 1* < ug(p) such that prob-
lem (Qy) has at least one sign-changing solution for all A > A*.

Let us consider the case (A3).

Lemma 4.4. Assume (A1) and (A3). Let u be a solution of (Q,). Then there exists Aoy = wr(p)
such that ). < L.

Proof. Using arguments in Lemma 4.1 and the generalized Picone identity with y = ¢y, b1 (¢) =
wk(p) foh(t) and z = uy, by (t) = Afpg(t) in (2.4)—(2.7), we get the conclusion. O

Lemma 4.5. Assume (A1) and (A3). Let J be a compact interval in (0, 00). Then for all . € J,
there exists by > 0 such that all possible solutions u of (Q,) satisfy ||ullco < by.

Proof. Suppose on the contrary that there exists a sequence {(A,, u,,)} of solutions of (Q; ) with
An € J,uy €Cr,and |luylloo = 00 asn — 00. Let 2i(n),n, 22(n).n5 - - - » Z(k—1)(n),n denote the zeros
of u, in (0, 1). At least one subinterval (2 ()1, Z(j+1)(n),n) £ [, is of length at least % In fact,
{maxj, |u,|} is an unbounded sequence. Assume that {max;, |u,|} is uniformly bounded. Clearly,
since uy, is concave (or convex) in I, u), has one zero y, in ,. Integrating (Q,), for any ¢ € I,,,

¢ ¢
/—go,,(u;,(s))’ds://\,,h(s)f(u,,(s))ds, that is,
Yn Yn
¢
00w, = [ 251 (10 ) .

Vn
Hence {max;, |u),|} is uniformly bounded. Consider an interval
On = @G- Zjmm) O On = @ G+Dm).ns 2(+2)(m).n)-

By convexity (or concavity) of u, on Q, and the uniform boundedness of {u} on I,,
{maxg, [unl: Qn = (Z(j—1)(n).,ns Zjm)) OF On = (Z(j+1)(n).n»> 2(j+2)(n).n)} 18 uniformly bounded.
In k — 1 steps, this procedure shows that |u, | o is uniformly bounded. Put imz; ) » = zj,
and imz(j1)(n),n = Zjy+1 and lim§,, = &, where u,,(8,) = maxy, u,(t). Without loss of gener-
ality, we may assume that zj, < < zj,+1 (the cases of zj, =8 or zj,4+1 = § can be considered
similarly as in the proof of Lemma 3.8). Then the concavity of u, implies the property (b) of

. §—z;
Lemma 1 in [12], for any 0 < € < :’0 Lun(t) > m62||un||0o (from now on, ||u,||c denotes

lunlloo on Iy) for all ¢ € [zjn),n + €, 2(j+1)(n),n — €] £ J,, where m = min{k(g_zzjo), k(zj-oin—ﬁ) 1

From (A3), we may choose R; > 0 such that f(u) > nup_l, for u > Ry and for some n > 0.
Since ||un|loo = 0, lttn|lco > mR_elz for sufficiently large n. Thus u,(t) > me2||uy|loo > Ry, for

t € J, and we get

Sn Sn zjyt+2€ Zjy+2€

wn= [ qo;l(An / h(r)f(un<r>)dr)ds> / w;l(xn / h(r)f(unm)dr)ds

Zjm).n s Zjpte §
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Zjyt2€ Zjyt+2€

- - ~1
><Ppl()»n) / wpl(f nub h(r)dr)ds
Zjote s
Zjo+2€ Zjyt+2e
> (pim P DXP7 Dy, / gop‘</ h(t)dt)ds-”un”oo.
Ljote s

This is a contradiction since A,, — 0o and completes the proof. O
We have obtained the shape of subcontinuum Cy, as in Theorem 3.14.

Theorem 4.6. Assume (A1) and (A3). Then there exist Ly, > A* > 0 such that (Q,) has at least
one positive solution for A < A* and no positive solution for A > A.

We have some global results.

Corollary 4.7. Assume (A1) and (A3). If f satisfies f () > fou?~" for all u > 0, then iy =
A = ur(p). Moreover, (Q,) has at least one solution for 0 < A < ui(p) and no solution for
Az pr(p).

Corollary 4.8. Assume (A1) and (A3). If f satisfies that there exists u > 0 such that f(u) =
foiu?~" and f(u) < fouP~! for all u € (0, i), then (Q)) has a solution with |u|ls < il for
A > ur(p). Moreover, (Qy) has at least two, one or no solutions for 0 < A < ur(p) according to
A€ (ur(p), A*), A € (0, up(P)1U{A*}, or A € (Ay, 00), respectively.

We conclude this section applying previous results to the radial solutions of quasilinear elliptic
problems. Consider, first, the problem on annular domain.

{Ap(u)+kK(|x|)f(u):0, in £2, (A)

u=0, onads,

where 2 ={x eRY: I} < x| <b},11,lb>0,N>3,1<p <N, Apu = div(|Vu|?~2Vu) and
K € C([l1, 2], (0, 00)).

Radial problem (A,) is equivalent to the boundary value problem of ODE by r = |x| as
follows:

{ (' MIP~2' () + XL (0)1P720 () + AK (1) f () =0, r e (1, D),
u(ly) =0=u(b).

1-N . 1-N
By consecutive changes of variables, s = — frlz t7Tdt and t = 2= withm = — fllz tr-1dt, we
m 1
get

{¢p(u’(t))’+/\h(t)f(u(t)) =0, re(0,1),
u0)=0=u(),
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where

p—N p—N p—N
p—1

h(t)=|m|p[lll;%7 +<l2pTl _llp;’%q])t]%K([l% +(lz —11])71)1]}\7—7177)-

Since h € C([0, 1], (0, 00)), Theorems 3.5, 3.10, 3.15 and 3.18 are valid for problem (A;) on
an annular domain.

Finally, consider problem (A;) on an exterior domain £2 = {x e RV: |x| > r¢},70 > 0, N >3
N-p

p—N
and 1 < p < N. By changes of variables, r = |x|, s = r]/’T‘ and t = ro‘”f1 s, we get the following
equivalence of ODE problem:

{sop(u’(t))/ +Ah@) fu) =0, 0<t<I1,
u(0) =0=u(l),

(N=Dp r=1
where /(1) = =5l t N K (ror 7).

Assume

o0
/erlK(r)dr < 00.

ro

Then i € L'(0,1) and Theorems 3.5, 3.10, 3.15 and 3.18 are valid for problem (A;) on an
exterior domain.

Acknowledgment

This work was supported by Grant RO1-2003-000-11731-0 from the Basic Research Program
of the Korea Science & Engineering Foundation.

References

[1] R.P. Agarwal, H. Lii, D. O’Regan, Eigenvalues and the one-dimensional p-Laplacian, J. Math. Anal. Appl. 266
(2002) 383-400.
[2] H. Asakawa, Nonresonant singular two-point boundary value problems, Nonlinear Anal. 47 (2001) 4849-4860.
[3] K. Diemling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1987.
[4] M. del Pino, M. Elgueta, R. Manésevich, A homotopic deformation along p of a Leray—Schauder degree result and
existence for (|u'|P~2u’) + f(t,u) =0, u(0) = u(T) =0, p > 1, . Differential Equations 80 (1989) 1-13.
[5] M. Garcia-Huidobro, R. Mandsevich, J.R. Ward, A homotopy along p for systems with a vector p-Laplace operator,
Adyv. Differential Equations 8 (2003) 337-356.
[6] B. Im, E. Lee, Y.H. Lee, A global bifurcation phenomena for second order singular boundary value problems,
J. Math. Anal. Appl. 308 (2005) 61-78.
[7] L. Kong, J. Wang, Multiple positive solutions for the one-dimensional p-Laplacian, Nonlinear Anal. 42 (2000)
1327-1333.
[8] T. Kusano, T. Jaros, N. Yoshida, A Picone-type identity and Sturmian comparison and oscillation theorems for a
class of half-linear partial differential equations of second order, Nonlinear Anal. 40 (2000) 381-395.
[9] R. Mandsevich, J. Mawhin, Periodic solutions of nonlinear systems with p-Laplacian-like operators, J. Differential
Equations 145 (1998) 367-393.
[10] R. Mandsevich, J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like oper-
ators, J. Korean Math. Soc. 37 (2000) 665-685.
[11] P.H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math. 3 (1973) 161-202.



256 Y.-H. Lee, 1. Sim / J. Differential Equations 229 (2006) 229-256

[12] J. Sanchez, Multiple positive solutions of singular eigenvalue type problems involving the one-dimensional
p-Laplacian, J. Math. Anal. Appl. 292 (2004) 401-414.

[13] K. Schmitt, R. Thompson, Nonlinear Analysis and Differential Equations: An Introduction, Univ. of Utah Lecture
Notes, Univ. of Utah Press, Salt Lake City, 2004.

[14] J. Wang, The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc. 125
(1997) 2275-2283.

[15] X. Yang, Sturm type problems for singular p-Laplacian boundary value problems, Appl. Math. Comput. 136 (2003)
181-193.

[16] M. Zhang, Nonuniform nonresonance of semilinear differential equations, J. Differential Equations 166 (2000)
33-50.



