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Gauge fields on tachyon matter

Akira Ishida, Shozo Uehara

Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan

Received 12 June 2002; received in revised form 1 August 2002; accepted 14 August 2002

Editor: T. Yanagida

Abstract

We study the rolling tachyon including the gauge fields in boundary string field theory. We show that there are no plane-wave
solutions for the gauge fields for large time. The disappearance of the plane-wave solutions indicates that there are no excitations
of the gauge fields on the tachyon matter, which is consistent with the Sen’s conjecture.
 2002 Elsevier Science B.V.
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Recently, Sen [1,2] considered the decay process
of unstable D-branes in bosonic and superstring field
theories and constructed the classical time dependent
solutions which describe the rolling tachyon field
toward the bottom of the tachyon potential. It was
shown in [2] that the energy density remains constant
and the pressure approaches zero as the tachyon field
rolls toward the minimum. This pressure-less gas
with nonzero energy density is called the tachyon
matter. This phenomenon was analyzed by using
the Born–Infeld type effective field theory. It was
shown in [3] that there are no plane-wave solutions
for the tachyon field around the minimum of the
tachyon potential and the pressure falls off at late time.
Cosmological considerations for the tachyon matter
have been studied in many papers [4].
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Another analysis was carried out by using the
boundary string field theory (BSFT) [5–11], which
gives some exact results such as the exact form of
the tachyon potential and the exact solutions of the
lower-dimensional brane [8,9]. So it is reasonable
to consider the rolling tachyon in the BSFT frame-
work. Time dependent solution describing the rolling
tachyon was constructed in [12,13]. The solution as-
ymptotically approaches T = x0 and its behavior for
large time describes a pressure-less gas with nonzero
energy density. So, the solution for large time rep-
resents the tachyon matter. Since the tachyon mat-
ter is no longer a D-brane, it is important to ex-
amine whether the excitations of the gauge fields
are absent or not at the bottom of the tachyon po-
tential. The absence of the open string excitations
corresponds to the absence of the plane-wave so-
lutions in the effective field theory. In this Letter,
we consider the equations of motion of the gauge
fields at the bottom of the tachyon potential by using
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BSFT and show the absence of the plane-wave solu-
tions.

Let us consider the non-BPS Dp-brane in type II
string theory. Here we restrict ourselves to almost
spatially homogeneous time dependent tachyon field
and small fluctuations of the gauge fields. The BSFT
action with the tachyon and the gauge fields is given
by1 [9,14,15]

S = −Tp

∫
dp+1 xe− 1

4 T
2√− det(η + F)

(1)×F
(
Gµν∂µT ∂νT

)
,

where

(2)F(x) = x4xΓ (x)2

2Γ (2x)
= 1 + (2 log2)x + · · · ,

(3)Gµν =
(

1
η + F

)(µν)

= ηµν +O
(
F 2) = Gνµ,

(4)det(η + F) = det(ηµν + Fµν),

and Tp is the tension of the unstable Dp-brane. Since
we consider almost spatially homogeneous tachyon
field and small fluctuation of the gauge field, ∂iT

and Fµν (or Aµ) are small, which we symbolically
represent as O(ϕ), so that we have

Gµν∂µT ∂νT

= G00Ṫ 2 + ηij ∂iT ∂j T +O
(
ϕ3)

(5)= −Ṫ 2 + F 0iF0i Ṫ
2 + ηij ∂iT ∂jT +O

(
ϕ3),

where ∗̇ ≡ ∂0∗ and i, j = 1, . . . , p.
Let us compute the Hamiltonian density. The con-

jugate momenta P and Πµ of the tachyon T and the
gauge field Aµ, respectively, are given by

(6)

P = δS

δṪ

= −2Tpe
− 1

4 T
2√− det(η + F)G0µ∂µTF ′,

1 We set α′ = 2 and rescale the gauge fields properly for simplic-
ity. This action is exact as long as ∂µ∂νT = 0 and ∂ρF

µν = 0 and
it is difficult to examine higher derivative corrections in the BSFT
framework. Here we proceed to investigate with the action Eq. (1)
and we will comment on the validity of our result later.

(7)

Πµ = δS

δȦµ

= −Tpe
− 1

4 T
2√− det(η + F)

× [
f µ0F − 2

{
Gµλf ρ0 + Gρ0f µλ

}
× ∂λT ∂ρTF ′],

where

f µν =
(

1
η +F

)[µν]

(8)= −Fµν +O
(
F 3) = −f νµ.

Then the Hamiltonian density is

H= P Ṫ + ΠµȦµ −L

= −Tpe
− 1

4 T
2√− det(η + F)

(9)

×
[(

f µ0Ȧµ − 1
)
F + 2

{
G0ν∂νT Ṫ − Ȧµ∂νT ∂λT

× (
Gµλf ν0 + Gν0f µλ

)}
F ′].

We consider the behavior of the rolling tachyon
T at x0 → ∞ as was discussed in [12,13]. Here, we
set the initial conditions of T = 0 and Ṫ = +0 for
simplicity. It was shown that the tachyon, which is
rolling down to the bottom of the tachyon potential,
never stops [12]. Thus, T becomes infinity and hence
e−T 2/4 → 0 as x0 → ∞. Since H should be finite, the
rolling tachyon must hit a singularity and F should
become infinity as x0 → ∞.

F(z) and F ′(z) have singularities at z = −n (n =
1,2, . . .) and the nearest singular point from z = 02 is
z = −1, and hence we require the following condition,

(10)Gµν∂µT ∂νT → −1.

The asymptotic behavior of F(z) and F ′(z) near
z = −1 are as follows,

(11)F(z) ∼ −1
2(z+ 1)

, F ′(z) ∼ 1
2(z+ 1)2 .

Since F ′(z) is more singular than F(z) at z = −1,
e−T 2/4F ′ should be finite as x0 → ∞ because of
energy conservation. From Eq. (10), we write the
asymptotic equation for Ṫ as (cf. Eq. (5))

(12)

Ṫ ∼ 1√−G00

(
1 + 1

2
ηij ∂iT ∂jT +O

(
ϕ3) + ε(x)

)
,

2 Note that z = 0 corresponds to Ṫ = 0.
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where ε(x) is a small perturbation.3 Note that we
can see from Eq. (12) that the tachyon field becomes
infinity as x0 → ∞. Furthermore, Eqs. (11) and (12)
lead to the asymptotic form of F ′,

F ′(Gµν∂µT ∂νT
)

(13)∼ 1
8ε(x)2

(
1 +O

(
ϕ2)).

Due to the requirement that e−T 2/4F ′ should be finite,
we can determine ε(x) as

ε(x) ∼ −C(x) exp
(

−1
8
T 2

)
,

(14)C(x) = C +O
(
ϕ2),

where C is a constant to be determined by energy
conservation. Thus, in the x0 → ∞ limit, we have

e− 1
4 T

2F
(
Gµν∂µT ∂νT

) → 0,

(15)e− 1
4 T

2F ′(Gµν∂µT ∂νT
) → 1

8C2 +O
(
ϕ2).

Now we discuss the equations of motion of the
gauge fields both at x0 = 0 and x0 → ∞. They are
derived from Eq. (1),

∂ν

[
e− 1

4 T
2√− det(η + F)

× {
f µνF − 2

(
Gµρf λν + Gνλf µρ

)
∂λT ∂ρTF ′}]

(16)= 0.

First, we consider the case where the tachyon is on
the top of the potential. The equations of motion of the
gauge fields at x0 = 0 can be obtained by plugging
the initial conditions, T = 0, Ṫ = +0, into Eq. (16).
Since we consider small fluctuations of the gauge
fields, we ignore O(ϕ2) terms and hence the second
term in the brace does not contribute in this case.
Using Eq. (8), we have the ordinary Maxwell equation,

(17)∂µF
µν = 0.

Then it becomes, in the Coulomb gauge,4

(18)∂µ∂
µAi = 0.

3 We have assumed that the BSFT action is valid for this form of
T as is mentioned in the previous footnote. We note that a reliable
result has been obtained in the similar situation [12].

4 We can put A0 = 0, as usual.

Plugging a plane-wave solution,

(19)Ai = aieikµx
µ

,

into this equation, we get

(20)kµk
µ = 0.

Therefore, there exist the plane-wave solutions at
x0 = 0.

Next, we consider the gauge fields at x0 → ∞.
Similarly, we ignore O(ϕ2) terms and hence, for ex-
ample, only Ṫ 2 in ∂λT ∂ρT contributes. From Eqs. (8),
(12) and (15), we obtain the equations of motion at
x0 → ∞,

(21)∂0F
0k = 0, ∂iF

i0 = 0,

where k = 1, . . . , p. Then, at x0 → ∞ we have

(22)∂0∂
0Ak = 0.

Plugging (19) into Eqs. (22), we get

(23)k0 = 0.

Thus, contrary to the x0 = 0 case, the plane-wave
solution is absent for large time. From the above
analysis, we conclude that the excitations of the gauge
fields on a brane disappear as the tachyon field evolves
toward the minimum of the potential, even though the
energy density is conserved. This is consistent with
the Sen’s conjecture in which the brane will disappear
at the minimum of the potential. One comment is in
order: one may think that the result will be altered if
the action (1) has higher derivative terms. However,
such terms as can change Eq. (22) for a plane-wave
equation will take the form of f (∂2T , ∂3T , . . .) · F 2

where f is a function satisfying f (0) = 0, and since
Ṫ → 1 + O(ϕ2) and hence f (∂2T , ∂3T , . . .) → 0 at
x0 → ∞, we can expect that existence of those terms
does not alter our result.5

Although we have focused on the decay process of
an unstable D-brane, it will be interesting to extend
our analysis to brane–antibrane systems to see pair
annihilation processes of D-branes. It will be also
interesting to consider the space dependent rolling
tachyon in the decay process of a non-BPS brane into
a lower-dimensional brane.

5 ∂F, ∂2F, . . . terms in the action will not make the transverse
modes of the gauge fields.
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