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A solution to the Angel Problem
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Abstract

We solve the Angel Problem, by describing a strategy that guarantees the win of an Angel of power 2 or greater. Basically, the
Angel should move north as quickly as possible. However, he should detour around eaten squares, as long as the extra distance
does not exceed twice the number of eaten squares evaded. We show that an Angel following this strategy will always spot a trap
early enough to avoid it.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Angel Problem is described by Conway in [4]: the Angel plays a game against the Devil on an infinite
chessboard, whose squares correspond to pairs of integers (x , y). The Angel starts out on a square of the board.
In each turn, the Devil may eat any single square on the board. The Angel can then fly to any square that the Devil has
not yet eaten, and whose distance from the Angel’s current coordinates is at most k in the infinity metric (i.e. he can
fly from square (x , y) to (x ′, y′) if |x − x ′

| ≤ k and |y − y′
| ≤ k). The integer k is the Angel’s power, a parameter

of the game. The Devil wins if he can render the Angel unable to move, all squares within distance k of the Angel’s
current position having been eaten. The Angel wins by being able to move forever.

The Angel Problem is to determine whether, for a sufficiently large k, there exists a winning strategy for the Angel.
The game was apparently first presented in [1], where it is shown that the Devil can defeat an Angel of power 1, i.e.

a chess king. However, it has long been an open problem as to who has a winning strategy when the Angel has power
2 or greater. Some progress has been made by Kutz and Pór [6,8], who define the α-King and prove that for α < 2,
the Devil can catch an α-King (who is less powerful than a 2-Angel, but more powerful than a 1-Angel if α > 1).
Also, it is known that a sufficiently strong Angel can win in three dimensions [2,6,7].

The purpose of this paper is to demonstrate a strategy that guarantees the win of an Angel of power 2, so for the
rest of the paper, we will fix k = 2. The fact that an Angel of any higher power can win follows immediately. We will
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Fig. 1. A border curve. Squares in the curve’s left set are shaded. Segments that are traversed twice are shown fatter.

also give a slight refinement that yields a winning strategy for the 2-King, who can make two consecutive chess king’s
moves in each turn, each of which must bring him to an uneaten square.

Other, independent proofs that the Angel wins have recently appeared. Bowditch [3] shows that the 4-Angel wins,
while Máthé’s proof [9] works for the 2-Angel. The paper by Gács [5] gives no specific power for the Angel.

2. Border curves

We start by visiting the space of border curves, on which the Angel’s strategy is based. As the proofs of some
lemmas in this section are tedious technicalities, we defer them to the Appendix.

Define a segment as the border between two adjacent squares on the board. We will consider continuous curves that
are built from an infinite (in both directions) sequence of segments. The curves are directed, from their past to their
future part. As part of a curve, a segment is similarly directed; regarded as part of the board, a segment is undirected.

A border curve partitions the board into a left set and a right set of squares, tracing the infinite border between
them. Fig. 1 shows an example. While the left set must be connected, the right set may contain isolated components
that are enclosed in the left set. If this is the case, the border curve must at some point leave the main border and carve
a channel through the left set, circle the enclosed component clockwise and then return to the main border along the
same channel. The curve may also trace additional dead end channels, as long as the left set is not split into multiple
connected components.

The formal definition of a border curve follows below.

Definition 1. Let s be a segment in a curve. The right square of s is the adjacent square that is on the right of s when
looking in the future direction. The other adjacent square is the left square of s.

Definition 2. Let κ be a continuous, directed curve that consists of an infinite sequence of segments. We say that κ is
a border curve if there exists a set Vκ of squares on the board such that:

(i) No segment on the board occurs more than twice in κ .
(ii) If a segment occurs exactly once in κ , then its left square is in Vκ , while its right square is not.

(iii) If a segment occurs twice in κ , then the occurrences have opposite directions, and both adjacent squares are in
Vκ .

(iv) If a segment does not occur in κ , then its adjacent squares are either both in Vκ or both not in Vκ .
(v) Both Vκ and its complement (in the set of all squares on the board) are infinite.

(vi) Vκ is connected under separation by κ . That is, the squares in Vκ form a single connected component when we
consider two squares as neighbours if and only if they have a common border that does not occur as a segment
of κ .

We call Vκ the left set of κ . Its complement is the right set of κ .

Lemma 1. The left and right sets of a border curve κ are unique.

We define two operations for transforming a border curve, κ , into another:
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Fig. 2. Left: Examples of extensions. Right: Examples of contractions.

• Extension. Select a segment of κ whose right square is q /∈ Vκ . Replace this segment with the other three borders
of q , oriented so that q is their left square.

• Contraction. Select two consecutive segments of κ that traverse the same segment on the board in opposite
directions, thus forming a dead end. Erase these two segments from the curve.

Fig. 2 shows some examples of these operations.

Lemma 2. Let κ be a border curve, µ an extension of κ involving square q, and ν a contraction of κ . Then µ and ν

are border curves, with Vν = Vκ and Vµ = Vκ ∪ {q}.

Definition 3. Let κ and ν be border curves. If κ can be turned into ν by some (possibly empty) finite sequence of
extensions and/or contractions, we call ν a descendant of κ .

Lemma 3. Let κ be a border curve and ν a descendant of κ . Then Vκ ⊆ Vν .

Proof. No extension or contraction can remove a square from the curve’s left set. Thus any square in Vκ must also be
present in Vν . �

Lemma 4. Let κ be a border curve and s a segment that occurs twice in κ . Let ν be the curve produced by erasing
the section between both occurrences of s, inclusive, from κ . Then ν is a descendant of κ , and consequently a border
curve.

3. The Angel’s strategy

We now turn to describing the Angel’s strategy. While executing the winning strategy, the Angel maintains a path
that represents his past movements and his current plans for the future. At any time, the path is a border curve. One
of the path’s segments is called the perch, and the Angel sits on the right square of the perch. On his turn, the Angel
moves the perch two segments along the path toward its future part and alights on the right square of the new perch.
Fig. 3 shows a few of the Angel’s turns. It is easy to see that the new square is within the Angel’s power to reach: each
time the perch is advanced one segment, the Angel moves at most one square in each dimension, or may even stay put
(if the path turns clockwise). In fact, the Angel does not need to exert all his powers. Because he moves diagonally
only when the path turns counter-clockwise, the largest move required of the Angel is that of a chess knight.

At the start of the game, the path is the infinite straight line from south to north that passes just west of the Angel’s
starting square. This line is easily seen to be a border curve, whose left set is the half-board west of the starting square.

Every time the Devil has eaten a square, the Angel will survey the board around the future part of the path to see if
any traps are lurking. If he finds a sufficient number of eaten squares sufficiently close to the path, he chooses a new
path whose left set includes those squares, thus evading them. The new path must be a descendant of the current path,
and any part where they differ must lie in the future of the current perch. We will show that after each path update,
the right square of essentially every future segment of the path is uneaten. This guarantees that the Angel can move
forever by updating and following the path.
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Fig. 3. The Angel hugs the right side of the path, moving the perch two segments in each turn.

Definition 4. At any time, the squares of the board can be partitioned into three sets: free, blocked and evaded. The
evaded set is equal to the current path’s left set. A blocked square is one that is in the current path’s right set and has
been eaten by the Devil. The uneaten squares in the path’s right set are free.

Initially, the entire western half-board is evaded, while the eastern half-board, including the Angel’s starting square,
is free. When the Angel updates the path, some free and blocked squares may become evaded, and the evaded set
branches out into the eastern half-board. By eating a free square, the Devil converts it to a blocked square. Neither the
Angel nor the Devil can change an evaded square back to free or blocked. If the Devil should choose to eat an evaded
square, it stays evaded, and the Devil has wasted a move.

Definition 5. We enumerate the Angel’s turns, each consisting of updating the path and then moving, by 1, 2, . . . .
Define λi to be the path after being updated in turn i ; λ0 is the initial path.

Let κ be a descendant of λ0. Since λ0 can be turned into κ by a finite sequence of extensions and contractions,
each of which affects only a finite number of segments, λ0 and κ must be equal sufficiently far in the past and future
directions. Thus we can define Lκ , the length of κ , as the number of segments in κ minus the number of segments in
λ0 after equal infinite past and future parts have been removed from both curves.

Let j be a turn and κ a border curve. Define nκ( j) to be the number of squares in Vκ that the Devil has converted
from free to blocked during the time before turn j . In other words, nκ( j) is the number of eaten squares in Vκ at turn
j , excluding those that were already evaded at the time the Devil ate them.

For any turns i and j , we write L i = Lλi and ni ( j) = nλi ( j) as shorthand notations.
Define pi to be the Angel’s perch after the Angel moves in turn i ; p0 is the initial perch.

Informally, the rule by which the Angel updates the path can be stated as follows: The Angel must make the path’s
future part as short as possible, but is allowed to increase the length of the future path if this evades an additional
blocked square for every two segments added. Subject to this constraint, he must evade as many blocked squares as
possible. Fig. 4 illustrates how the path may be updated in a few situations (but in each case, there are other valid ways
to perform the update).

We proceed to define the update rule formally. As the Angel starts turn i , λi−1 is the current path and pi−1 is the
current perch. Let P1

i be the set of border curves µ that satisfy conditions 1 and 2:

1. µ is a descendant of λi−1.
2. µ is equal to λi−1 in its past part, up to and including pi−1.

Then, let P2
i be the set of those µ ∈ P1

i that satisfy condition 3:

3. For any κ ∈ P1
i , Lµ − 2nµ(i) ≤ Lκ − 2nκ(i).

Finally, let P3
i be the set of those µ ∈ P2

i that satisfy condition 4:

4. For any κ ∈ P2
i , nµ(i) ≥ nκ(i).

The new path λi may be selected arbitrarily among the members of P3
i .
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Fig. 4. Updating the path. Black squares are blocked, shaded squares are evaded before the update.

We note that the update rule will tend to produce loop-less paths (in the sense that no segment occurs twice), since
condition 3 encourages short-circuiting loops to reduce the length. Indeed, the future part of the path will never contain
an entire loop. However, a loop that the Angel is already inside cannot be short-circuited, due to condition 2. Thus a
major concern in the proof of the strategy will be to narrow down the circumstances in which such a loop may arise.

While P1
i , P2

i and P3
i may easily be infinite, the number of border curves that the Angel needs to examine just to

find a member of P3
i is limited by two considerations. Firstly, λi−1 ∈ P1

i , and nµ(i) cannot exceed i for any µ. So a
border curve that satisfies condition 3 cannot be longer than L i−1 −2ni−1(i)+2i . Secondly, there is no point in letting
λi differ from λ0 north of the northernmost square so far eaten by the Devil, as this cannot yield a border curve that
is shorter nor has more eaten squares in its left set than a similar curve that equals λ0 north of that square. Since the
number of border curves that can be created by replacing a given finite section of λ0 by a section of bounded length,
is finite, updating the path can be achieved with a finite computation, which is good news for the Angel.

The fact that λi−1 ∈ P1
i also guarantees that P2

i and P3
i cannot be empty. Thus the update rule can always be

followed successfully.

Lemma 5. If i and j are turns with j > i , then L j − 2n j ( j) ≤ L i − 2ni (i).

Proof. Since λi−1 ∈ P1
i and λi ∈ P2

i , condition 3 yields

L i − 2ni (i) ≤ L i−1 − 2ni−1(i). (1)

After turn i − 1, the Devil cannot produce any new blocked squares in the left set of λi−1, so

ni−1(i) = ni−1(i − 1). (2)

Combining (1) and (2), we get L i − 2ni (i) ≤ L i−1 − 2ni−1(i − 1), and a simple induction yields the lemma. �

4. Proof that the Angel wins

We shall now fulfil our promise to demonstrate that after each update, the right square of essentially every future
segment of the path is uneaten, and is in fact free. The only exception is that the right square of the very next path
segment following the perch can be evaded. Before presenting the formal argument, we summarize it informally.

Consider a future path segment s and its right square q. We first find that q cannot be blocked, since the update
rule would have preferred to extend the path around q to make it evaded. This extension is possible, as every blocked
square is in the path’s right set.

We then suppose that q is evaded. This implies that s occurs twice in the path, forming a loop. This loop can either
lie entirely in the future of the perch, or it can include the perch, thus enclosing the Angel. The former case is not
possible because the update rule would simply short-circuit the loop. In the latter case, we go back in time to when
the Angel was about to enter the loop-to-be. We find that, but for the exception mentioned above, the update rule does
not allow the Angel to enter the loop at all, but prefers a path that evades the entire region that would contain the loop.
This arises because in order to be able to close the loop later, the Devil must have so many blocked squares already in
place at this earlier time that the Angel is scared off.
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Fig. 5. A trapped Angel.

The argument does not entirely exclude the possibility of a loop being formed, but it shows that if this happens,
then the Angel is perched at the very end of the loop, immediately before the repeated segment, and will jump out of
the loop in the same turn.

Lemma 6. Let s be a segment of λ j in the future of p j−1, and let q be the right square of s. Then at the end of turn
j, q is not blocked.

Proof. By way of contradiction, assume that q is blocked at the end of turn j . Let µ be the extension of λ j where
s is replaced with the other three borders of q . Then Lµ = L j + 2 and nµ( j) = n j ( j) + 1. Using λ j ∈ P2

j

and Lµ − 2nµ( j) = L j − 2n j ( j), we easily verify that µ ∈ P2
j . But since λ j ∈ P3

j , condition 4 implies that
n j ( j) ≥ nµ( j), contradicting the above. �

Lemma 7. Let s be a segment of λ j in the future of p j−1, and let q be the right square of s. Assume that q is evaded
at the end of turn j . Then s is the very next segment of λ j after p j−1.

Proof. As a segment on the board, s occurs at least once in λ j , and both its adjacent squares are in the left set of λ j .
Then Definition 2 implies that it must occur exactly twice in λ j , in opposite directions. Call the earlier occurrence
s1 and the later s2. Define κ to be the curve produced from λ j by erasing the section from s1 to s2, inclusive. By
Lemma 4, κ is a descendant of λ j . Its length is

Lκ = L j − l, (3)

where l ≥ 2 is the number of segments in λ j from s1 to s2, inclusive. By Lemma 3, Vλ j ⊆ Vκ , giving us

n j ( j) ≤ nκ( j). (4)

If s1 were to lie in the future of p j−1, we have κ ∈ P1
j . Since λ j ∈ P2

j , condition 3 would then imply that
L j − 2n j ( j) ≤ Lκ − 2nκ( j), which contradicts (3) and (4). So we conclude that s1 is in the past of or coincident with
p j−1. It follows that s = s2. Fig. 5 exemplifies the situation, where the Devil has managed to close the path around
the Angel.

Let i be the turn in which the Angel moves the perch to or beyond s1. (We show below that we may assume that
there is such a turn.) pi is at or after s1, while p j−1 is before s2 (along λ j ). From pi to p j−1, the Angel moves the
perch at most l − 2 segments, at two segments per turn. Thus we have l − 2 ≥ 2( j − i − 1), or equivalently

2( j − i) ≤ l, (5)

with equality only if pi = s1 and p j−1 is immediately before s2 along λ j . From Lemma 5, we have

L j − 2n j ( j) ≤ L i − 2ni (i). (6)

Between turns i and j , the Devil has eaten only j − i squares, and consequently

nκ( j) − nκ(i) ≤ j − i. (7)



158 O. Kloster / Theoretical Computer Science 389 (2007) 152–161

Fig. 6. Almost trapping the Angel. Left: The Devil is about to eat the Angel’s current square. Right: The Angel has escaped the trap.

Taking the sum of Eqs.(3) + 2 · (4) + (5) + (6) + 2 · (7), we get

Lκ − 2nκ(i) ≤ L i − 2ni (i). (8)

In turn i , we have κ ∈ P1
i , and condition 3 implies

L i − 2ni (i) ≤ Lκ − 2nκ(i).

So, if the Angel obeyed the update rule in turn i , (8) must hold with equality. But then Eqs. (4)–(7) must also hold
with equality. As noted above, equality in (5) yields the conclusion of the lemma.

The proof is almost complete, but we must justify an assumption made above, namely the existence of turn i . What
if s1 is so far in the path’s past that it actually lies before the Angel’s starting perch and has never been passed? We can
get around this complication by translating the game in time and space. Suppose that for the first m turns, we require
the Devil to effectively pass, by only eating squares in the western half-board, while the Angel plods two squares north
in each turn. After turn m, the game unfolds as normal. Due to the symmetry of the initial path, this translated game
is equivalent to the original game for any m. Thus we can assume, without loss of generality, turn j to be arbitrarily
late in the game, and we are thereby entitled to posit the existence of turn i . �

Theorem 8. The presented strategy permits the Angel to play indefinitely without ever landing on an eaten square.

Proof. Let j be any turn and q the right square of p j . Recall that p j is two segments into the future part of λ j from
p j−1. At the end of turn j , q must be free, since by Lemma 6, it cannot be blocked, and by Lemma 7, it cannot be
evaded. Thus q is uneaten as the Angel lands there in turn j . �

5. Discussion

Fig. 6 shows an example of the situation addressed in Lemma 7, where the Devil almost manages to trap an Angel
that uses the presented strategy, by getting the Angel inside a loop in the path. The Devil sets up a clockwise turn in
the Angel’s path, and when the Angel is perching right before the turn, the Devil eats away the Angel’s current square
(assuming this is allowed by the rules). The Angel must then update the curve to evade this square, and finds himself
in a dead end, but one that is short enough for him to immediately fly out of.

This trivial loop is actually the longest that the Devil can produce. However, we do not devote effort to proving it
in this paper.

The rules as given by Conway do not explicitly state whether or not the Angel is allowed to remain on his current
square, i.e. not move at all, if the Devil did not eat away that square on his last turn. Our strategy directs the Angel
to stay put if the path makes two consecutive clockwise turns just after the perch. But if this is not permitted, we can
amend the strategy to say that in each turn, the Angel moves the perch two segments, not counting clockwise turns.
This does no damage to our arguments, and ensures that the Angel always flies to a new square on each turn.

Under this amended strategy, we prove that the Devil can never create a loop longer than the trivial one shown
above. For if the loop is longer, pi 6= p j−1, and the Angel must traverse at least one clockwise turn of the path on his
way from the right square of pi to the right square of p j−1 (defining i and j as in Lemma 7). At this turn, he travels
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Fig. 7. A spiral of walls that the Angel must follow.

faster than in the original strategy, so Eq. (5) cannot hold with equality. Consequently, the Angel can never wind up
inside a non-trivial loop, and will never have to jump over an eaten square. Thus, this amended strategy is actually a
winning strategy for the 2-King. A quick inspection of Fig. 6 shows that the 2-King has no problem dealing with the
trivial loop either.

As explained in [4], the Devil has some power over the behaviour of an Angel that uses a winning strategy. In
particular, the Devil can force the Angel to detour arbitrarily far in any chosen direction, and to follow a path that
winds arbitrarily many times around some point on the board. We conclude by showing that this is indeed the case for
the presented strategy.

Assume that the Angel is in a position where the path leads straight north for the next n squares (see Fig. 7). The
Devil can then use his moves before the Angel reaches the nth square to build a wall that protrudes east from this
square. This wall is 1 square thick and bn/2c squares long. If the Devil eats the westernmost square in the wall last
(and no other eaten squares on the board interfere), the Angel will update the path just as he reaches the wall, and
then faces travelling straight east for at least bn/2c − 2 squares. The Devil can then start building a shorter wall that
protrudes south from the end of the previous wall. When the Angel reaches this wall, the Devil starts building a still
shorter wall that protrudes west, and so forth, until a wall becomes so short that the Angel reaches its end before the
Devil can build the next one. It is evident that by building this structure for a large enough n, the Devil can cause the
Angel both to travel as far as desired in any direction, and to follow a spiral path that winds as many times as the Devil
likes before unwinding again. And as the Angel’s path at the start of the game is an infinite straight line, the Devil can
indeed do this for an arbitrarily large n.
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Appendix

This appendix contains the proofs of Lemmas 1, 2 and 4 from Section 2.

Proof of Lemma 1. By way of contradiction, assume that U1 and U2 are left sets of κ and q is a square that is in U1
but not in U2. Choose t to be a square adjacent to a segment of κ . We can construct a connected sequence of squares
starting at q and ending at t . (Here, connected means that any two consecutive squares in the sequence share one
border.) Let o be the first square in the sequence that is adjacent to a segment of κ . Since no two consecutive squares
in the sequence from q to o are separated by a segment of κ , part (iv) of Definition 2 implies that all the squares from
q to o are in U1, and none in U2. But by parts (ii) and (iii), o must be either in both U1 and U2, or in neither, giving a
contradiction.

The uniqueness of right sets follows since the complement of a set is unique. �

Proof of Lemma 2. We need to verify parts (i)–(vi) of Definition 2 for µ and ν, given that they hold for κ .
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Extension. Let s be the segment of κ that is replaced, and r1, r2 and r3 the segments that replace it. Note that to
verify parts (i)–(iv), we need only to consider the segments s, r1, r2 and r3, since all other segments are unchanged
with respect to occurrences in κ versus µ and membership of their adjacent squares in the respective left sets. Recall
that q is the right square of s and the left square of r1, r2 and r3, q /∈ Vκ and q ∈ Vµ.

(i) No border of q can occur more than once in κ , since otherwise (iii) would imply q ∈ Vκ . So these segments
occur at most twice in µ.

(ii) Assume that r1 occurs exactly once in µ, and let o be the right square of r1. We need to show that o /∈ Vµ and
q ∈ Vµ. If r1 occurs just once in µ, it cannot occur in κ . By (iv) and q /∈ Vκ , we have o /∈ Vκ and thus o /∈ Vµ.
q ∈ Vµ is known. The same argument holds for r2 and r3.
By (iii) and q /∈ Vκ , s cannot occur twice in κ . Then s cannot occur in µ.

(iii) Assume that r1 occurs twice in µ. Then it occurs exactly once in κ . By (ii), the occurrence in κ must have q as
its right square and thus have opposite direction to r1. Also by (ii), one adjacent square is in Vκ , thus also in Vµ,
and the other is q ∈ Vµ. The same argument holds for r2 and r3. s cannot occur twice in µ.

(iv) s does not occur in µ, but once in κ . By (ii), its left square is in Vκ , and thus in Vµ. Its other adjacent square is
q ∈ Vµ. r1, r2 and r3 occur at least once in µ.

(v) Since Vκ and its complement both are infinite, and Vκ and Vµ differ by a single square, Vµ and its complement
must also both be infinite.

(vi) Vκ is connected under separation by κ . Neither r1, r2 nor r3 introduce additional disconnections in Vκ , since
each is adjacent to q /∈ Vκ , so Vκ is connected under separation by µ as well. Vµ = Vκ ∪ {q} is connected under
separation by µ if q is adjacent to some square o ∈ Vκ and the segment between them does not occur in µ.
Taking o to be the left square of s, we see that this is the case.

Contraction. Let s be the segment that occurs twice in κ and not in ν. To verify parts (i)–(iv), we need only consider
s, since all other segments are unchanged by the contraction.

(i) This holds since s does not occur in ν.
(ii) This holds since s does not occur in ν.

(iii) This holds since s does not occur in ν.
(iv) Since s occurs twice in κ , we know that both adjacent squares are in Vν = Vκ .
(v) This is satisfied since Vν = Vκ .

(vi) Every segment of ν is also present in κ . Since Vν = Vκ is connected under separation by κ , it must also be
connected under separation by ν. �

Proof of Lemma 4. We have to show that there exist a finite sequence of extensions and contractions that erases the
specified section from κ . We shall construct such a sequence by first using extensions to remove all segments that
occur exactly once in the section, and then remove all segments occurring twice by contractions.

Call the first and second occurrence of s in κs1 and s2, respectively. Let q1 and q2 be the squares adjacent to s.
From part (vi) of Definition 2, we know that we can find a sequence of squares in Vκ that connects q1 to q2 without
crossing κ , and furthermore, we can choose it such that no square is repeated. Since q1 and q2 are adjacent, the squares
in this sequence form a closed boundary, broken by no segment in κ except s. Let I be the finite part of the board
enclosed by this boundary. κ can have only a finite number of segments in I , and enters or exits I exactly twice, at s;
therefore I must contain exactly the section of κ between s1 and s2.

We now modify the border curve, starting with κ , by choosing a segment in I that occurs exactly once and using an
extension to replace this segment. This operation is repeated until there are no more segments in I that occur exactly
once. Each extension adds one square in I to the curve’s left set, and since I contains only a finite number of squares,
we must stop after a finite number of extensions. Thus we arrive at a curve, µ, where every segment between s1 and
s2 occurs twice between s1 and s2. This property must continue to hold through the contractions that will follow, as
contractions cannot introduce a segment that occurs exactly once.

Let r1 and r2 be a pair of segments in µ between s1 and s2 that are occurrences of the same segment on the board,
and choose them such that the distance from r1 to r2 along µ is minimal over all such pairs. We claim that r1 and
r2 are consecutive segments of µ. For if not, we can repeat the construction of I above and find a part of the board
that contains exactly the section of µ between r1 and r2. Any segment in this section occurs twice between r1 and r2,
contradicting the distance minimality of r1 and r2.
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We now further modify the border curve, starting with µ, by choosing a pair of consecutive segments between s1
and s2 that are occurrences of the same segment on the board and removing these by contraction. By the reasoning
above, such a pair exists as long as s1 and s2 are not consecutive. We repeat this operation until s1 and s2 are
consecutive. A final contraction to remove s1 and s2 completes the construction of ν as a descendant of κ . �
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