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Helicobacter pylori infection and gastric carcinoma
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Abstract
Helicobacter pylori infection is considered to be the main cause of gastric cancer and the most frequent infection-induced cancer. H. pylori is a

heterogeneous species which can harbour pathogenic factors such as a cytotoxin, a pathogenicity island (cag) encoding a type 4 secretion

system, and the first bacterial oncoprotein, CagA. This oncoprotein appears to be involved in the carcinogenic process in addition to the

inflammation generated. This process may concern either local progenitors via an epithelial–mesenchymal transition, or recruited bone

marrow–derived mesenchymal cells. There are also environmental factors such as iron deficiency or high-salt diets which interact with

the bacterial factors to increase the risk of gastric cancer as well as genetic polymorphism of certain cytokines, e.g. IL-Iβ. Recent data

suggest that a break in coevolution of a particular phylogeographic lineage of H. pylori and its usual host may also be a risk factor. Studies

are currently being performed to assess the feasibility of organized H. pylori eradication programmes to prevent gastric cancer.

Clinical Microbiology and Infection © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All

rights reserved.
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Introduction
Among the cases of cancer which could be attributed to

infection, in the world in 2008, i.e. 16.1% of new cases (about 2
million out of 12.7 million) according to the International

Agency for Research on Cancer, Helicobacter pylori infection
was the leading cause and represented 5.5% of the total number
of cases, while the other main agents were viruses [1].

H. pylori was discovered relatively recently, in 1982, and has
proved to be the cause of gastric and duodenal ulcers [2]. For

this discovery, Warren and Marshall were awarded the Nobel
Prize for medicine in 2005.

However, H. pylori infection is also considered to be the
main risk factor of gastric cancer development, namely gastric

carcinoma and gastric mucosa-associated lymphoid tissue
lymphoma [3] (Fig. 1). Here we will only consider the former,
while the latter will be discussed in another article. We will
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review the characteristics of H. pylori and the consequences of
the infection, the risk factors other than H. pylori for cancer

development and the current status of prevention of gastric
cancer.
Helicobacter pylori
H. pylori is an epsilonproteobacterium and a member of the
Helicobacteraceae family, separated from Campylobacteraceae in

1989 [4]. Helicobacters are classified into two types according
to their customary niche: gastric and enteric. The Helicobacter

species adapted to humans is H. pylori and is a gastric Heli-
cobacter. Others originating from pets or food animals can

rarely be found in humans as zoonotic bacteria.
H. pylori is a very heterogeneous species but characteristics

important for colonization and pathogenesis are found in most
of the strains. H. pylori harbours various adhesins, the most
important being BabA and SabA, which allow it to colonize the

epithelial layer, mainly in the antrum. Indeed, despite living in
the stomach, H. pylori is relatively acid sensitive. It can grow at

pH 5 but does not grow and only survives at pH 4. A key factor
is its production of urease, which is quantitatively important
ious Diseases. Published by Elsevier Ltd. All rights reserved
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FIG. 1. Various consequences of Helicobacter pylori infection.
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and allows it to buffer its microenvironment by breaking down

the low amount of urea present in the gastric mucosa, pro-
ducing ammonia [5].

Once colonization is established, the infection can last for
decades and can even be lifelong. The basic lesion observed in

all cases is gastritis, i.e. an infiltrate of lymphocytes and poly-
morphs in the gastric mucosa. In some individuals, and espe-
cially youngsters, it may even take on the aspect of lymphoid

follicles, normally absent in the stomach [6].
Among the pathogenic factors is a cytotoxin named VacA.

There is a polymorphism of the vacA gene, and according to the
allele present, varying amounts of the toxin can be produced

influencing the outcome [7]. A pathogenicity island is also
present in about half of the strains. Among the 30 genes present

in the island, some code for a type 4 secretion system (T4SS),
which is similar to a syringe allowing the introduction of bac-

terial molecules in the epithelial cell. The most important of
these compounds is CagA, considered to be the first bacterial
oncoprotein. Once in the epithelial cell, CagA is phosphory-

lated by cellular kinases and then interacts with a number of
signalling pathways [8]. CagA is also heterogeneous with regard

to the number and type (A, B, C, D) of phosphorylation motifs
present. Types C and D have been associated with the highest

risk of cancer [9].
Clinical Microbiology and Infection © 2015 European Society of Clinical Microbiology
Other H. pylori molecules can also be introduced into the

epithelial cells, such as muramyl dipeptide (MDP), which is part
of the peptidoglycan cell wall of the bacterium. MDP is detected

by the intracellular NOD receptors which activate the NF-κB
pathway with production of IL-8 and attraction of inflammatory

cells [10].
Oncogenic consequences of H. pylori infection
Gastric adenocarcinoma is a heterogeneous cancer. First, it is
necessary to distinguish the tumours arising from the gastric

proximal stomach (cardia), as most of them are not linked to H.
pylori infection from those found in the distal part of the

stomach. Among tumours from the distal stomach, on the basis
of histology, it is usual to differentiate two types of cancer le-

sions: the intestinal type and the diffuse type according to the
Lauren classification [11].

Intestinal type cancer is the most frequent. It corresponds to a
slow evolution of the gastric mucosa which becomes atrophic;

then intestinal metaplasia appears, followed by dysplasia and ulti-
mately in situ gastric carcinoma and metastatic carcinoma (Fig. 2).
This is the so-called Correa cascade, which was described before

H. pylori was discovered and appears late in life [12].
and Infectious Diseases. Published by Elsevier Ltd. All rights reserved, CMI, 21, 984–990
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FIG. 2. Cascade of histologic changes induced by Helicobacter pylori at level of gastric mucosa.
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The other histologic type of gastric carcinoma is the diffuse
type, which does not show these different steps and usually

occurs early in life. Furthermore, mutations in the E-cadherin
gene (cdh1) are found in about 30% of the cases. The expres-

sion of this molecule is then inhibited at the adherent cellular
junctions, leading to invasive tumours.

Besides this histologic classification, a molecular classification
has recently been proposed. It can identify gastric carcinoma
due to the Epstein-Barr virus, which represents about 10% of

the cases. The others are microsatellite unstable tumours
showing elevated mutation rates including mutations in target-

able oncogenic signalling proteins, genomic stable tumours and
tumours with chromosomal instability [13].

The role of H. pylori infection in the carcinogenic process
was first considered to be indirect via the long-term inflam-

mation that is induced. The Th1 type immune response leads to
apoptosis of the gastric epithelial cells [14] and to a cell pro-

liferation to compensate for the cell loss [15]. The important
production of oxygen free radical species leads to errors during
mitosis and an accumulation of mutations [16]. This process

may be reinforced by the fact that H. pylori impairs DNA
mismatch repair in gastric epithelial cells [17].

More recent data have shown that H. pylori may also have a
direct carcinogenic effect via the CagA protein. CagA in-

teracts with proteins of the tight junctions: ZO-1, JAM and
adherent junctions, with E-cadherin leading to a destabiliza-

tion of these junctions and activation of β-catenin [18]. This
effect would be due to the interaction of CagA with the PAR1
kinase (partitioning-defective 1 microtube affinity-regulating

kinase MARK) involved in the cytoskeleton structure and
cell polarity [19].
Clinical Microbiology and Infection © 2015 European Society of Clinical Microbiology and Infect
Other effects of CagA appear after its phosphorylation. It
then interacts with the SHP2 phosphatase which inhibits Src

dephosphorylation, FAK which regulates the focal adherence
plaques to the cellular matrix, and also c-Met, MAPK and other

actin cytoskeleton regulators [8]. The outcome is the change
in phenotype of the epithelial cell, described as the “hum-

mingbird” phenotype (Fig. 3). We showed that this change
indeed corresponds to an epithelial–mesenchymal transition,
with an increase in mesenchymal cell markers and a moderate

decrease in epithelial cell markers. Furthermore, these cells
express a high level of CD44, which is a marker of gastric

cancer stem cells (CSC) and which present CSC-like proper-
ties [20,21].

In the Mongolian gerbil model it was possible to induce the
cascade of events leading to gastric carcinoma by infecting the

animals with a CagA-positive strain, while these modifications
were not observed with the CagA isogenic mutant, confirming

the oncogenic role of CagA [22].
The final proof of the oncogenic potential of CagA came

from the design of a transgenic mouse model expressing CagA

either ubiquitously or in gastric tissue only. It was shown that
without H. pylori infection, these mice could develop hyper-

plastic polyps but also gastric adenocarcinoma in a limited
number [23].
Origin of cancer stem cells in gastric cancer
As mentioned before, H. pylori is able to induce an epithe-
lial–mesenchymal transition which generates cells with CSC

properties, and therefore the cancer may rise from local
ious Diseases. Published by Elsevier Ltd. All rights reserved, CMI, 21, 984–990



FIG. 4. Gastric intraepithelial neoplasia induced by Helicobacter pylori

infection in mouse model.

FIG. 3. Appearance of cells infected with CagA-positive Helicobacter pylori (“hummingbird” phenotype) and controls.
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progenitor cells. However, interestingly, data indicate that it

may also develop from bone marrow–derived cells (BMDC),
which are mesenchymal stem cells. After the work of

Houghton et al. [24] using Helicobacter felis in an experimental
mouse model, our group studied this phenomenon in depth.

The concept is that because of H. pylori infection and intense
inflammation in the gastric glands, the local regeneration
process is insufficient. As a result of chemotactism, there is a

recruitment of circulating mesenchymal type BMDC to home
within the gastric mucosa and contribute to tissue regenera-

tion, but because the infectious process is still present, these
cells cannot correctly differentiate to repair the gastric mu-

cosa and may become CSC. We used a mouse model of
C57Bl/6 mice irradiated and transplanted with bone marrow

from transgenic mice expressing green fluorescent protein.
The chimeras were infected with different strains of H. pylori
and H. felis as a control and humanely killed after 15, 35, 55

and 75 weeks to look at gastric pathology and BMDC
recruitment. We could observe the usual gastric lesions of

mice beginning with hyperplasia, atrophy, mucinous and
pseudointestinal metaplasia evolving in aged animals towards

dysplasia and gastric intraepithelial neoplasia (Fig. 4). In addi-
tion, after a year of infection, we showed that about a quarter

of the gastric intraepithelial neoplasia lesions were green
fluorescent protein positive, indicating that mesenchymal

BMDC had indeed colonized the glands and were at the origin
of the lesions [25].

Further in vitro studies using cell culture models showed that

the capacity to recruit mesenchymal stem cells was indeed
variable among H. pylori strains and not linked to CagA. The

mechanism involved was the production of chemokines
including TNF-α [26]. It was also possible to show that

recruited cells fused with gastric epithelial cells [27].
Clinical Microbiology and Infection © 2015 European Society of Clinical Microbiology
Risk factors other than H. pylori infection
involved in gastric cancer
It is now accepted that the characteristics of the infectious

strain are the most important factors in the development of
gastric carcinoma, but, like in other infections, there are envi-

ronmental factors and genetic factors which predispose to or
protect from this outcome and which furthermore interact

with some pathogenic factors of the strain, e.g. CagA.

Genetic factors
Rare cases of hereditary gastric carcinoma exist such as the

Lynch syndrome, the hereditary nonpolyposis colorectal cancer
and Infectious Diseases. Published by Elsevier Ltd. All rights reserved, CMI, 21, 984–990
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syndrome, or the familial adenomatous polyposis. It may be that

a H. pylori infection speeds up the carcinogenetic process.
Recently, following the high-throughput sequencing of the

human genome, it was possible to identify single nucleotide
polymorphisms which are associated with a higher risk of

developing gastric adenocarcinoma. The main one concerns IL-
1β and its receptor [28]. Others include TNF-α, IL-8, IL-10 and
COX2.

Environmental factors
Environmental factors are mostly related to diet. A diet

including antioxidants, e.g. ascorbic acid and polyphenols, is
protective against gastric carcinoma [29]. On the other hand,

meat consumption, which induces nitrosamines, is a risk factor
[30], as is use of tobacco products, as for many other cancers.

High dietary salt intake is a risk factor for gastric cancer and

may have a synergistic effect. There was a higher CagA tran-
scription in vivo in the animals submitted to this diet [31]. Iron

deficiency also increases cancer risk by increasing the virulence
phenotype of CagA-positive H. pylori, as shown by Noto et al.

[32].

Ancestral origin of the H. pylori strains
An interesting concept has been proposed to explain the

evolution of H. pylori infection towards gastric cancer in some
individuals.

H. pylori strains can be categorized in 11 groups according to
their phylogeographic origin determined by multilocus

sequence typing, which allows a migration trace of modern
humans beginning when they went out of Africa 60 000 years

ago [33,34].
When human ancestry was compared to H. pylori ancestry in

Colombia where different populations are living, it was shown
that the interaction between African H. pylori ancestry and
populations of African ancestry was relatively benign, while it

was deleterious in populations with substantial Amerindian
ancestry [35].

This rupture in coevolution shapes the risk of cancer
development. This nice result remains to be confirmed in other

types of populations.
Prevention of gastric cancer
There are now many data indicating the role of H. pylori

infection in the development of most gastric cancer cases.
Accordingly, it has raised the possibility of prevention of this

disease by eradicating H. pylori. Nevertheless, such an approach
needs to be studied carefully in order to appreciate the benefits
and the risks [36].
Clinical Microbiology and Infection © 2015 European Society of Clinical Microbiology and Infect
We do not have many studies showing the benefit of erad-

ication on gastric carcinoma occurrence. Wong et al. [37] in
China showed that gastric carcinoma could be prevented if no

premalignant lesions were present at the time of eradication,
while there was a limited efficacy in the case of premalignant

lesions. Given that H. pylori infections last for decades, it is
understandable that in the case of premalignant lesions, muta-
tions may have occurred and so it is not possible to return to a

zero risk.
To obtain suitable data concerning the impact of H. pylori

eradication with gastric carcinoma development as the
outcome, a large trial is currently taking place in China: the

Linqu County trial. A population of 184 000 subjects aged 25 to
54 years were tested for H. pylori by urea breath test, and 57.6%

were positive. They were randomized by village in two groups
of about 45 000 receiving either a quadruple therapy or bis-
muth and omeprazole as a comparator. The eradication rate

was 73% in the former and 15% in the latter. These subjects will
now be followed for 7 years [38,39].

Other eradication trials in the general population have been
carried out, e.g. on Matsu Island, Taiwan (5000 inhabitants), but

with no control group. Using a historical comparison, the re-
searchers were able to show a 25% decrease in gastric cancer

and a 67% decrease in peptic ulcer disease after 5 years [40].
There are, however, some risks induced by an organized

screening and treatment of H. pylori infection, the main one
being the risk linked to antibiotic treatment. A relationship
between antibiotic consumption and bacterial resistance has

been shown at the population level. Concerning H. pylori, a
study carried out in Europe highlighted an association between

the consumption of long-acting macrolides and H. pylori resis-
tance to clarithromycin, as well as between fluoroquinolone

consumption and H. pylori resistance to levofloxacin in the
community [41]. At the individual level, it is also clear that in

the case of failure of a clarithromycin-based regimen, approx-
imately 60–70% of the strain test resistant to clarithromycin
[42]. It is also important to consider resistance induced in other

bacteria, especially in the faecal flora. Very few studies have
been carried out, but they show a dramatic increase in resis-

tance of a number of bacteria, and resilience may not always
occur after stopping the treatment [43–45]. In addition to the

selection of resistant bacteria, antibiotics can modify the gut
microbiota, with possible harmful consequences.

Other possible negative effects of H. pylori eradication have
been pointed out. The first concerns autoimmune diseases and

is based on a mouse model [46]; however, it appears that this
would be relevant if an eradication attempt is carried out very
early in life [46], which is not the case. The second concerns

gastroesophageal reflux; however, while a negative association
was found between the prevalence of H. pylori and the severity
ious Diseases. Published by Elsevier Ltd. All rights reserved, CMI, 21, 984–990
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of gastroesophageal reflux, there is much controversy regarding

a possible causal relationship [47].
Conclusion
There are numerous arguments showing that H. pylori infection

can cause gastric cancer. This is the main cancer induced by
infection worldwide. A bacterial oncoprotein, CagA, has been

identified. Prevention of gastric cancer is now possible, but it is
important to weigh the benefits and risks of this approach.
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