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Let S(n) be the set of all polynomials of degree n with all roots in the unit disk, and define
d(P ) to be the maximum of the distances from each of the roots of a polynomial P to
that root’s nearest critical point. In this notation, Sendov’s conjecture asserts that d(P ) is
at most 1 for every P in S(n). Define P in S(n) to be locally extremal if d(P ) is at least
d(Q ) for all nearby Q in S(n). In this paper, we determine sufficient conditions for real
polynomials of degree n with a root strictly between 0 and 1 and a real critical point of
order n − 3 to be locally extremal, and we use these conditions to find locally extremal
polynomials of this form of degrees 8, 9, 12, 13, 14, 15, 19, 20, and 26.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In 1958, Sendov conjectured that if a polynomial (with complex coefficients) has all its roots in the unit disk, then
within one unit of each of its roots lies a root of its derivative. This conjecture has yet to be settled, although it has been
the subject of more than 80 papers over the intervening years, and so has been verified for many special cases. These have
been documented by Sendov [8], Schmeisser [6], Sheil-Small [9, Chapter 6] and Rahman and Schmeisser [5, Section 7.3].

Let n � 2 be an integer and let S(n) be the set of all complex polynomials of degree n with all roots in the unit disk. For
a polynomial P with roots z1, . . . , zn and critical points ζ1, . . . , ζn−1, define

d(P ) = max
1�i�n

{
min

1� j�n−1
|zi − ζ j |

}
.

If P ∈ S(n), then the Gauss–Lucas Theorem [5, Theorem 2.1.1] implies that d(P ) � 2, and Sendov’s conjecture asserts that
d(P ) � 1.

We will say that a polynomial P is expected if it is of the form P (z) = c(zn + a) with |a| = 1. In 1972, Phelps and
Rodriguez defined a polynomial P ∈ S(n) to be extremal if d(P ) = sup{d(Q ): Q ∈ S(n)}, and conjectured [4, after Theorem 5]
that extremal polynomials are all expected. Since any expected polynomial P has d(P ) = 1, this conjecture implies Sendov’s
conjecture. The Phelps–Rodriguez conjecture has also been verified for a number of special cases, as documented by Rahman
and Schmeisser [5, Section 7.3].

Define an ε-neighborhood of P ∈ S(n) to be the set of all the polynomials Q ∈ S(n) whose roots are within ε of the roots
of P (in the sense that the roots of Q can be paired with the roots of P so that in each pair, the difference of the roots has
a modulus less than ε). Define a polynomial P ∈ S(n) to be locally extremal if d(P ) � d(Q ) for all Q in some ε-neighborhood
of P , and note that maximizing d(P ) over all locally extremal polynomials P would settle the Sendov conjecture.

The expected polynomials are all locally extremal, as was demonstrated by Vâjâitu and Zaharescu [10] and Miller [3,
Theorem 3]. Given this and the Phelps–Rodriguez conjecture, it is tempting to approach Sendov’s conjecture by trying
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to show that all locally extremal polynomials must be expected. Indeed, Schmieder has made several such attempts [7],
although Borcea has shown [2, Section 1] that each contains a technical flaw.

In this paper, we prove

Theorem 1. For each n ∈ {8,9,12,13,14,15,19,20,26}, there are locally extremal polynomials P ∈ S(n) of the form

P (z) =
z∫

β

(w − a)n−3(w2 + bw + c
)

dw with 0 < β < 1.

Note that polynomials of this form would not be expected, as each has a root β that is not on the unit circle. Thus
Theorem 1 implies that there are locally extremal polynomials that are not expected.

Theorem 1 has several consequences. First, it shows that the technical flaws in Schmieder’s approach cannot be patched.
Second, the structure of these polynomials (in particular, the multiple critical point) identifies circumstances that potential
variational proofs of Sendov’s conjecture will need to address. Finally, finding these polynomials is a significant new step in
identifying all local extrema, which would settle the fate of Sendov’s conjecture.

In Section 2, we list eight properties that we claim are sufficient for a polynomial to be locally extremal, and in Sections 3
and 4 we verify that these properties suffice. In Section 5, we describe how to construct polynomials that satisfy all these
properties, and in Section 6 we list the resulting polynomials, thereby verifying Theorem 1.

2. Properties

In Section 4 we prove that for a real polynomial P of degree n � 5 to be locally extremal, it suffices for it to satisfy 8
properties, beginning with the following.

A: All roots of P lie in the closed unit disk.
B: All roots of P that are on the unit circle are simple.
C: P has a root at β , with 0 < β < 1.
D: All critical points of P lie on a circle of positive radius centered at β .
E: P has a real critical point a < β of order n − 3.

Let z1, . . . , zn be the roots of P , numbered so that z1, . . . , zm are on the unit circle. Let ζ1, . . . , ζn−1 be the critical points
of P , numbered (as allowed by property E) so that ζ j = a for j � 3.

Note that property D implies that P has a simple root at β . Our next property is

F: The roots and critical points of P satisfy the inequality

max
zi �=β

min
1� j�n−1

|zi − ζ j | < min
1� j�n−1

|β − ζ j | < 1.

To examine the effects of changing β and the ζ j by small amounts, denoted by Δβ (which we will require to be real)
and Δζ j , we will use the following notation.

Ek = −�
[

Δζk − Δβ

ζk − β

]
for k = 1 and k = 2,

Fk = 0 for k = 1 and k = 2,

E3 = �[∑n−1
j=3 Δζ j] − (n − 3)Δβ

β − a
, and

F3 = −
∑n−1

j=3(�[Δζ j])2

2(β − a)2
.

(2.1)

Since (up to a constant multiple) P ′(z) = ∏n−1
j=1(z − ζ j) and by property C we have P (z) = ∫ z

β
P ′(w)dw , then the roots

of P are functions of β and the ζ j . By property B, the roots of P that are on the unit circle (being simple) are differentiable
functions of β and the ζ j .

Recall that z1, . . . , zm are on the unit circle. For i = 1, . . . ,m define

Ei+3 = �
[

1

zi

∂zi

∂β

]
Δβ +

2∑
�

[
1

zi

∂zi

∂ζ j
Δζ j

]
+ �

[
1

zi

∂zi

∂ζ3

n−1∑
Δζ j

]
, and
j=1 j=3
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Fi+3 = −�
[

1

2zi P ′(zi)

zi∫
β

P ′(w)dw

(w − a)2

]
n−1∑
j=3

(�[Δζ j]
)2

.

Note that for a fixed polynomial P , the m + 3 expressions Ek are all linear in the 7 real “variables” Δβ , �[Δζ1], �[Δζ1],
�[Δζ2], �[Δζ2], �[∑n−1

j=3 Δζ j] and �[∑n−1
j=3 Δζ j], and that the m + 3 expressions Fk are all constant multiples of the real

“variable”
∑n−1

j=3(�[Δζ j])2. Our final two properties are

G: There are constants ck > 0 (that depend on P , but are independent of the 8 “variables”) so that the sums
∑m+3

k=1 ck Ek = 0

and
∑m+3

k=1 ck Fk = ∑n−1
j=3(�[Δζ j])2.

H: The coefficient matrix of the system {Ek = 0: k = 1, . . . ,m + 3} in our 7 “variables” is of rank 7.

3. Preliminary calculations

We will show that a real polynomial P of degree n � 5 that satisfies properties A–H is locally extremal, as follows.
Define r to be the radius of the circle in property D and recall that (up to a constant multiple) P (z) = ∫ z

β

∏n−1
j=1(w −ζ j)dw .

From our properties A and D we know that P has all its roots in the closed unit disk and all its critical points on a circle of
radius r > 0 centered at β . Define the n-tuple (Δβ,Δζ1, . . . ,Δζn−1) ∈ Cn to be an improvement of P if Δβ is real and if the
polynomial

z∫
β+Δβ

n−1∏
j=1

[
w − (ζ j + Δζ j)

]
dw (3.1)

has all its roots in the closed unit disk and all its critical points strictly outside the circle of radius r centered at β + Δβ . By
property F we know that r < 1, so there is at least one improvement, namely (1 − β,−ζ1, . . . ,−ζn−1).

For an improvement I = (Δβ,Δζ1, . . . ,Δζn−1), define

‖I‖ =
(

|Δβ|2 +
n−1∑
j=1

|Δζ j |2
)1/2

.

Note that ‖I‖ > 0, for if ‖I‖ = 0, then the critical points of (3.1) would be the critical points of P , hence on (and thus not
strictly outside) the circle of radius r centered at β + Δβ .

We now show that if P is not locally extremal, then there are arbitrarily small improvements of P . Let

ε0 = min
1� j�n−1

|β − ζ j | − max
zi �=β

min
1� j�n−1

|zi − ζ j |

and note that ε0 > 0 by property F. Take any ε with 0 < ε < min(ε0/4, β/2) and recall our definition of ε-neighborhood from
Section 1. The roots of a monic polynomial depend continuously on the coefficients of that polynomial [5, Theorem 1.3.1],
so the critical points of P are continuous functions of the roots of P . Thus there is a δ > 0 such that for all polynomials Q
in a δ-neighborhood of P , the roots and critical points of Q are within ε of the roots and critical points of P .

By property F, we know that d(P ) = r, so if P is not locally extremal, then there is a polynomial P̂ ∈ S(n) in the
δ-neighborhood of P with d( P̂ ) > r. For i = 1, . . . ,n, let ẑi be the root of P̂ paired with zi (so |ẑi − zi | < ε), and for
j = 1, . . . ,n − 1, let ζ̂ j be the critical point of P̂ paired with ζ j (so |ζ̂ j − ζ j | < ε). Since the roots and critical points of P̂
differ from the roots and critical points of P by at most ε0/4, then by property F we have

max
ẑi �=β̂

min
1� j�n−1

|ẑi − ζ̂ j | < min
1� j�n−1

|β̂ − ζ̂ j |

so d( P̂ ) = min1� j�n−1 |β̂ − ζ̂ j | and thus P̂ has all its critical points strictly outside the circle of radius r centered at β̂ .
Note that |β̂| � |β| − |β̂ − β| � β/2 > 0, define u = |β̂|/β̂ and note that |u − 1| = ||β̂| − β̂|/|β̂| � 2ε/(β/2). Since |u| = 1,

then the transformation z → uz is a rotation about the origin, so I = (uβ̂ −β, uζ̂1 − ζ1, . . . , uζ̂n−1 − ζn−1) is an improvement
of P . Note that each |uζ̂ j − ζ j | � |u| · |ζ̂ j − ζ j | + |ζ j | · |u − 1| � Cε for some constant C (and similarly for |uβ̂ − β|), so ‖I‖
can be made arbitrarily small.

We have just seen that if P is not locally extremal, then there are improvements I of P with ‖I‖ arbitrarily small. This
means that we can show that P is locally extremal by proving

Theorem 2. If P is a real polynomial of degree n � 5 that satisfies properties A–H, then there is a constant A > 0 so that every
improvement I of P has ‖I‖ � A.
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We will prove this theorem by approximating the roots and critical points of P . To keep track of the errors in these
approximations, we introduce a variant of the Landau “Big Oh” notation by defining the bound

E � B
(
tk)

to mean that there is a number A (independent of t) so that E � Atk for all t > 0 in some neighborhood of 0. The notation
E � B(tk) is defined similarly. Finally, we define E = B(tk) to mean that |E| � B(tk), and E = F + B(tk) to mean that
E − F = B(tk). Given this, we have

Lemma 3. If z = B(t), then

(1) |1 + z| = 1 + �[z] +B
(
t2), and

(2) |1 + z| = 1 + �[z] + (1/2)
(�[z])2 +B

(
t3).

Proof. Note that �[z] = B(t) and |z|2 = B(t2). The results follow from the equality |1 + z| = (1 + 2�[z] + |z|2)1/2, the Taylor
series (1 + s)1/2 = 1 + s/2 − s2/8 +B(s3) and the substitution s = 2�[z] + |z|2. �

We will be examining the relationships between the roots and critical points of P . We calculate the partial derivatives
of these relationships with

Lemma 4. Write P ′(z) = ∏n−1
j=1(z − ζ j) and suppose that zi is a simple root of P (z) = ∫ z

β
P ′(w)dw. Then

(1) zi is an analytic function of β, ζ1, . . . , ζn−1,

(2)
∂zi

∂β
= P ′(β)

P ′(zi)
,

(3)
∂zi

∂ζ j
= 1

P ′(zi)

zi∫
β

P ′(w)dw

w − ζ j
,

(4)
∂2zi

∂ζ 2
j

= 2

zi − ζ j

∂zi

∂ζ j
− P ′′(zi)

P ′(zi)

(
∂zi

∂ζ j

)2

, and

(5)
∂2zi

∂ζ j∂ζk
= 1

zi − ζk

∂zi

∂ζ j
+ 1

zi − ζ j

∂zi

∂ζk
− P ′′(zi)

P ′(zi)

∂zi

∂ζ j

∂zi

∂ζk
− 1

P ′(zi)

zi∫
β

P ′(w)dw

(w − ζ j)(w − ζk)
for j �= k.

Proof. We may assume that zi �= β (else the results would be trivially true). Proofs of parts 1–3 can be found in [1, Lem-
mas 2.1 and 2.3].

Part 4 can be established by writing P ′(z) = (z − ζ j)Q (z) (with Q independent of ζ j) and calculating the second partial
derivative (with respect to ζ j ) of

0 =
zi∫

β

w Q (w)dw − ζ j

zi∫
β

Q (w)dw.

This gives us

0 = (zi − ζ j)Q (zi)
∂2zi

∂ζ 2
j

− 2Q (zi)
∂zi

∂ζ j
+ [

(zi − ζ j)Q ′(zi) + Q (zi)
]( ∂zi

∂ζ j

)2

from which part 4 follows.
Part 5 can likewise be established by writing P ′(z) = (z − ζ j)(z − ζk)Q (z) and calculating the mixed second partial

derivative of the corresponding integral. This gives us

0 = [
z2

i − (ζ j + ζk)zi + ζ jζk
]

Q (zi)
∂2zi

∂ζ j∂ζk
+ {[

z2
i − (ζ j + ζk)zi + ζ jζk

]
Q ′(zi) + [

2zi − (ζ j + ζk)
]

Q (zi)
} ∂zi

∂ζ j

∂zi

∂ζk

− (zi − ζ j)Q (zi)
∂zi

∂ζ j
− (zi − ζk)Q (zi)

∂zi

∂ζk
+

zi∫
β

Q (w)dw

from which part 5 follows. �
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4. Proof of Theorem 2

Recall that P is a real polynomial of degree n � 5 that satisfies properties A–H. We will prove Theorem 2 in two stages,
first by estimating the roots and critical points of P with linear approximations, and then by improving our estimates with
quadratic approximations.

We begin by examining the conclusions that can be drawn from linear approximations to the roots and critical points of
P with

Proposition 5. If I = (Δβ,Δζ1, . . . ,Δζn−1) is an improvement of P and t = ‖I‖, then Δβ = B(t2), Δζ j = B(t2) for j � 2, �[Δζ j] =
B(t2) for j � 3 and

∑n−1
j=3 Δζ j = B(t2).

Proof. From the definition of t we know that Δβ = B(t) and that each Δζ j = B(t). Since I is an improvement, then each
|(ζ j − β) + (Δζ j − Δβ)| > r, so |1 + (Δζ j − Δβ)/(ζ j − β)| > r/|ζ j − β| = 1, so using part 1 of Lemma 3 gives us that each

−�
[

Δζ j − Δβ

ζ j − β

]
� B

(
t2). (4.1)

Recalling the expressions Ek defined in (2.1), this gives us two inequalities E1 � B(t2) and E2 � B(t2). Adding (4.1) for
j = 3, . . . ,n − 1 and recalling that ζ j = a is real for j � 3 gives us a third inequality E3 � B(t2).

By part 1 of Lemma 4 the roots of our improved polynomial (3.1) that originate from the simple roots zi of P are analytic
functions of β, ζ1, . . . , ζn−1, so each such root is of the form zi + Δzi , with

Δzi = ∂zi

∂β
Δβ +

2∑
j=1

∂zi

∂ζ j
Δζ j + ∂zi

∂ζ3

n−1∑
j=3

Δζ j +B
(
t2).

Note that each Δzi = B(t). Since I is an improvement, then each |zi + Δzi | � 1. If |zi | = 1, then |1 + Δzi/zi | � 1/|zi | = 1 so
using part 1 of Lemma 3 gives us �[Δzi/zi] � B(t2) and thus we have inequalities Ei+3 � B(t2) for i = 1, . . . ,m.

By property G, there are constants ck > 0 so that
∑m+3

k=1 ck Ek = 0. Since each Ei � B(t2), then each

Ei = 1

ci

[
m+3∑
k=1

ck Ek +
m+3∑

i �=k=1

ck(−Ek)

]
� B

(
t2)

so each Ei = B(t2).
Thus we consider the system {Ek = B(t2): k = 1, . . . ,m + 3}. By definition, this system is equivalent to a system of linear

inequalities of the form

{−Akt2 � Ek � Akt2: k = 1, . . . ,m + 3
}

for some numbers A1, . . . , Am+3. By property H, the coefficient matrix of this system is of rank 7, and so solving this
system (using elementary row operations on the inequalities) shows that the values of our 7 “variables” are constrained by
similar inequalities, hence they are all B(t2). Thus we can conclude that Δβ = B(t2), that Δζ j = B(t2) for j � 2, and that∑n−1

j=3 Δζ j = B(t2).

Suppose that j � 3. Since by property E we know that ζ j − β = a − β < 0, and since Δβ = B(t2), then (4.1) implies that
each �[Δζ j] � B(t2). Since

∑n−1
k=3 �[Δζk] = B(t2), then each

�[Δζ j] =
n−1∑
k=3

�[Δζk] +
n−1∑

j �=k=3

(−�[Δζk]
)
� B

(
t2),

so each �[Δζ j] = B(t2). This finishes the proof of Proposition 5. �
At this point, for j � 3 we know only that each Δζ j = B(t). We can improve this estimate by looking at quadratic

approximations to the roots and critical points of P with

Proposition 6. If I = (Δβ,Δζ1, . . . ,Δζn−1) is an improvement of P and t = ‖I‖, then each Δζ j = B(t3/2).

Proof. Note that the hypotheses of Proposition 5 are satisfied, so we may use all of its conclusions. In particular, we
know that Δζ j = B(t2) for j � 2 and that �[Δζ j] = B(t2) for j � 3, so to verify Proposition 6 we need only show that
�[Δζ j] = B(t3/2) for j � 3. We will do this by repeating the calculations of Proposition 5, but working now to B(t3).
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Since I is an improvement, then each |1 + (Δζ j − Δβ)/(ζ j − β)| > 1, so using part 2 of Lemma 3 gives us

−�
[

Δζ j − Δβ

ζ j − β

]
− 1

2

(
�
[

Δζ j − Δβ

ζ j − β

])2

� B
(
t3). (4.2)

Define inequalities 1 and 2 by evaluating (4.2) for j = 1 and j = 2 respectively. By Proposition 5, for j � 2 we have
Δζ j − Δβ = B(t2), so inequalities 1 and 2 are Ek + Fk � B(t3) for k = 1,2.

Define inequality 3 to be the sum of (4.2) for j = 3, . . . ,n − 1. Now each ζ j − β = −(β − a) is real for j � 3, and each
�[Δζ j − Δβ] = �[Δζ j], so inequality 3 can be written as E3 + F3 � B(t3).

Each root of our improved polynomial is of the form zi + Δzi . A quadratic approximation to Δzi includes terms of the
form ΔβΔζ j = B(t3) and (for j � 2 or k � 2) Δζ jΔζk = B(t3), which are absorbed into the B(t3) when we write

Δzi = ∂zi

∂β
Δβ +

2∑
j=1

∂zi

∂ζ j
Δζ j + ∂zi

∂ζ3

n−1∑
j=3

Δζ j + 1

2

n−1∑
j=3

n−1∑
k=3

∂2zi

∂ζ j∂ζk
Δζ jΔζk +B

(
t3).

Note that Proposition 5 implies that each Δzi = B(t2). Now ζ j = a for j � 3, so Lemma 4 shows that for j � 3 and k � 3 we
have

∂2zi

∂ζ j∂ζk
− ∂2zi

∂ζ3∂ζ4
=

{
1

P ′(zi)

∫ zi
β

P ′(w)dw
(w−a)2 if j = k,

0 if j �= k.

From Proposition 5 we know that

n−1∑
j=3

n−1∑
k=3

Δζ jΔζk =
(

n−1∑
j=3

Δζ j

)2

= B
(
t4)

so

n−1∑
j=3

n−1∑
k=3

∂2zi

∂ζ j∂ζk
Δζ jΔζk =

n−1∑
j=3

n−1∑
k=3

(
∂2zi

∂ζ j∂ζk
− ∂2zi

∂ζ3∂ζ4

)
Δζ jΔζk +B

(
t4)

and thus

n−1∑
j=3

n−1∑
k=3

∂2zi

∂ζ j∂ζk
Δζ jΔζk = 1

P ′(zi)

zi∫
β

P ′(w)dw

(w − a)2

n−1∑
j=3

(Δζ j)
2 +B

(
t4).

From Proposition 5 we also know that each (Δζ j)
2 = −(�[Δζ j])2 +B(t3) for j � 3, so

n−1∑
j=3

n−1∑
k=3

∂2zi

∂ζ j∂ζk
Δζ jΔζk = −1

P ′(zi)

zi∫
β

P ′(w)dw

(w − a)2

n−1∑
j=3

(�[Δζ j]
)2 +B

(
t3).

Recall that each |zi + Δzi | � 1 and that each Δzi = B(t2). If |zi | = 1, then |1 + Δzi/zi | � 1, so using part 1 of Lemma 3
gives us �[Δzi/zi] � B(t4) and so Ei+3 + Fi+3 � B(t3) for i = 1, . . . ,m.

Thus we have Ek + Fk � B(t3) for k = 1, . . . ,m + 3. From property G there are constants ck > 0 so that
∑n−1

j=3(�[Δζ j])2 =∑m+3
k=1 ck(Ek + Fk) � B(t3) and thus �[Δζ j] = B(t3/2) for j � 3, which completes the proof of Proposition 6. �
Using our estimates from Propositions 5 and 6, we can now write the

Proof of Theorem 2. Let I = (Δβ,Δζ1, . . . ,Δζn−1) be any improvement of P , and let t = ‖I‖. From Propositions 5 and 6, we
know that Δβ = B(t2) and that each Δζ j = B(t3/2), so

t = ‖I‖ =
(

|Δβ|2 +
n−1∑
j=1

|Δζ j |2
)1/2

= B
(
t3/2).

Thus there are positive constants ε and K (depending only on P ) so that t � Kt3/2 for all t ∈ (0, ε). Letting A =
min{ε,1/K 2}, we have ‖I‖ = t � A. �
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5. Calculations

Recall that Theorem 2 implies that any real polynomial of degree n � 5 that satisfies Properties A–H is locally extremal.
In this section, we show how to find locally extremal polynomials by describing how to construct polynomials that satisfy
our properties A–H. Maple code for these calculations can be found in the supplementary material of this article, available
at doi: 10.1016/j.jmaa.2008.07.049.

Recall that P is to be a real polynomial of degree n � 5. To satisfy property E we must have P ′(z) = (z−a)n−3(z2 +bz+c)
for some real numbers a, b and c. To satisfy property C, we must have P (z) = ∫ z

β
P ′(w)dw , so the coefficients of P will be

polynomials in {β,a,b, c}.
To satisfy property D (where the critical points of P are the real number a and the complex roots of z2 + bz + c), we

generate our first equation β2 + bβ + c = (β − a)2.
Note that property G implies that the rows of the linear system {Ek = 0: k = 1, . . . ,m + 3} are linearly dependent. Since

property H states that the coefficient matrix of this system is of rank 7, this means that there must be at least 8 equations
in the system, so m � 5 and thus we must look for polynomials with at least 5 roots on the unit circle.

If n is odd, we will look for polynomials with three pairs of complex conjugate roots on the unit circle. Each such pair
will be the roots of a quadratic of the form z2 +di z +1, so the remainders upon dividing P by each of these three quadratics
are linear polynomials with both coefficients equal to 0. This generates an additional six equations in the seven variables
{β,a,b, c,d1,d2,d3}. Thus we have a nonlinear system of 7 equations in 7 unknowns.

If n is even, we will look for polynomials with two pairs of complex conjugate roots on the unit circle and a root at −1.
The conjugate roots generate an additional 4 equations in the six variables {β,a,b, c,d1,d2} (as above), and the equation
P (−1) = 0 generates a sixth equation. Thus we have a nonlinear system of 6 equations in 6 unknowns.

Thus in either case we get a nonlinear system of equations, with the same number of equations as unknowns, so we
can try to solve this system. Note that there may be more than one solution, so we will need to choose the “correct”
one, by specifying appropriate initial estimates. For each such solution, we verify properties A–H by checking the following
assertions. (Details of these computations may be found in the Maple code referenced above.)

Property A: The maximum modulus of the roots of P is equal to 1 (to the accuracy calculated).
Property B: The minimum distance between any two roots of P is greater than 0.1. (This shows that all roots of P are

simple.)
Property C: We have 0.7 < β < 0.9. (We know that P (β) = 0, since P (z) = ∫ z

β
P ′(w)dw by construction.)

Property D: The distances between β and the critical points of P are all equal (to the accuracy calculated), and this
common distance is greater than 0.9.

Property E: The quantity β − a > 0.9. (Note that the critical point a is real and of order n − 3 by construction.)
Property F: If we define

R = max
zi �=β

min
1� j�n−1

|zi − ζ j | and r = min
1� j�n−1

|β − ζ j |,

then r < 0.97 and r − R > 0.02.
Property G: The linear system given by the sums has a solution in which every ck > 0.3.
Property H: The seventh largest singular value of the coefficient matrix is greater than 0.04.
Once we have verified properties A–H for a specific polynomial P , we know by Theorem 2 that P is locally extremal and

we are done.

6. Proof of Theorem 1

For the values of β and P ′(z) given below, one can verify that the polynomials P (z) = ∫ z
β

P ′(w)dw satisfy properties A–H,
and thus by Theorem 2 are locally extremal. (Details of these computations may be found with the Maple code referenced
above.)

For n = 8, we take β = 0.7290857513 and

P ′(z) = (z + 0.2035409790)5(
z2 − 0.5410836525z + 0.7327229666

)
.

For n = 9, we take β = 0.7145672829 and

P ′(z) = (z + 0.2157115753)6(
z2 − 0.8021671918z + 0.9280147829

)
.

For n = 12, we take β = 0.8403619619 and

P ′(z) = (z + 0.1155828545)9(
z2 − 0.4090272613z + 0.5513532168

)
.

For n = 13, we take β = 0.8275325585 and

P ′(z) = (z + 0.1246203379)10(
z2 − 0.5415308686z + 0.6699194279

)
.
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For n = 14, we take β = 0.8158105092 and

P ′(z) = (z + 0.1304708647)11(
z2 − 0.6885970233z + 0.7916663399

)
.

For n = 15, we take β = 0.7999767588 and

P ′(z) = (z + 0.1400336168)12(
z2 − 0.8389864647z + 0.9148263642

)
.

For n = 19, we take β = 0.8684432238 and

P ′(z) = (z + 0.0923361850)16(
z2 − 0.6503807257z + 0.7337221736

)
.

For n = 20, we take β = 0.8570396874 and

P ′(z) = (z + 0.0982636528)17(
z2 − 0.7563752823z + 0.8263310816

)
.

For n = 26, we take β = 0.8817716692 and

P ′(z) = (z + 0.0797127446)23(
z2 − 0.7969496845z + 0.8496586550

)
.

These verifications complete the proof of Theorem 1.

Supplementary material

The online version of this article contains additional supplementary material.
Please visit DOI: 10.1016/j.jmaa.2008.07.049.
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